A TRACE INEQUALITY FOR A YOUNG-TYPE INEQUALITY

LOREDANA CIURDARIU

ABSTRACT. In this paper we will give a local trace inequality starting from a
Young-type inequality for three positive variables and some applications.

1. Introduction

The classical inequality of Young is
a’b*" < va+ (1 —v)b,

where a and b are distinct positive real numbers and 0 < v < 1, see [23]. It is also
an inequality between arithmetic and geometric mean.

Many generalizations and refinements of Young’s inequality are stated in [1], [2],
[13], [12], [15], [5], [4], [6], [9] and references therein.
Theorem 1. ([1]) Let A, v and 7 be real numbers with A > 1 and 0 <v <7 < 1.

Then

(1/)/\ _ A, (a,b)* — G, (a,b) _(l-v A
T A-(a,b)* — G-(a,b)* 1—7) "

for all positive and distinct real numbers a and b. Moreover, both bounds are sharp.

We suppose that a, b, ¢ > 0 are three distinct numbers and p1, p2, ps > 0,

pll, plg, pé>0Withi+é+p%:1andi+i+i:1 . We take into account
the three variables function

1 1 1 ! 1 1 e
fla,b,c) = P b2 —cPs —gbe— 1L (,apl + b2 + — P —aribre c”S)
p1 D2 D3 P1 \DPq Do D3

P P
which have the stationary points A(cﬁ,ci,c) with ¢ > 0, ¢ # 1.

Theorem 2. ([3]) The local extreme points of the above function are A(C%,c%,c).

If the following conditions are satisfied

D1 1 p1 p2, 1 p1 p3
max{—| —| I},

7 7 AN

Py P2 Py Py P3P1  P3
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2 2 2
. B _ P (7 -2)
1> 1P )2 + LI pl w2 ;1 Py Py
- ! .
pe BB p3 & — B2 Py P2p3 (L _ b2 (PL _ ps
P1 Do Pq Ps3 7 7 7 7
Py Po Py Ps

then these points are local minimum points for the function f.

Proposition 1. ([3]) For any p1, ps2, ps > 0, pll, p;, p;, > 0 with p% + p% + p% =1
and Y 4+ L + L =1 which satisfy the conditions

1 Py P3

D1 1'p1 p2, 1 p1 p3
——1> max{*|f - */|; *‘*/ - */|}»
Py P2 Py Py P3Py P3
CR S . (2 - )
1> 1P )2 n LIpl ) ;1 A

/7 b
p2 B -2 ps & -5 Py P2p3 (P _ P2 (PL _ ps
Py Py Py P3 7 7 7 7
Py Po Dy P3

and for any d > 0, there is rq > 0 so that for any ¢ € (d — rq,d + 14), b €
Ps P ik b
(di - rg, drs +7r4) and a € (dﬁ — g, drt + 7q) it is true the inequality:

! P1 P2 P3
iam + ibpz + icps — abe > Py (1,&1)1 + i,bm + i,cp‘“’ — a” bpgcpg> .
D1 D2 D3 p1 \P1 25 b3

Now we will use this inequality in order to establish several trace inequalities.

It is necessary to recall some basic things about the functional calculus with
continuous functions on spectrum. As in [10], we recall that for selfadjoint operators
A,B € B(H) we write A < B (or B> A) if < Az, x ><< Bz, > for every vector
x € H. We will consider for beginning A as being a selfadjoint linear operator on a
complex Hilbert space (H; < .,.>). The Gelfand map establishes a *- isometrically
isomorphism ® between the set C(Sp(A)) of all continuous functions defined on
the spectrum of A, denoted Sp(A), and the C*- algebra C*(A) generated by A and
the identity operator 13y on H as follows: For any f, f € C(Sp(4)) and for any
a, B € C we have

(i) @(af + Bg) = ad(f) + BO(g):

(i) ®(fg) = D(f)B(g) and B(f) = D(f*);

(if) I1B(/)]| = [1/1] = suprespa LF (O

(iv) ®(fo) =1g and @(f1) = A, where fo(t) =1 and fi(t) =1t for t € Sp(A.)

Using this notation, as in [10] for example, we define

f(A):=(f) for all fe C(Sp(A))

and we call it the continuous functional calculus for a selfadjoint operator A. It is
known that if A is a selfadjoint operator and f is a real valued continuous function
on Sp(A), then f(t) > 0 for any ¢ € Sp(A) implies that f(A4) > 0, i.e. f(A) is
a positive operator on H. In addition, if and f and g are real valued functions on
Sp(A) then the following property holds:

(1) ft)>g(t) for any te€ Sp(A) implies that f(A) > g(A)
in the operator order of B(H).

We need below of some basic properties of trace of an operator. The main
properties of the trace can be found in [6] and the references therein, but we mention
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here some of them. We consider {e; };c; an orthonormal basis of a separable Hilbert
space H. We will say that the operator A € B(H) is trace class provided

1Al =D < |Alei, e >< oc.
iel

It is known that the definition of ||A[|; does not depend on the choice of the or-
thogonal basis {e; };cr and that the set of trace class operators in B(#) is denoted
by Bl (H)

We will enumerate below several well-known properties of trace:

(a) ||4]]1 = ||A*||1, for any A € By (H);

(b) By (H) is an operator ideal in B(#), that is

B(H)B.(H)B(H) € B1(H);

(¢) (B1(H),]|-]|1) is a Banach space.
We consider, as in [6], the trace of a trace class operator A € B1(H) to be

tr(A) = Z < Aej,e; >,
il
where {e; };c; an orthonormal basis of H. We can see that this definition coincides
with the usual definition of the trace if H is finite dimensional, and that previous
series also converges absolutely and it is independent from the choice of basis.

In addition, we can mention that if A € By(H) then A* € By (H) and tr(A4*) =
tr(A). If A e By(H) and T € B(H) then AT, TA € B1(H) and tr(AT) = tr(TA)
and [tr(AT)| < ||A||1||T]|- The application tr(.) is a bounded linear functional on
Bi(H) with |[tr|| = 1.

In 2007, L. Liu in [14] showed that tr[(AB)*] < (tr(A))*(tr(B))*, where k is any
positive integer and A, B any positive operators in B1(H). Many trace inequalities
for matrices and operators can be found for example in [18], [20], [21], [6],[8], [15],
[22], [16], [17] and also, references therein.

We also recall that if A and B are positive invertible operators on a complex
Hilbert space (H, < .,. >) then the following notation, Af, B = Az (A_%BA_%)”A%
is used for the weighted geometric mean, where v € (0,1). We will use here the
same notation for the case when v > 0.

In the following, we will give a local trace inequality starting from a Young-
type inequality for three positive variables and then some consequences will be also
presented.

2. Main results

Let B(#H) be the C*—algebra of all bounded linear operators on a complex Hilbert
space (H,< .,>) and A, B,C € B(H) be three positive operators.

The following result is obtained as an application of Proposition 1 for trace of
an operator.
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Theorem 3 Let p1, p2, p3 > 0, py, Py, 3 > 0 with p% + p% + p%) =1 and

o 141 o + = 1 which satisfy the conditions
1 2
P
Btz ma (B B By
Py
2 2 2
B b B L (2 - 2)
1 > 1 pl (p2)2 + i Dy (p3)2 & 1
p1 _ P2 PL _ Ps / ’
P27 Ps b Pipaps (% - 12) (Ll _ Ls)

and let A, B, C be three positive operators on H and P, Q ,R € Bi(H) with
P, Q, R>0.

For any d > 0 there is rq > 0 so that if (d —rq)] < C < (d+7r4)l, (d% —rg)l <
B < (di +rq)l, and (dﬁ —rg)l <AL (dﬁ +ra)l then the following inequality
takes place:

i151"(PA”1)tr(Q)tr(R) + itT(P)tr(QBpQ)tr(R) + itr(P)tr(Q)tr(RCm)f

b1 b2 b3
—tr(PA)tr(QB)tr(RC) > p—l[i/tr(PAm)tr(Q)tr(R) + i,t’l"(P)tT‘(Qsz)tT(R)+
b1 Py pz
L (PYr(Q)tr(RC™) — tr(PAT )r(QB7: )r(RCTY).

b3
Proof. From Proposition 1, we see that for any d > 0 there is r4 > 0 so that for
p3 p3 P3 r3
any ¢ € (d—rgq,d+rq), b € (dP2 —rq,d?z +14) and a € (dPr —rq,dP1 +1g) it is
true the inequality:

1 1 1 1 1 1 B 22 5
—aP* + —bP? + —cP3 abc>p1 (,ap1+,bp2+,cp3—a"1b 2c 3).
41 D2 P3 p1 \Py D ps3

Then we will use the same method as in [6]. Using the functional calculus with
continuous functions on spectrum for the operator A, we get

1 1 1

— < APlxx>+—bW? <z >4+—Cc <z,x>—-bc< Ax,x >>

P1 b2 b3

P2
7
2C

@ \‘g

P1
7
1

! 1
pl( <Ap1:vx>+fb”2<m:E>+—cp3<xx> —b? < Ar

x, T >),
D1 p1 Po p3

for any x S Ha b S (d% —Td, dz% +Td)7 cE (d—Td, d+Td) and P1, P2, P3, pl17 p,2a p;&
as in our hypothesis.

Using in last inequality the functional calculus with continous functions on spec-
trum for the operator B we have:

1 1 1
— < APz, x ><y,y>+— <z, >< BP?yy > +—c <x,x ><vy,y>—
b1 b2 b3

—c< Az, >< By,y >>

11 1
pl( <APzix ><y,y > +—F <x,x >< BP?y,y > +— c”3<xx><y,y>—
P1oD) p2 ps

\\H

P2
—cps <A 1z, >< Brzy,y >),
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forany z, y € H, ¢ € (d—rq,d+ry) and p;1, p2, ps, p;, p;, p,3 as in our hypothesis.
Now, by functional calculus with continuous functions on spectrum for the op-

erator C, we will find out from last inequality that,

1 1
— < APz iz ><y,y>< z,z2>+— <z,x>< 2,2 >< BP?y,y > +

P1 b2
1
+— <Oz z>< e ><y,y>—<Czz>< Ax,x >< By,y >>
p3
Pl 1
> —=( < AP'z,x ><y,y><z,z2>+—F <z,x>< 2,2 >< BP?y,y > +
P1 Dy P2
1 By 2 r2
+— <CPzz><zx><y,y>—<CPrszz2>< Ahrz, 0 >< B2y, y >),
P

for any z, y, z € H and p1, pa, ps, pll, pIQ, p/3 as in our hypothesis.
We put now z = P%e, Yy = Q%f and z = R%g where e, f, g € H and then we

rewrite below our last inequality

1
— < AP'Pie,Pie>< Q:f,Q3f >< Rig,Rig >+
P1
1 1 1 1 1 1 1
+— < P2e,PZe >< R2g,R2g >< BP2Qzf,Q%f > +
P2
1 1 1 1 1 1 1
+— <CPR2g,R2g >< P2e,P?e ><Q2f,Q>f > —
Pp3
— < CR%g,Rig>< AP%¢,Pie >< BQ2f, Q% f >>
11
> DU o Ampie Pie>< Qbf,Q3f >< Rig Rig> +
P1 Py
1 1 1 1 1 1 1
+— < P2e,Pze >< R2g,R2g >< BPQz2f Q> f > +
V2
1 1 1 1 1 1 1
+— < CPSRQQ,R29 >< P2€,P26 >< szanf > =
b3
By 1 . 1 71 :
— < (CrRig,R*g>< A" P3¢, Pie >< B Q2 f Q2 f >),
for any e, f, g € H and p1, p2, p3, 10,17 p/2, pg as in our hypothesis.
Let {e;}ier, {fj}jes and {gr}rerx be three orthonormal bases of H. We take

in previous inequality e = e;, 1 € I, f = f;, j € J and g = gi, k € K and then
summing over ¢ € I, j € J, and k € K we get the following:

1
— N < PEAP PEeje; >y <Qfifi> Y < Rgroge > +

ey jeJ kEK

1
+— < Pee;> Y < Rgge >y <Q2BPQEf;, f; > +

P2 7 keK jeJ

1
+— Z < R%C'mRégk,gk > Z < Pei,ei > Z < ij,fj > —
P3 ok icl jeJ
— Y <RiCRigr. g > < P:APieie;> > <QiBQ [, [; >>
keK icl jes
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1
= &(*,Z<P%Aplpéei,ei >Z<ij’fj > Z <ng,gk > +
P1 PrGer JjEJ keK

1
+— Y < Pee;> Y <Rgpge >y <Q2BPQEf;, f; > +
p

2 jer keK jeJ

]. 1 1
+— Y < RECTRigugy > < Pejei>y < Qfif;> -

P3 ek i€l jeJ
»
P%ei,ei > Z < Q%B”
jeJ
for any p1, p2, ps3, p,l, p/z, p;) as in our hypothesis. Now, by the properties of the
trace, we have,

P3 Pl
— Y < RiCWRig, g > <PiA%
keK

]

o~

icl

—tr(PAPY)tr(Q)tr(R) + it?“(P)tr(QBp?)tr(R) + itr(P)L‘T(Q)L‘T(RC’“)—
D1 P2 p3

’

—tr(PA)tr(QB)tr(RC) > Z—i[p—l/tr(PAm)tr(Q)tr(R) + i,tr(P)tr(Qsz)tr(R)Jr
1

b2

+i,tr(P)tr(Q)tr(chs) — tr(PA™
P3

Iz

P2
Yr(QB®2 )tr(RC'®:
for any p1, p2, ps, p;, p;, p;, as in our hypothesis.

|

w

):I’

Next three results are several applications of Theorem 3.

Corollary 1. Let p1, p2, ps > 0, py, ps, p3 > 0 with p% + p%

+ p% =1 and
L+ L 4 1 — 1 which satisfy the conditions
Py Do P3
1 1
Pl max{— 2 B2 — BBy
Y4 P2 Py Py P3Py D3
CR E T (2 - )’
1 i P1 (p2)2 + i Py (P3)2 & 1 Do D3
Tp B -2 ps BBy pops (b _p2) (pr _ps)’
noow A v 0h) bl T

P
and let A, B, C be three positive operators on H and P € By(H) with P > 0.
For any d > 0 there is rq > 0 so that if (d—rq)] < C < (d+rq)l, (di —rg)l <
B< (di +rq)I, and (dﬁ —rg)l <AL (dﬁ +rq)I then we have:

itr(PApl) + ltr(Psz) + itT(PCpg) B tr(PA)tr(PB)tr(PC)
P D2

>
p3 (tr(P))> -
1 1 1 PA" )tr(PB: )tr(PC™
> Py pary + Lippre) ¢ Lin(persy - HEAT U 22)”< cn)
p1 Py P P3 (tr(P))

Proof. We take in Theorem 3, P = Q = R.
|
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Corollary 2. Let pi, p2, ps > 0, p;, pa, p3 > 0 with p% + p% + p% =1 and

L+ L 4+ L =1 which satisfy the conditions
Py Pa P3

1 I pr p2, 1 p1 p3
- —1> maX{7|7/ - 7/|7 7‘7/ - 7/|}7
Py P2 Py D2 P3 P1 DPs
po_ A A (2 - )’
1> 1y (py)? 1y (p3)? p1 1 Py D3
= . PL _ P2 +— pP1 _ P3 N2 )
P2 = 7 p3 = 7 P P2pP3 (&} — L;) (L} _ P7/3>
Py P2 Py P3 I Py ' Py

and let P, Q, R, S, V, W be invertible positive operators on H and P, Q , R,
S, V, WeBi(H).

For any d > 0 there isrq > 0 so that if (d—rq)R < W < (d+74)R, (d% —1q¢)Q <
V< (d% +7r4)Q, and (d?%3 —rg)P<S< (cl%:l3 +rq)P then the following inequality
takes place:

itr(PﬁmS)tT(Q)tT(R) + itT(P)tr(Qﬁsz)tr(R) + ]}Strw)tr@)trmumm—

—tr(S)tr(V)tr (W) > %[%tr(PﬁmS)tr(Q)tr(R) + %tr(Qﬁsz)tr(P)tr(R)—i—

+Z%tr(P)tr(Q)tr(Rﬁp3W) tr(Phy S)tr(Qhs V)ir(Riss W),
3 Py Py P3

Proof. Taking into account our hypothesis, we see that 0 < (d—rg)I < R:WR % <
(d+ra), 0 < (A7 —rg)] < Q3VQ™% < (dn + rg)l, and (d7 — rg)l <

P-3SP2 < (d% + r4)I and then we use Theorem 3 for A = P~2SP~2, B =
Q :VQ % and C =R *WR:.
We obtain then,

piltr(P(P—%SP—%)pl)tr(Q)tr(R) + piztr(P)m«(Q(Q—%VQ—%)m)ﬁr(R)Jr

+pitr(P)tr(Q)tr(R(R’%WR’%)’“) —tr(P2SP™3)tr(Q*VQ ™ *)tr(REWR ™) >
3

1 1 1 1 1
> —[tr(P(P725P72)")tr(Q)tr(R) + —tr(P)tr(Q(Q™2VQ™2)”)tr(R)+
b1 Py Po
1 1 1
+—tr(P)tr(Q)tr(R(R"z2WR™2)P?)—

P3
—tr(P(P™2SP™2) " )tr(Q(Q™2VQ™2)P*) 72 )tr(R(R™ZWR %)%
and using the properties of trace we get the desired inequality.

)

Corollary 3. Let py, p2, ps3, pll, p;, pé be as in Corollary 2 and we consider
P, S, V, W be invertible positive operators on H and P, S, V, W € B1(H).

In these conditions, for any d > 0 there is rq > 0 so that if (d —rq)P <W <
(d+ra)P, (d7 — )P <V < (d% +14)P, and (d7 — rg)P < S < (d7 + 1rq)P
then the following inequality takes place:
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tr(S)tr(V)tr(W)

(P -

1 1 1
—tr(Pt,, S) + —tr(Ph,,V) + —tr(Pt,, W) —
P1 D2 p3

1 1 1
- %[E”(P b S)  rtr (P V) rtr (P, W)=
P P S (Pen V)t (Pesy W)L

Proof. We will use Corollary 2 where we take P = () = R.
|
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