Complex Korovkin Theory via inequalities, a
quantitative approach

George A. Anastassiou
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, U.S.A.
ganastss@memphis.edu

Abstract

Let K be a compact convex subset of C and C (K,C) be the space
of continuous functions from K into C. We consider bounded linear op-
erators from C (K, C) into itself. We assume that these are bounded by
companion real positive linear operators. We study quantitatively the
rate of convergence of the approximation and high order approximation
of these complex operators to the unit operators. Our results are inequal-
ities of Korovkin type involving the complex modulus of continuity of the
engaged function or its derivatives and basic test functions.
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1 Introduction

The study of the convergence of positive linear operators became more intensive
and attractive when P. Korovkin (1953) proved his famous theorem (see [6], p.
14).

Korovkin’s First Theorem. Let [a,b] be a compact interval in R and
(Ln),en be a sequence of positive linear operators L,, mapping C ([a,b]) into
itself. Assume that (L, f) converges uniformly to f for the three test functions
f =1,2,2%. Then (L, f) converges uniformly to f on [a,b] for all functions of
f e C([a,b]).

So a lot of authors since then have worked on the theoretical aspects of the
above convergence. But R. A. Mamedov (1959) (see [7]) was the first to put
Korovkin’s theorem in a quantitative scheme.

Mamedov’s Theorem. Let {L,}, .y be a sequence of positive linear
operators in the space C([a,b]), for which L,1 = 1, L, (t,z) = = + o, (),

RGMIA Res. Rep. Coll. 22 (2019), Art. 34, 22 pp. Received 29/03/19


e5011831
Typewritten Text
RGMIA Res. Rep. Coll. 22 (2019), Art. 34, 22 pp.    Received 29/03/19


L, (t*,z) = 2® + B, (). Then it holds

1En (F,2) = £ @)l < 31 (£,V/dn) | (1)

where wy is the first modulus of continuity and d,, = ||, () — 2z, (z)]]

An improvement of the last result was the following.

Shisha and Mond’s Theorem. (1968, see [9]). Let [a,b] C R be a
compact interval. Let {L,}, .y be a sequence of positive linear operators acting
on C ([a,b]). For n = 1,2,..., suppose L, (1) is bounded. Let f € C([a,b]).
Then for n = 1,2, ..., it holds

Inf = Flloo < W flloo - 1 En1 = Ulog + 1 En (1) + Ul - w1 (fs ) (2)

o *

where
o= (e (-7 o] g

Shisha-Mond inequality generated and inspired a lot of research done by
many authors worldwide on the rate of convergence of a sequence of positive
linear operators to the unit operator, always producing similar inequalities how-
ever in many different directions.

The author (see [1]) in his 1993 research monograph, produces in many
directions best upper bounds for |(L,f) (xo) — f (z0)|, 20 € @ C R™, n > 1,
compact and convex, which lead for the first time to sharp/attained inequalities
of Shisha-Mond type. The method of proving is probabilistic from the theory
of moments. His pointwise approach is closely related to the study of the weak
convergence with rates of a sequence of finite positive measures to the unit
measure at a specific point.

The author in [3], pp. 383-412 continued this work in an abstract setting:
Let X be a normed vector space, Y be a Banach lattice; M C X is a compact
and convex subset. Consider the space of continuous functions from M into Y,
denoted by C (M,Y); also consider the space of bounded functions B (M,Y).
He studied the rate of the uniform convergence of lattice homomorphisms 7' :
CM,Y)—->C(M,Y)orT:C(M,Y)— B(M,Y) to the unit operator I. See
also [2].

Also the author in [4], pp. 175-188 continued the last abstract work for
bounded linear operators that are bounded by companion real positive linear
operators. Here the invoved functions are from [a,b] C R into (X, ||-||) a Banach
space.

All the above have inspired and motivated the work of this chapter. Our
results are of Shisha-Mond type, i.e., of Korovkin type.

Namely here let K be a convex and compact subset of C and L be a linear
operator from C (K, C) into itself, and let L be a positive linear operator from
C (K, R) into itself, such that |L (f)| < AL (|f]), ¥ f € C (K, C), where A > 0.

Clearly then L is a bounded linear operator. Here we create a complete
quantitative Korovkin type theory over the last described setting.



2 Preparation and Motivation
We need

Theorem 1 (/5]) Let K C (C,|-|) and f a function from K into C. Consider
the first complex modulus of continuity

wi (f,6):= sup |f(x)=f(y)l, §>0. (4)

z,ye K
|z—y|<d

We have:

(1) If K is open convex or compact convez, then wi (f,d) < oo, V § > 0,
where f € UC (K, C) (uniformly continuous functions).

(2)’ If K is open convex or compact convezx, then wy (f,d) is continuous on
Ry in d, for f e UC (K,C).

(3)" If K is convez, then

wi (f,t1 +t2) Swi (ft1) +wi (f,t2), ti,t2 >0, (5)

that is the subadditivity property is true. Also it holds

w1 (f7 TL(S) < nwq (fa 5) (6)
and
wi (f,A8) < [Alwi (f,0) < (A + 1w (f,0), (7)

where n € N, A >0, 6 >0, [-] is the ceiling of the number.
(4)’ Clearly in general wy (f,0) > 0 and is increasing in § > 0 and wy (f,0) =
0.
(5) If K is open or compact, then wy (f,0) = 0asd 10, iff f € UC(K,C).
(6)° It holds
wl(f+976)Swl(f=6)+wl(g76)7 (8)

ford >0, any f,g: K — C, K C C is arbitrary.
Next we give examples that motivate our main assumptions in this chapter.

Example 2 Let K C C be a compact and convez set, | : C (K,C) — C a linear

functional and 1 : C (K,R) = R a positive linear functional. If f € C (K,C),
then |f| € C (K,R). We want to see that

LA < AL(If]) . where A > 0, (9)

18 possible.
Also, we want to see that

I(cg)=cl(g), VgeC(K,R), VceC, (10)

s also possible.



So here is a concrete example oflj.
Take K = [a1,01] X [ag,b2] C C a rectangle. Here z = x + iy € C, and
f(z) = fi(z,y) +ifa(x,y). We have that f € C(K,C) iff f1,f2 € C(K,R).

Define the following linear functional

b1 bz bl b2
= [ [ nwdsdysi [ gy, v reco).
1 2 1 2 (11)
This is a linear functional from C (K,C) — C.
Let now g € C (K,R), then
by by
L(g) = / / g (z,y) dxdy € R, (12)

so that | == |k r) s a positive linear functional from C (K,R) into R.
Let c € K, then ¢ = a + b, hence cg = (a + ib) g = ag + ibg, thus

b] b2 bl b2
I (cg) / / (ag (z,y)) dxdy+l/ / (bg (z,y)) dzdy = (13)
by bo
/ / (z,y) dxdy + ib / (z,y) dxdy =
b1 pbe bl ba _
(a+ib)/ / g(x,y)dxdy=6/ / g (z,y)drdy = cl(g).

I(cg) =l (g) (14)

Thus

is true, where

b1 bz
9) :/ / g(z,y)dxdy, ¥ geC(K,R).

Next, we notice that

P s/b /b h <x7y>d:cdy+/: /b \fo (2, )| dady =

/b1 /62(|f1 (z,9)| + | fo (z,9)]) dedy < (15)
f/bl /bz \/ (fi (z,9)" + (f2 (=, y)) drvdy =

f/bl/b )| dudy = VAL (1)

That is
L(f) <V2(f]), V feC(K,C) (16)

1s valid.
Relations (14) and (16) motivate our major assumptions of our theory here.



We continue with a more general example.

Example 3 Let K be a compact and convexr subset of C, and f € C(K,C),
which is f (z) = u(z,y) +iv(x,y) = u+iv, where z =z +1iy, 2 € K; z,y € R.
All linearities here are over the field of R.
Consider L : C (K,R) — C (K,R) a positive linear operator. And consider
L:C(K,C)— C(K,C) the linear operator such that:

L(f)(2) := L (u) (z,y) +iL (v) (z,y) , (17)

indeed L is a linear operator. _ B _
Notice from |u| < |u| & —|u| < u < |ul < —L(Ju]) < L(u) < L(ju|) &
IZ @) < Z(ul).
Thus ~ _
L) () < L) @)] + | L) (@) <

L (ul) (@) + L (o) (2.9) = L (jul + o)) (2.9) <
V2L (Va2 +02) (w,9) = VL (f (2)) = V2L(f) (). (18)
We have proved that
&) L) <VRL(f) (), ¥ 2 € K. (19)

Nezt, let g € C(K,RN), and c € C, i.e. ¢ =a+bi;a,b€R. Then cg = ag+ibg.
Clearly L (cg) = L(ag) + 1L (bg) = aL (g) +1bL (g) = cL(g) .
That is true

(2) L(cg)=cL(g), VeeC andV g C(K,R). (20)

Properties (1) and (2), see (19), (20),justify our theory here. Notice that f €
C(K,C), iff u,v e C(K,R).

Application 4 Take K := [0,1]2, z € K (z =x+1iy), z,y € [0,1]. Let
geC ([0, 1]2 JR), then the two-dimensional Bernstein polynomials are

By, (9) (7,y) :=

22 k‘l k‘2 ny ng k ni1—k1 ke ng—k
L e 1 1_ 1 1 2 1_ 2 2 21
> g(m,n2> <k1><k2 " (1—x) y=(1-y) ;o (21)

k1=0k>=0
and they converge uniformly to g, for ni,ng — oco.
Thus, for f € C ([0, 1]2 ,(C), we define

By, n, () (2) = Buyny (u) (2,) + By, (0) (2,9), (22)

the complex Bernstein operators.



Indeed it is

C
Bnl,nz (f) (Z) =
ni no
ki ko Lat n2 k1 ni1—ki | ko na—ka
S (BB () () et
k1=0 ko=0
A ki k n n
; M2 1 2 k1 _oa\mi—k1 | ko _ 2=k _
zZZv(m,n2> <k1><k2)x (1-2) v (1=y)
k1=0ko=0
5B () )0
Ek1=0 ka=0 ny’ ny ni’ ng k1 ko
(23)

a complex linear operator.
Notice that

|BS, 1y () (2) — [ (2)] =
|(Bny.ny (W) (2,y) —u(2,9)) + 0 (Bnyny (V) (x,9) — v (z,9))| =

V Busns (@) (@,9) = (@, 9))* + (Buyns (0) (2,9) — 0 (2,9))° = (). (24)

W€ hCI/U@ tha’t |B’ﬂ1,n2 (U) (l’,y) - U($7y>‘ < €1, V x,y S [07 1]2; V niy, N2 2 Nl;
G’Nd |B7l177l2 (U) ($7y) _’U(x7y)| < €2, v xr,y S [051]2; v ny, N2 Z N2; N17N2 S

N, where 1,9 > 0.
(x) <y/e2+ed =g, (25)

Thus, it holds
Y z,y €0, 1]2, Y n1,m9 > max (N1, Ny) =: N*, £ > 0.
Hence

’BC (f) (z)—f(z)’ <e,Vze[0,1, Vni,ne > N* €N, where e > 0.

ni,n2

Therefore B;C“’nz (f) = f, uniformly convergent, as ni,ny — 0.

3 Main Results

Let K be a compact and convex subset of C. Consider L : C (K,C) — C (K, C)
a linear operator and L : C (K,R) — C'(K,R) a positive linear operator (i.e.
for fi.fo € C(K,R) with f; > fo we get L(f1) > L(f2)) both over the field of
R.

We assume that

IL(f)| <AL(|f]), ¥ f € C(K,C), where A >0, (27)

(e [L(f) () SAL(f])(2),V 2 € K).
We call L the companion operator of L.

)



Let zg € K. Clearly, then L (-) (z0) is a linear functional from C (K, C) into
C, and L (-) () is a positive linear functional from C (K,R) into R. Notice
L(f)(z) € Cand L(|f])(2) €R,V f € C(K,C) (thus |f| € C(K,R)). Here
L(f) e C(K,C),and L(|f|) € C(K,R),Y f eC(K,C).

Notice that C (K,C) = UC (K, C), also C (K,R) = UC (K,R) (uniformly
continuous functions).

By [3], p. 388, we have that L (|- — z0|") (20), 7 > 0, is a continuous function
in 29 € K.
We have the following approximation result with rates of Korovkin type.

Theorem 5 Here K is a convex and compact subset of C and L, is a sequence
of linear operators from C (K,C) into itself, n € N. There is a sequence of
companion positive linear operators L, from C (K,R) into itself, such that

La (D <AL, (), A>0,¥ feC(KC), ¥neN (28)

(i-e. |Ln () (z0)] €A (Ln (1)) (20), ¥ 20 € K.

Additionally, we assume that

Ly (cg)=cLy(9), YgeC(K,R), VceC (29)

(i.c. (Ln(cg)) (0) = ¢ (La (9)) (x0), ¥ 20 € K).
Then, for anyfeC(K C), we have

[(Ln (f)) (20) = f (20)] < | (20)

L (10)) (20) = 1] +

A (L (1) (z0) + 1) wr (£, L (- = 200) (20)) (30)

V2o € K,VneN.
If L, (1() (20) =1,V 29 € K, then

(La (5) (z0) ~ £ (20)] < 2n (£, B (|~ 20]) (20) ) (31)

VzeK,VneN _
If L, (1()) (20) = 1, and Ly, (|- — z0]) (z0) = 0, asn — oo, then L, (f) (z0) —
f(20), V¥ f e C(K,C). Here Ly, (1(-)) (20) is bounded.

Proof. We notice that

|(Ln (f)) (20) = [ (20)| =

(29)

[(Ln (£)) (20) = L (f (20) (1)) (20) + L (£ (20) (1)) (20) = f (20)] =
(L () (20) = Ln (f (20) (-)) (20) + f (20) L (1(-)) (20) = f (Zo)‘ <

(L (1)) (20) = L (f (20) (-)) (z0)] + | (z0)| | L (1(-)) (20) — 1’ = (32

7



(28)

L (£ ()= £ (0)) Go)l + 1 (20)] [T (1) (20) = 1] =

£ ol |Zn (1) (o) = 1| + A (Za (17 () = £ (20)) (20) <

En (06 o) = 1] 42 (Za (s (£, 25520)) ) o) <

B0 () o) =142 (T (w10 (104 31 =0l ) ) o) =

|f (20)|

|f (20)]

5 ol B (1) o) = 1]+ X (£:6) |0 (100 o) + 3o (1= 0] )| =
(33)
£ o)l [T (1)) (z0) = 1| 4+ 2n (£, L (1 = 20]) (20) ) [T (1)) (20) + 1] .
(34)
by choosing B
6 := Ln (|- = 20) (20) , (35)
if Ly, (|- — 20]) (20) > 0.
Next we consider the case of
Lo (|- = #0l) (z0) = 0. (36)

By Riesz representation theorem ([8], p. 304) there exists a positive finite mea-
sure fi,, such that

L0(9) () = [ 9(0)dusy (), Vg€ CUCR). (37)
K
That is
[ 1=zl dus, (=0,
K

which implies |t — 29| = 0, a.e., hence t — zp = 0, a.e., and t = 2, a.e. on K.
Consequently u., ({t € K :t # z}) = 0.

That is pir, = 0,,M (where 0 < M := p,, (K) = L, (1(-)) (20)). Hence, in
that case Ly, (¢) (20) = g (z0) M. Consequently, it holds w; (f, L (] — z|) (zo)> =

0, and the right hand side of (30) equals |f (z0)||M — 1].

Also, it is Ly (If (-) = f (20) ()]) (20) = | £ (20) = f (20)| M = 0.
And by (28) we obtain

[(Ln (f (1) = £ (20) (1)) (20)| = 0,

that is
Ly (f) (20) = L (f (20) (+)) (20)] = 0.
The last says that

Lo (f) (20) = L (£ (20) () (20) 2 £ (20) L (1()) (20) = M (20).

8



Consequently the left hand side of (30) becomes

[Ln (f) (20) = f (20)| = |Mf (20) = f (20)| = |f (20)[ M —1].

So that (30) becomes an equality, and both sides equal |f (z9)| |M — 1] in the
extreme case of L, (|- = 20]) (20) = 0. Thus inequality (30) is proved completely
in both cases. m

A similar result follows:

Theorem 6 Here all as in Theorem 5. Then, for any f € C (K,C), we have

[(Ln (f)) (20) = f (20)| < |f (20)]

A (En (1(1)) (20) + 1) w1 (f, (Zn (| _ ZO|2) (ZO))§> 7

VzeK,VneN
If Ly (1() (20) =1,V 29 € K, then

L (10)) (20) = 1] + (38)

N|=

(Ln (D) (z0) = £ o)l < 201 (1L (1= 20) (20))* (39)
Vzoe K,VneN.

Remark 7 (to Theorem 6) If Ly, (1(-)) (z0) — 1, and L, (| - 20\2> (z0) = 0,

as n — oo, we get that Ly, (f) (20) = f(20), ¥ f € C (K,C). Here Ly, (1(-)) (z0)
s bounded.
Fort,zg € K witht =ty + ity and zg = 291 + 1202 we have

Ln (|t - zo|2> (20) = Ly, ((7:1 —201)? + (ts — 202)2> (20) = (40)

Ln ((t1 — 201)2) (20) + L. ((t2 — 202)2) (20) .

50 szn ((t1 — 201)2) (20) and L, ((t2 — 2’02)2> (z0) converge to zero, asn — oo,
we get that Ly, (|t - zo|2> (20) = 0.
We also notice that

Lo (|t = 20*) (:0) = (Ln (8) (0) = 281) + (Lo (B) (z2) = )+ (41)
Bk (En (1(-)) (z0) — 1) — 220 (Z,L (t1) (20) — zm) — 2200 (En (t2) (20) — zog) .

Thus, z‘f@n (1()) (20) = 1, Ln (t1) (20) = 201, L (t2) (20) = 202, Ln (3) (20) —
28, and Ly, (t3) (20) = 285, as n — oo, then we get that Ly (f) (z0) = f (20), V
feC(K,C).



Proof. of Theorem 6.
Let t,20 € K and 6 > 0. If |t — 29| > 0, then

£ -7 Gl San (-2l =on (Rl nls5) < (@)
(1+ 552w < <1+' el )mf,é).

If(t)—f(z())|<< 14 2ol )wl (1.9) (43)

The estimate

also holds trivially when |t — zp| < 4.
So (43) is true always, V t € K, for any zp € K.
As in the proof of Theorem we have

(T () (20) = £ (0)| < e < 1F (20)| B (1)) (20) — 1]

MEL1F O = 7 GoD) Go) S 1F o)l [Ea (1 0) (20) 1]+

A<En<<1(')+ ;0') ' >>)< )=

1 ol | 109) o) = 1 (£:6) [ 2 (160 o) + 5 (1 —ZO)<0>}=
ol |Eu 1 09) o) =1 (£ (B (1= 0F) a0)) ) [0 0 09) ) +1]
(49

by choosing

Nl=

§ = (En (|- - ZO\Q) (zo)) , (45)
if L, (|- - z0\2) (z0) > 0.

Next we consider the case of
> 2
Lo (I = 2P (z0) = 0.
By Riesz representation theorem there exists a positive finite measure ., such

that

L. (9) (20) = /K g () dusy (1), ¥ geC(K,R). (46)

That is

[ 1tz dusy (9=,
K

which implies |t — zo|* = 0, a.c., hence |t — z| = 0, a.c., thus t — 29 = 0, a.c.,
and t = zp, a.e. on K. Consequently u., ({t € K : t # zo}) = 0.

10



That is i, = 0., M (where 0 < M := pu,, (K) = L, (1()) (20)). Hence, in
that case L, (g9) (z0) = g (20) M.
Consequently, it holds w; (f, (E ( — 20| ) )2) = 0, and the right
(

hand side of (38) equals | f (z0)| |M — 1| . Also, it is Ly, (|f (-) = f (20) (-)]) (z0) =

|f (20) = f (20)| M = 0.
And by (28) we obtain

[(Ln (f () = f (20) ())) (20) = O,

that is
[Ln (f) (20) = L (f (20) (+)) (20)| = 0.
The last says that

Ln (£) (20) = Ln (£ (20) ()) (20) 2 £ (20) T (1() (20) = M (20) -
Consequently the left hand side of (38) becomes

[Ln () (20) = f(20)] = [M f (20) = f (20)] = |f (20)| [M —1].

So that (38) becomes an equality, and both sides equal | f (20)| |M — 1] in the ex-
treme case of L, (| - zo|2) (z0) = 0. Thus inequality (38) is proved completely

in both cases. m
We give

Corollary 8 All as in Theorem &5, zg € K. Then

1En () = Flloe < 151 n-1_+ (47)

I L

Ln(1( +1H Wy <f7

vVneN.
If L, (1()) =1, then

Lo (F) — fll < 221 (f,

Ll-ab G ).

vneN

As Ly, (1) %1, and Ly, (|- — 20]) (20) 50 (u is uniformly), as n — oo, then
Lo (f) % f,V f € C(K,C). Notice L, (1) is bounded, and all suprema in (47)
are finite.

Corollary 9 All as in Theorem 6, zy € K. Then

1En () = Flloe < 151 n-1_+ (49)

11



A

Ln(1() + IHOO“” (f,

En <|' - Zo|2) (20)

1
2

7
00,20

VneN
If L, (1()) =1, then

Lo (|- = =l*) (0)

1L () — fllo < 201 (f, w) , (50)
vV née&N.

As L, (1) %1, and L, (| —zo|2) (20) = 0, then Ly, (f) = f, asn — o0, ¥
feC(K,C).

‘We need

Theorem 10 (/5]) Let K C C conver, tg € K° (interior of K) and f : K — C
such that |f (t) — f (vo)| is conver in t € K. Furthermore let § > 0 so that the
closed disk D (xo,90) C K. Then

Wi (fv 5)

1) = f (wo)] < 2

|t —xo|, VteEK. (51)
We present a convex Korovkin type result:

Theorem 11 Here all as in Theorem 5. Let a fized zo € K° and assume that

|f () — f (20)] is convez int € K. Assume the closed disk D (zo, L (] = z|) (zo))
C K. Then

[(Ln () (20) = [ (20)] < |f (20)]

Lo (1()) (20) = 1]

FAwy (f, In (] — 2)) (zo)) , VneN. (52)

As L (1(-)) (20) = 1, and Ly, (|- = z0|) (20) = 0, then (Ly (f)) (20) = [ (20),

as n — oo.
Proof. As in the proof of Theorem 5 we have

[(Ln () (20) = [ (20)] <

(51)
<

£ Go)l [ (1)) (20) = 1] + A (L (1 () = £ (z0))) (20)
(6 >0:D(20,0) C K)

w1 (f,0)

Lo (|- = 2o]) (20) =

Lo (1()) (0) 1|+

[/ (20)]

Lo () = 1|+ (£ L (=) (0)) . (53)

12



by choosing

6:= En (I = 20) (20)

if L (|- = 20]) (20) > 0.

The case Ly, (|- — zo|) (20) = 0 is treated similarly as in the proof of Theorem
5. The theorem is proved. m

We make

Remark 12 Let f: D C C — C be an analytic function on the conver domain
D and y,x € D, then we have the following Taylor’s expansion with integral

remainder N1
— k)
_ Z / (x) _x)k_|_

(N / TN =)z + syl (1 — )V ds, (54)
for N € N, see [10], p. 8.
Clearly then
R ON

— )"+

-

k=0

ﬁ (y - x)N/O [f(N) [(1—s)a+sy] — fF) (x)} (1—s)¥"'ds, (55)

for N e N.
Call the remainder of (55) as

_ N .
Ry (o) = (Gt [ [0 = )] = 19 )] (1= 9 .

(N = 1)
(56)
We have that
R )l < 2 L0010 sy sy 109 @) 1= s = ),
67)

N eN.
Neat assume fN) € UC (D, C).
We observe that

N
< it [ (50, 22y (g <
“i

=t (o05) [ [ 520 -

|y—$|N (N) ' N-1 ly — | ! N-1 2-1
mm(f ,6) [/0 (1-5s) ds + 3 ; (I-s) (s—0)""ds| =

13



y—ﬂNM(fwxg{l ly — x| 1 }

(N 1) N NI
|y—ﬂN (N) ly—z
We have proved
— Y -
o (el < 2 (1990) 14 J2E ] o0

NeN, §>0.
The last means that

N (k) (g
|f(y)—Zf 8y <
k=0 ’
ly — | ly — x|
o (1.0) o |1+ 5 (61

NeEN,§>0,V x,y € D, where fN) ¢ UC(D,C).
‘We make

Remark 13 Let f : K C C — C be an analytic function on the convex and
compact set K, and zy € K, where § > 0.
Then, as in (61), we get

N pk) (4
‘f(-)—szfo)(—z())k <
k=0
— 2N C—z
”1<ﬂN%5>‘ Nf| {1+5kN¥SL]’ (62)

¥V N € N. Here wy is on K.

Above we mean that f : D C C — C is analytic on the convex domain D,
where K C D. For convenience we set and use f = f|x.
We have proved

Theorem 14 Let f : K C C — C be an analytic function on the conver and
compact set K; 20 € K, § >0, and f* (%) =0, k=1,2,..., N. Then

w1 (f(N)7(5) N+1

£0 -Gl < 2 e e

over K, N € N.

14



We present higher order of approximation:

Theorem 15 Here K is a convezr and compact subset of C and L,, is a sequence
of linear operators from C (K,C) into itself, n € N. There is a sequence of
companion positive linear operators L, from C (K,R) into itself, such that

1Ly (/) <ALy (If]), A>0,V feC(K,C), VneN. (64)
Additionally, we assume that

Ly (cg) =cLn(9), YgeC(K,R), VceC. (65)

Here we consider f : K — C that are analytic, so that f*) (z) = 0, k =

1,2,..., N, where z5 € K.
Then

[(Ln () (20) = [ (20)] < [f (20)]

Lo (1() (z0) = 1]+

L (B - ) )
(B0 60) ™ + ] (60

vVneNlN
If Ln (1()) (20) = 1, then

AN +2)w; (f(N)7 ((Z (1= 20*)) (ZO)><N1+1>>

(N+1)!

(2 (o) ) 7 .
VneN.

I L (1) (20) = 1 and Ly (| = 20"*") (20) = 0, then (L (£)) (20) =
f(20), as n — oo. Here Ly, (1(-)) (z0) is bounded.

[(Ln (f)) (20) = f (20)] <

Proof. We notice that

|(Ln (f)) (20) = f (20)| =

(65)

|(Ln (£)) (20) = L (f (20) (1)) (20) + L (f (20) (-)) (20) = [ (20)| =
(L (/) (20) = L (f (20) (-)) (20) + f (20) L (1(-)) (20) = f (20)

|(Ln (f)) (20) = L (f (20) (-)) (z0)| + [ f (20)] |Ln (1(-)) (20) — 1‘ = (68)

<

15



(64)

L (£ ()= £ (20)) Go)l + 1 (20)] [T (1)) (20) = 1] =

I 7 (63)
£ ol |Zn (1) (z0) = 1| + A (L (1 () = £ 20)) (20) <
£ o)l [T (1) (20) = 1] +
wi (FN).6) T~ N 1
A (J;\n ) [Ln (|.7z0|N> (onﬁLn (|,7ZO‘N+ ) (20)} — (4.

By Holder’s inequality and Riesz representation theorem we obtain

L, <| — Zo|N) (20) < ((Zn (| - Zo|N+1)> (ZO)>(NL+1) (Zn (1()) (Zo))ﬁ |
Therefore (70)

() < 1f (zo)l| B (1)) (20) = 1] +
\ (J;i;;’)ﬁ) |:(Zn (| _ ZO|N+1) (ZO))(NLH) (zn (10)) (zo))ﬁ
+5 (N1+ 1)Zn <| — z0|N+1) (zo)] =:(§). (71)
We choose

5= ((Zn (|_ _ ZO|N+1)) (Zo)> <N5rl> : (72)

in case of Ly, (| - z0|N+1) (z0) > 0.
Then it holds
(&) =1/ (20)]

(19, ((E (1= 2)) a0)) ™)

N!

Lo (10)) (0) = 1|+

Next we treat the case of

Lo (1= 2" (z0) = 0.

16



By Riesz representation theorem there exists a positive finite measure ., such
that

L0 (9) (20) = /K 9 (t)dusy (8), Vg € C(K.R). (74)

That is
/ |t - ZO‘N+1 d/“LZo (t) =0,
K

which implies |t — ZO|NJrl =0, a.e., hence |t — 29| =0, a.e., thus t — zg = 0, a.e.,

and t = zp, a.e. on K. Consequently ., ({t € K : ¢t # 2}) = 0.
That is py, = 0,y M (where 0 < M := p,, (K) = L, (1(-)) (20)). Hence, in
that case L, (¢) (z0) = g (z0) M.
1
Consequently, it holds wy (f(N), (Ln (\ - Zo|N+1) (zo)> WH)) = 0, and
the right hand side of (66) equals |f (z0)| |M — 1|. Also, it is

Lo (1f () = f (20) ()]) (20) = | (20) = [ (20)| M = 0.
And by (64) we obtain

[(Ln (f () = f (20) () (20) = 0,

that is
[ Ln (f) (20) = Ln (f (20) () (20) = 0.
The last says that

(65)

Lo (f) (20) = L (f (20) () (20) "= f (20) L (1(-)) (20) = M [ (20)-

Consequently the left hand side of (66) becomes

[Ln (f) (20) = f(20)] = [M f (20) = £ (20)] = |f (20)| [M —1].

So that (66) becomes an equality, and both sides equal |f (29)| |M — 1] in the
extreme case of Ly, (| — z0|N+1) (20) = 0. Thus inequality (66) is proved com-
pletely in both cases. ®

We give

Corollary 16 All as in Theorem 15. Here N =1, i.e. f'(z9) =0. Then

[(Ln (f)) (20) = f (z0)| < |f (z0)l | L (1(-)) (20) — 1‘ +

o (1 (e (=) ) ) (B 1 9)) )

B () + 1], vnen (75)
2

17



If Ly (1() (20) = 1, then

wxan (11 (B (1= ) ) )

2

((En (\.—ZOF))(zO))%, VneN. (76)

If En (1(-))(20) — 1 and En (| —20\2> (z0) = 0, as n — oo, we get that
(Ln (f)) (20) = f (20) -

[(Ln () (20) = £ (20)] <

Remark 17 Let f: D C C — C be an analytic function on the convexr domain
D and K be a compact and convex subset of D and t,zy € K, with zgp € K°
(interior of K ), then we have the following modified Taylor’s expansion with
integral remainder:

N ek (,

!
— K

N 1
((tN__ZOf)! /0 {f(N) [(1—s) 2z + st] — fNV) (Zo)} (1—s)N""ds, (77)
for N € N.

Assuming f*) (z0) =0, k=1, ..., N, we get
N 1
F0) = 7 (=) = ((thol))!/o {f(N) [(1—s) 20 + st] — f) (Zo)} 1-s)N""ds,
(78)

N eN.
We have that

[f () = f (20)] <
t—zo\ / ’f [(1—8) 20+ st] — f(N)(Zo)‘(l—S)N71d323 (). (79)

We assume that ’f (t) — fV) (20)| is convez in t € K. Let § > 0 such that
the closed disk D (zg,0) C K. Then, by Theorem 10, we obtain that

w1 (f(N)7 6)
)
Notice that by convexity of K, (1 —s) 2z + st € K, 0 < s < 1. Therefore

(80) |t—Zo\N w1 (f(N)75) ! N-1
< — 2l - -

’fw) (t) — FV (ZO)‘ < |t —z0|, VteK. (80)

18



N1 N §) 1
It — 20" T wr (fP),6) / (1— N1 (s—0)* 1 ds =
0

(N —1)! 0
It — 2o|" T wy (F),6) 1 = 2o/ N T wr (FO,0) .
(N -=1)! ) N(N+1) (N+1)! 5 - (81)
We have proved that
(V)8
If () — f(20)| < u;l L ) It — 2]V, (82)

Vte K, NeN.
We have proved

Theorem 18 Let K be a compact and conver subset of the conver domain
D CC, z € K° Here f : K — C is analytic such that f*) (z0) = 0, k =
1,2,....N € N. We assume that ’f(N) () — fIV) (zo)‘ is convex over K. Let
0 > 0 such that the closed disk D (z9,0) C K. Then

w1 (f(N)vé) N+1
<L — 7. =
(N +1)! =zl (83)
over K.

The convex analog of Theorem 15 follows:

Theorem 19 All as in Theorem 15. Additionally we assume that: zy € K°,
|f(N) ()= fI (20)| is convez over K, and that the closed disk

D (zo,fn (| — z0|N+1) (zo)) C K. Then
(Lo () (20) — £ (o)l < 1 o)l |E (10) (20) — 1] +

Awq (f(N),zn (\ - z0|N+1> (zo))
(N +1)! ’

(84)

VneN. N
If L, (1()(20) — 1 and L, (|-—z0|N+1) (z20) = 0, as n — oo, then

L (f) (20) = £ (20) -

Proof. As in the proof of Theorem 15 we have

|(Ln () (z0) = f (z0)] < ... <

~ (83)

17 Gl B (L) G) = 1]+ (En (17 0) = £ (o)) ) z0) 5
1f (20)] | Zn (1 () (20) — 1’ I

19



w1 (N)’5~

£ ol [0 (0 o) = 1]+ e (7 B (1 = 20™) )

by choosing

6= L (= 20" (20),

if L, (|- - ZO\N“) (20) > 0.

If L, (| - z0|N+1) (z0) = 0 then this case is treated similarly to the proof

of Theorem 15. m
We give

Corollary 20 (to Theorem 19, case of N = 1) All as in Theorem 19. Assume
[ (-) = f' (20)] is convex over K, and the closed disk D (zo, L, <| - zo\2> (zo)) C
K. Then

[(Ln (f)) (20) = f (20)| < |f (20)]

Lo (1() (20) = 1]+

Xor (£.Lu (| = =) (z0)

2 )

(86)

vneN. B
I L (1()) (z0) = 1 and Ly (|- = 20]%) (20) = 0, asm = o0, then Ly (f) (z0) —

f(20) -

4 Illistration

Here we go according to Example 3 and Application 4. We will study the

quantitative uniform convergence of complex Bernstein operators BSIW? (f) to

fec ([0, 1]2 , (C). Indeed we have

1B, s (D] () < V3B, (1) (2), ¥ 2 € 0,1 amd ¥ f € € ([0,12,€),
(87)
and
BE . (cg) = cBnyny (9), YeeCandV geC ([o, 1)? ,R) . (88)

ni,n2

Clearly B, ,,, maps C ([0, 1%, (C) into itself and B,,, ,,, maps C ([0, 17 R) into

itself. Notice that B, n, (1(-)) (z,y) = 1.
Hence by Theorem 6 (39) we get:

|BS, s () (20) = f (20)] < 2v2n (f, \/B (1- = =0l*) <ZO>> (89

20



Y zg € [0, 1]2, YV ny,ng € N.
Here zg = zo1 + 9202, 201, 202 € [0,1], and t = t1 + ito, where t1,t2 € [0,1].
We notice that

B, n, <|t - Zo|2) (20) = By n, ((tl —201)° + (ta — 202)2> (201, 202) =

B, n, ((tl - 2’01)2> (201, 202) + Bny ns ((tz — 202)2) (201, 202) = (90)

(Bm ((tl - 201)2)) (z01) + (an ((t2 - 202)2)) (202) =

201 (1 — 201) | Z02 (1 — 202)

, 91
- o (91)
where B,,,, By, are the basic univariate Bernstein operators over [0, 1].
That is
1—- 1-
B (11 20 (z0) = 20 220) 2] )
nq U»)

V20 €[0,1)%.
Therefore we find

B (1t = 0l) (o) < § (4 ). (99)

ni n2
2
VZQE[O,l].
That is
1 /T 1
B, (-— 2) <oy — 4 —, 94
Bous (1= ) o) < 54+ (o4
V20 €[0,1)%.

By (89), finally, we obtain

1 /1 1
18R, na () = £l < 2V2000 (f72\/nl+m>7 (95)
V¥ nqy,n9 € N.

Consequently, as ni,ny — oo, we get that BSMLQ (f) = f, uniformly, V
feC([O,l]z,C).

Many other examples as above could be given but we choose to omit this
task.
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