SOME INEQUALITIES FOR ANALYTIC FUNCTIONS IN
BANACH ALGEBRAS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we prove among others that
1
15 @)z = 2f (@) < o lly= — ZIII/ I£ IRy (O Rz ()]l d€]
bl
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where f: D C C — Cis an analytic function on the domain D, x, y, z € B with
o(z), o(y) C D, Ry (-), Rsz () are the resolvent functions for the elements
y and z, and ~ is a closed rectifiable path in D and such that o (z), o (y) C
ins () . Applications for the exponential function on the Banach algebra B are

also given.
1. INTRODUCTION
Let B be an algebra over C. An algebra norm on B is a map ||-|| : B—[0, o) such
that (B,]]|) is a normed space, and, further:

[labll < [la] ][0

for any a, b € B. The normed algebra (B,||||) is a Banach algebra if ||| is a
complete norm. We assume that the Banach algebra is unital, this means that B
has an identity 1 and that ||1|| = 1.

Let B be a unital algebra. An element a € B is invertible if there exists an
element b € B with ab = ba = 1. The element b is unique; it is called the inverse of
a and written ! or . The set of invertible elements of B is denoted by Inv (B).
If a, b € Inv (B) then ab € Inv (B) and (ab)™' = b ta~L.

For a unital Banach algebra we also have:

(i) If a € B and lim,,_, ||a”|\1/n <1, then 1 — a € Inv (B);
(ii)) {be B: ||l =b| <1} C Inv (B);
(iii) Inv B is an open subset of B;
(iv) The map InvB 3> a —— a~! € Inv (B) is continuous.

For simplicity, we denote A1, where A\ € C and 1 is the identity of B, by A. The
resolvent set of a € B is defined by

pla):={AeC: AX—aeclnv(B)};
the spectrum of a is o (a) , the complement of p (a) in C, and the resolvent function
of ais R, : p(a) — Inv (B),
-1
R.(N):=(A—a) .
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For each A,y € p(a) we have the identity
Ra (’Y) - Ra ()‘) = ()‘ - 7) Ra ()‘) Ra (7) .
We also have that
ola) c{AeC: |A < |al}.
The spectral radius of a is defined as
via)=sup{|A|: A€o (a)}.
Let B a unital Banach algebra and a € B. Then
(i) The resolvent set p (a) is open in C;
(ii) For any bounded linear functional A : B —C, the function Ao R, is analytic
on p(a):
(iii) The spectrum o (a) is compact and nonempty in C;
(iv) We have
v(a) = lim [la"|"/".

Let f be an analytic functions on the open disk D (0, R) given by the power
series

o0
FO) =) aN (A <R).
j=0
If v (a) < R, then the series Z?io aja’ converges in the Banach algebra B because
Z;io || HajH < 00, and we can define f (a) to be its sum. Clearly f (a) is well
defined and there are many examples of important functions on a Banach algebra
B that can be constructed in this way. For instance, the exponential map on B
denoted exp and defined as
1
expa := Z f'aj for each a € B.
=0
If B is not commutative, then many of the familiar properties of the exponential
function from the scalar case do not hold. The following key formula is valid,
however with the additional hypothesis of commutativity for a and b from B

exp (a4 b) = exp (a) exp (b) .

Concerning other basic definitions and facts in the theory of Banach algebras,
the reader can consult the classical books [15] and [18].

Let B be a unital Banach algebra, a € B and G be a domain of C with ¢ (a) C G.
If f: G — C is analytic on G, we define an element f (a) in B by

(L1) f(a) =~ /5 FE) (€ —a)de,

27
where § C G is taken to be close rectifiable curve in G and such that o (a) C ins (J),
the inside of 9.
It is well known (see for instance [6, pp. 201-204]) that f (a) does not depend
on the choice of § and the Spectral Mapping Theorem (SMT)

(1.2) o(f(a))=f(o(a))
holds.
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Let $ol(a) be the set of all the functions that are analytic in a neighborhood
of o (a). Note that $ol(a) is an algebra where if f, g € $ol(a) and f and g have
domains D (f) and D (g), then fg and f + ¢ have domain D (f) N D (g). $Hol(a) is
not, however a Banach algebra.

The following result is known as the Riesz Functional Calculus Theorem [6, p.
201-203]:

Theorem 1. Let B a unital Banach algebra and a € B.

(a) The map f — f(a) of Hol(a) — B is an algebra homomorphism.
(b) If f(2) = Yopep awz® has radius of convergence r > v (a), then f € Hol(a)
and f (a) =Yoo aa®.
c) If f(2) =1, then f(a) = 1.
(d) If f(z) =z for dll z, f(a)=
Y If f, f1,.ees froeer are analytic on G, o (a) C G and f, (z) — f(2) uniformly
on compact subsets of G, then || fn (a) — f (a)|]] — 0 as n — oco.
(f) The Riesz Functional Calculus is unique and if a, b are commuting elements

in B and f € $Hol(a), then f(a)b=>bf (a).
For some recent norm inequalities for functions on Banach algebras, see [3]-[5]
and [7]-[14].
2. SOME INEQUALITIES FOR GENERALISED COMMUTATOR

We start with the following identity for the resolvent that is of interest in itself
as well:

Lemma 1. Let A € C and a, b, ¢ € B such that A € p(a) N p (), then
(2.1) Ry, (X)) c—cRy (N) = Ry (A) (ac — ¢cb) Ry (N) .

In particular, we have the second resolvent identity

(2.2) Ra(N) = Ry (A) = Ra (M) (a— b) Ry (V)

and the commutator identity for the resolvent

(2.3) Ry (A)c—cRq (A) = Ry (A) (ac — ca) Ry (N) .

Proof. We have the following simple identity

(2.4) s ey —ze)y =2 leyy —z T lzey P =2 e — ey,

that holds for any invertible xz, y € B and ¢ € B.
If Aep(a)Np(b), then by taking x =\ —a and y = A — b we get

Ro(Nec—cRy(A)=A—a) te—c(A—b)""
=A-a) =t~ (A-a)e)(A-b"
=A—a)"(Ae—cb—Ac+ac)(A—b)""
=A—a) ' (ac—cb) A=b)""
= Ry (N) (ac — cb) Ry (V)
namely the identity (2.1). O

Our first main result is as follows:
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Theorem 2. Let f : D C C — C be an analytic function on the domain D, x,
y, z € B with o (x), o(y) C D and v be a closed rectifiable path in D such that
o(z),o(y) Cins(y). Then we have

(2.5) If () z = 2f ()] < i — lly= —zwll/ [F OBy (O 1R (1] €]

B )| |de|
< gzl ””/ G ||y|| G

In particular,

1 2
(2.6) 1f(z)z—2f(z)] < ﬂllm—zwII/\f(S)IIIRx (I [d¢]

1 ol1de|
=apltems ”/ (€ = llz])?

(2.7) 11 (y) = f ()]l <*||y*x||/|f By I [ B (€] €]

| olldg
- B8 —TeT

Proof. Using the Riesz functional calculus we have

and

FWeaf @) =5 [ 1O @€ 2= [ r@)=6 - a

Y

2m/f 1z—z<§—x>‘1}df
= 501 | F 1R, © R ©)de

By taking the norm in this equality and using the properties of Bochner’s integral
[17] we get

@8) W= @I <5 [ 1FOIR©2 - R )] 1.

By taking the norm in the equality (2.1) and using the properties of the norm,
we get

1By (€) 2 = 2R (O 1Ry (§) (yz — z2) Re (£

< Ry (Ol llyz — 2z |1 R (O

and by (2.8) we get

(2.9) 1f () z = 2f ()] < *Ilyz—sz/lf IRy (O ()]

which proves the first inequality in (2.5).
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For € € v we get

1 y —1 1 (o) y n
IR ©l=g | (1-4) | =5 |= (%)
vEOI=1g I\ e 7|2 e
1 <=y H" 1 1 1
< — 2 = = =
<2lel “@ o TR Tol
and, similarly
1
R, (| £ ———.
1B (< T —Ta
By making use of (2.9), we deduce the second inequality in (2.5). O

Remark 1. The inequality between the first and last term in (2.6) has been obtained
in [10] while the inequality between the first and last term in (2.7), in [9].

Corollary 1. With the assumptions of Theorem 2 and if
[1f1l,00 = sup f (§)| < o0,
§ey
then
1
(210) I (y) =z = 2f (@) < 5 llyz — 22| |\f||%oo/ IRy (I Bz ()] 18]
gl

1 dg|
o vz — 2zl |If ||7,oo/7 GREDIGEED

In particular,

Q1) @2 @l < 5 oz = sl 1] e [ 1R (€17 146

27
1 g
< ooz = 22 1], 00 / (Il = llz1)”

A

A

and

(2.12) If () = F @)l < %Ily—xll IIfIIV,OO/HRy OBz ()14

1 |d¢]
<5l Il [ .

2 7%y (€1 = llyll) (€] = [l=)
Remark 2. If we assume that f : D C C — C is an analytic function on the
domain D and x, y € B with o (x), o (y) C D (0,R) C D where D (0, R) is an open
disk centered in 0 and of radius R, then by taking v parametrized by & (t) = Re?™
where t € [0,1], then d€ (t) = 2miRe*™dt, |d¢ (t)| = 2nRdt, |£| = R and by (2.10)
we get

(2.13) 1 (y) z = 2f (@)

1
< Rly= =zl || (R |y (Ret™) | R (Ret™) |

A

_ R
— (B lylD) (R — [|=[])

1
llyz — zx|| /0 |f (R627”'t)| dt.
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In particular,

1
(2.14) Hf(a:)z—zf(x)HSRsz—sz/O If (Re)| | R, (Re™) || dt

< % ||xz — sz /1 ’f (R627rit)|dt
(R —lzll) 0

and

(2.15) 1 (y) = f ()]l

< Rl =l [ |7 (Re2r )] 1, () | | s ()t

r ' 2mit
< Eom e e, Ve

Moreover, if

11l g 0 == sup | f (Re*™)| < oo,
t€(0,1]
then we have the simpler inequality

(2.16) 1f (y)z = 2f (@)

1
< Rllyz 2ol [l [ 17 (R | (R at
Rl 00

S®E_ Tl @& Tap vz~
and in particular
1 ) 9
@10 @)z -2 @ < Rloz sl o [ 1Re (R
R
_ ||f||3002|| o
(#— Jz])

and

1
(218)  If () = f @) < Rlly -zl 1l p.oo / |Ry (Re*™)|| || R. (Re*™) | dt

R”fHR,oo _
S@-Teh@_Tap -

Corollary 2. Let f, g: D C C — C be analytic functions on the domain D and
x,y € B with o(x), o(y) C D and v a closed rectifiable path in D and such that
o(x), o(y) Cins(y). Then we have

(219) 1If (#)9(4) ~ 9 ) F @] < g llow — al
x / £ ©111R ()] ] / 9 ()R, (©) 1de]

|d§| g (€)] d¢]
< g lay —ya ||/ (el — 1202 s (el — )
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Moreover, if
110 = 30 1F (O] < 20, gl o0 = 51019 €)] < o0,
g€y §€y
then we have
1) W99 )]
2
< gz Wl ol llew = el | 1R (1 €] | 18, (@

|de| |d¢]
< 4 2 11l s 9l oo oy =y II/ EEE |)2/7(|§_||y||)2'

Proof. From the first inequality in (2.6) for z = g (y) we get

/\

I£ @) = 9 ) f @ < 5= leg @)~ 9@l [ 1£€)1IR @1 ).

From the same inequality we have

lzg (y) —g W) x|l = llg (y) x —xg (y)|| < %leyfyzl\/lg(f)lllRy ©)II |dg|.

Y

From these two inequalities we obtain
1/ (2) g (y) =g (y) f (@)
< 5 (g5 ew=vel [ loC@1IR @110l ) [ 17 @11 €

= g lay —val / 19 ()] 1Ry ()] €] / F O IR ©1 |de]

which proves the first part of (2.19).
The second part is obvious. ([

Remark 3. If we assume that f : D C C — C is an analytic function on the
domain D and x, y € B with o (x), o (y) C D (0,R) C D where D (0, R) is an open
disk centered in 0 and of radius R, then

221)  [[f(@)g(y) —g ) f (@)

< R?||lzy — ya|
/ |f Reth H|R 2mt | dt/ |g 2mf ’HR ( 27rit)”2dt
R2
< 5 Iy — yz||

(IR = llI)* (IRI = Iyl

1 1
x /O | (Re2"it)| dt /0 lg (Re>) | dt.

Moreover, if

||f||R,Oo = sup ’f (Rezmt)’ < 00, ||g||R’oo ‘= sup ‘g (ReQ”it)’ < 00,
te[0,1] te[0,1]
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then we have

(2.22)  [If (@) g () —9@) f @) < Bl goo 19l oo 12y — ya]

/ HR Re?wzt ‘ dt/ HR 27rtt H dt

R? ||fHR,oo HQHR,oo
= (IR = ll=)* (IR = Iyl

)Qny-—ymH~
When g = f we have

(2.23)  |[f (=) f(y)—f ) f@l
< R?||zy — yz|

! 271 271 2 ! 271 27 2
< [ 1 (R Re (R ar [ (R |, (Re) |
0 0
R2 ( 1 it )
< — f (Re*™) | at
IR B | 15 (e
and

2 2 ||{E 1‘”/1 || 27mt | t/ H 27rzt H +
R — Rm d R d
< ”f”R,oo y—y o

R2||fII% o
= (IR [|lz[)* (|R| = [ly]

3. SOME RELATED RESULTS

2

)QnyA*yIH~

We also have the following fact [6, p. 199):

Lemma 2. Let \€ C, A # 0 and a, b € B. If A € p(ab), then X € p(ba) and we
have the equality

(3.1) ARy, ()\) =1+ bRy (/\) a.
Also o (ab) U {0} = o (ba) U {0} .
We have the following identity for the generalized commutator:

Lemma 3. For any elements a, b, ¢ in the Banach algebra B and for any n > 1
we have

(3.2) a"c—cb" = Z a™ " (ac — cb) b'.
In particular, we have

(3.3) a"c—ca" = Z a" """ (ac — ca) a’
i=0
and

(3.4) a"—b"=> a""" (a—b)b'.
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Proof. We prove it by induction over n. For n =1 we obtain in both sides of (3.2)
the same quantity ac — cb. Assume that for k > 2 we have that

ake— bt = Zak 1 (ac — cb) V'
and let us prove that
a*tle — ephtt = Zak “(ac — cb) b'.
We have

k
Z a*~* (ac — cb) b’
=0

e

-1
a*~ (ac — cb) b 4+ a* ¥ (ac — cb) b*

I
)
1]
| [e=}
3

a1 (ac — ¢b) b’ + (ac — cb) b*

|
H‘F}ﬂ

> O

=a(a"c— cbk) + (ac — ¢b) b* (by induction hypothesis)
=a"le — ach® + ach® — bt = aF e — Pt
and the proof is completed. O

Corollary 3. The following simple equality also holds

(3.5) (zy)" & =2 (yz)"
for allm >0 and x, y in the Banach algebra B.
Proof. If we take a = zy, b = yx and ¢ = z in (3.2), then we get

n—1

(zy)"  —x (yz)" = . (zy)

which proves (3.5). O

n—i—1

(zyz — zyz) (yz)' =0,

Il
=)

Lemma 4. Let A€ C, A\# 0 and a, b€ B. If X € p(ab), then X € p(ba) and
(3.6) aRpa (\) = Rap (V) .
Proof. We have for A € p(ab), A # 0 that

Ra(Na= 5 <1_“Ab>1a: ! (i (a;)”) L ii(ai):a

n=0

By using (3.5) we have (ab)" a = a(ba)" for all n > 0 and since, by Lemma 2,
A € p(ba), then

1l a®a)" 1 = (ba)"
*Z /\" _X \" _A“<Z A")

n=0 n=0 n=0

and the equality (3.6) is proved. |
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Theorem 3. Let f: D C C — C be an analytic function on the domain D and a,
b € B with o (ab) U{0} C D. Then we have

(3.7) af (ba) = f (ab)a
and
(3.8) bf (ab) = f (ba)b.

Proof. Let v be a closed rectifiable path in D and such that o (ab) U{0} = o (ba) U
{0} C ins(y). By using the identity (3.6) and the Riesz functional calculus, we
have

af (ba) = Qjma/f@) (€t ds = [ (€ o (6)de =
1
- / F(€) R () ade = (m JRIGEE d5> a=
= f(ab)a
and the identity (3.7) is proved. The identity (3.8) follows by (3.7). O

Corollary 4. Let f : D C C — C be an analytic function on the domain D and
a, b € B with o (ab) U{0} C D. If v is a closed rectifiable path in D and such that
o (ab) U{0} Cins(y), then
(3.9) If (ab) a — af (ab)]|
1
< 5 llall [|ba — ab]
v

X min { / £ O | R ()] 1], / £ O Boa (€] | Rat (O] |d§|}

1
< 5. llalllba — ab]
T

[ sl 1 (©)]ldg]
’ {/ (el - ||ab|)2’L (€T = Toall) (1€] — T1ab) } |

Proof. Using the inequality (2.6) we get

(310)  |If (ab)a— af (ab)] < 5 |aba — o] / F ()] [ Ras (€)1 |d¢]

~y

< *Ila\lllba—abll/If(f)IIIRab (©)11* lag]

d
< o lal b — ab] / o ”'('wﬁ

From (3.7) we get

a(f (ba) — f (ab)) = af (ba) — af (ab) = f (ab) a — af (ab).
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Taking the norm and using the inequality (2.5) we also have

3-11) |[f (ab)a —af (ab)|| = |la (f (ba) = f (ab))|| < [lall |[f (ba) — f (ab)]
< i — llall IIba—abH/ [f (O Bpa ([ Rap ()] 1dE]

T (©)]|de]
< 57 lall b b“/ G Hball)(\ﬁl lab])

On making use of (3.10) and (3.11) we get the desired inequality (3.9). O

Remark 4. If we assume that f : D C C — C is an analytic function on the
domain D and a, b € B with o (ab)U{0} € D C D (0,R) C D where D (0, R) is an
open disk centered in 0 and of radius R, then

R|lall [|ba — ab|
(3.12)  |If(ab)a —af (ab)|| < £l 7,00
(R — ||abl|) max {R — [lab|| , R — [|ba]l} """
provided that

11l 0 = sup |f (Re*™)| < oo.
t€[0,1]

Corollary 5. Let f: D C C — C be an analytic function on the domain D and
a, b € B with o (ab) U{0} C D. If v is a closed rectifiable path in D and such that
o (ab) U{0} Cins(y), then

(3.13) laf (ba) — f (ba)a +bf (ab) — f (ab) b]|
< i||a—b|| Hab—ba\l/lf(é)\ [ Rab () 1 R2ba (£)]] |d€]

(©)]14¢]
< 5= lla = b ab - ba“/ GE Hball)(\fl fabll)’

Proof. From (3.7) we have

af (ba) — f (ab)b = f (ab)a— f (ab) b = f (ab) (a — b)
while from (3.8) we get

f(ba)a—bf(ab) = f(ba)a — f (ba)b = f(ba)(a—b),

which implies

af (ba) — f(ab)b— f (ba)a+ bf (ab) = f (ab) (a — b) — f (ba) (a — b)
namely
(3.14) af (ba) — f (ba)a+bf (ab) — f (ab) b= [f (ab) — f (ba)] (a — D).
By taking the norm in (3.14), we get

(3.15)||af (ba) — f (ba)a + bf (ab) — f (ab) b] ILf (ab) = f (ba)] (@ — D)

< |[f (ab) = f (ba)] la —b] -
From the inequality (2.7) we have

If (ab) = f (ba)|| < *Hab—ba\\/lf ) [ Rab ()] | Rea ()] |dE]
Y

)] |de|
b—ba
27 14 ”/ G Hball (1€ — Jlab)

IN
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and by (3.15) we deduce the desired result (3.13). O

Remark 5. If we assume that f : D C C — C is an analytic function on the
domain D and a, b € B with o (ab)U{0} C D C D (0, R) C D where D (0, R) is an
open disk centered in 0 and of radius R, then

Rlla =l {lab — bal[ |1l &0

provided that

11l 0 = sup |f (Re*™)[ < o0.
te[0,1]

4. SOME EXAMPLES

The modified Bessel function of the first kind I,,(z) for real number v can be
defined by the power series as [1, p. 376]

v oo 1. 2\k
IV(Z): lz L7
2 kzok!F(V+k+1)

where T is the gamma function. For n = 0 we have Iy(z) given by
o0 k
(i#*)

(4.1) I(z) = T

k=0

An integral formula for real number v is

1 (" : S
I,/(Z) = - / e® cos COS (I/Q) dg — s (I/?T) / e % cosh t—ytdt7
™ Jo T 0

which simplifies for v an integer n to
1 /" ‘
I(2) = — / % cos (nd) do.
0

™

1 s
In(z) = ;/0 e*cs0dp.

Let € R and R > 0. If we change the variable 8 = 27t, then dt = %d@ and

For n = 0 we have

1 2
/ exp [aR cos (27t)] dt —/ exp [@R cos 0] df
0

1 2
exp [aRcos0]df + — / exp [aR cos 0] d0>

| |
/‘\

5
1 s

=5 ( exp [aR cos 8] df + — / exp [—aR cos 0] d9)

0

1

= 5 Iy(aR) + Iy(—aR)) = Ip(aR) by (4.1).

Consider the inequality (2.21) in the form
R2
(4.2) 1F (@) g(y) =g (y) f(@)]| < 3 lzy — vzl

(IR = ll=I)* (1R = llyl])
x /0 I (Re2™t)| dt /O lg (R dt,
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where f: D C C — C is an analytic function on the domain D and z, y € B with
o(z), o(y) C D(0,R) C D where D (0,R) is an open disk centered in 0 and of
radius R.

Consider the exponential function f(a) = exp(aa), a € B and o € R. Assume
that =, y € B and ||z||, ||y|]| < R for some R > 0. Observe that

|exp (aRe*™™)| = |exp [k (cos (2t) + i sin (27t))]| = exp [aR cos (2nt)] .

Now, if we write the inequality (4.2) for the functions f(z) = exp(azx), € B,
a€Rand g(y) =exp(By), y € B, 5 € R then we get

llexp (ax) exp (By) — exp (By) exp (ax)||
R2

< 2

(R == (R = Iyl

1
X exp [aR cos (27t)] dt/ exp [BR cos (27t)] dt,
0 0

5 vy =yl

and since

1 1
/ exp [aR cos (27t)] dt = Iy(aR) and / exp [BR cos (27t)] dt = Iy(BR),
0 0
hence we get the following inequality of interest for the exponential commutator

(4.3) |exp (ax) exp (By) — exp (By) exp (ax)]|
R2
< 5
(IR] = llzI)™ (| R] = llyll)

for all z, y € B and ||z||, |ly|| < R for some R > 0.
From the equality (3.7) we also have the equality

5 lzy — yz| Io(aR) o (BR)

(4.4) xexp (yx) = exp (zy)
for all z, y € B.
Moreover, if x is invertible, then we get from (4.4) that
(4.5) exp (yz) = 2V exp (zy) ©
for all y € B.
Finally, from the inequality (3.16) written for the exponential function, we get
Rexp(R) ||z — yll llzy — y|

for z, y € B with [|zy]|, |lyz| < R.
The interested reader may apply some of the above inequalities for other analytic
functions such as sin, cos, sinh, cosh. The details are omitted.
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