SOME f-DIVERGENCE MEASURES RELATED TO JENSEN’S
ONE

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we introduce some f-divergence measures that are
related to the Jensen’s divergence introduced by Burbea and Rao in 1982.
We establish their joint convexity and provide some inequalities between these
measures and a combination of Csiszdr’s f-divergence, f-midpoint divergence
and f-integral divergence measures.

1. INTRODUCTION

Let (X,.A) be a measurable space satisfying |./A| > 2 and p be a o-finite measure
on (X, A). Let P be the set of all probability measures on (X,.A) which are ab-
solutely continuous with respect to . For P, Q € P, let p = % and ¢ = % denote
the Radon-Nikodym derivatives of P and ) with respect to u.

Two probability measures P, () € P are said to be orthogonal and we denote

this by Q L P if
P{q=0})=Q({p=0}) =1

Let f : [0,00) — (—00,00] be a convex function that is continuous at 0, i.e.,

f(0) = limy o f (u).

In 1963, I. Csiszér [4] introduced the concept of f-divergence as follows.

Definition 1. Let P, Q € P. Then

p@1 [19] duto),

is called the f-divergence of the probability distributions Q@ and P.

(L1) (@, P) = /

X

Remark 1. Observe that, the integrand in the formula (1.1) is undefined when
p(x) =0. The way to overcome this problem is to postulate for f as above that

(1.2) 0f [Q(x)} = ¢ (z)lim {uf (1” , x € X.

0 ul0 u

We now give some examples of f-divergences that are well-known and often used
in the literature (see also [3]).
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1.1. The Class of xy“-Divergences. The f-divergences of this class, which is
generated by the function x%, « € [1,00), defined by

X* (u) = Ju—1|", uel0,0)

have the form

(1.3) Iy (Q, P) =/ p

«

q _

’—1 du=/p1 *lq — p|* dp.
x |P X

From this class only the parameter a« = 1 provides a distance in the topologi-
cal sense, namely the total variation distance V (Q,P) = [y |¢ — p| dp. The most
prominent special case of this class is, however, Karl Pearson’s x2-divergence

@
XZ(Q,P)Z/ —dp—1
x P
that is obtained for oo = 2.

1.2. Dichotomy Class. From this class, generated by the function f, : [0,00) —
R

u—1—Inu for a =0;
fo (u) = ﬁ[au—&—l—a—uo‘] for a e R\{0,1};
l—u+4ulnu for a=1;

only the parameter v = 1 (f; (u) =2 u— 1)2) provides a distance, namely, the

Hellinger distance

H(Q,P)—UX(\/Q\/@QCIMF-

Another important divergence is the Kullback-Leibler divergence obtained for

a=1,
KL(Q,P):/qun (g)) dy.

1.3. Matsushita’s Divergences. The elements of this class, which is generated
by the function ¢, a € (0,1] given by

@a(u) ::|17ua|c%, ’LLE[0,00),

are prototypes of metric divergences, providing the distances [Iwa (Q, P)}

1.4. Puri-Vincze Divergences. This class is generated by the functions ®,, o €
[1,00) given by
1—uf"

T

u € [0, 00).

Q=

It has been shown in [26] that this class provides the distances [, (Q, P)]~ .
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1.5. Divergences of Arimoto-type. This class is generated by the functions

2 [t -2 1w for a € (0,00)\ {1}
U (u) == I4+u)n2+ulnu—(1+u)ln(l4+wu) for a=1;
%|17u| for a = oco.

It has been shown in [28] that this class provides the distances [Iy (Q, P)]min(a’é)
for a € (0,00) and %V(Q,P) for o = oo.
For f continuous convex on [0,00) we obtain the -conjugate function of f by

= (3). ue0)

and

f7(0) = lim f* (u) .

|0
It is also known that if f is continuous convex on [0, 00) then so is f*.
The following two theorems contain the most basic properties of f-divergences.
For their proofs we refer the reader to Chapter 1 of [27] (see also [3]).

Theorem 1 (Uniqueness and Symmetry Theorem). Let f, fi be continuous convex
on [0,00). We have
Iy, (@, P) = I (Q, P),
for all P, Q € P if and only if there exists a constant ¢ € R such that
fi(w)=f(u)+c(u—-1),
for any u € [0, 0).
Theorem 2 (Range of Values Theorem). Let f : [0,00) — R be a continuous

convez function on [0, 00).
For any P,Q € P, we have the double inequality

(1.4) fQQ) <1 (Q,P) < f(0)+ f(0).
(i) If P = Q, then the equality holds in the first part of (1.4).
If f is strictly convex at 1, then the equality holds in the first part of (1.4) if and
only if P = Q;
(ii) If Q L P, then the equality holds in the second part of (1.4).

If £(0) + f*(0) < oo, then equality holds in the second part of (1.4) if and only
ifQ L P

The following result is a refinement of the second inequality in Theorem 2 (see
[3, Theorem 3]).

Theorem 3. Let f be a continuous convez function on [0,00) with f (1) =0 (f is
normalised) and f (0) + f* (0) < co. Then

(15) 0< I (@P)< £ (0)+ 5 O]V (Q.P)
for any Q, P € P.

For other inequalities for f-divergence see [2], [7]-[20].
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2. SOME PRELIMINARY FACTS

For a function f defined on an interval I of the real line R , by following the
paper by Burbea & Rao [1], we consider the [J-divergence between the elements ¢,
s € I given by

2 2
As important examples of such divergences, we can consider [1],

(=17 5 +5%) — (B2)], a#1,

[tn(t) + sIn(s) — (t+s)In (F2)], a=1.

If f is convex on I, then J; (t,s) > 0 for all (¢,s) € I x I.
The following result concerning the joint convexity of J; also holds:

Ty (t,9) :=1[f(t)+f(8)]—f<t+8>-

Ju (t,8) =

Theorem 4 (Burbea-Rao, 1982 [1]). Let f be a C? function on an interval I. Then
Js is convexr (concave) on I x I, if and only if f is convexr (concave) and # 18
concave (convex) on I.

We define the Hermite-Hadamard trapezoid and mid-point divergences

1 1
=y Trlts) =3 [F )+ 1 (s) —/O F((1=7)t+7s)dr
and
(2.2) Mf(t,s)::/o f(<1_7'>t+7'5)d7-_f<t—|2-3>

for all (¢,s) € I x I.
‘We observe that

(2.3) Tr (t,s) =T5 (t,s) + My (t,s)

for all (¢,s) € I x I.
If f is convex on I, then by Hermite-Hadamard inequalities

f(a)+ f(b) Z/Olf((l_T)aHb)def(a;b)

2
for all a, b € I, we have the following fundamental facts
(2.4) Ts (t,s) > 0 and My (t,s) >0

for all (¢,s) € I x I.
Using Bullen’s inequality, see for instance [22, p. 2],

! a+b
OS/O f((lT)a+Tb)de< 5 )
1
gf(a);f(b)/o F((1=7)a+7b)dr

we also have
(2.5) 0< My (ts) < Ty (1,5).

Let us recall the following special means:



SOME f-DIVERGENCE MEASURES RELATED TO JENSEN’S ONE 5

a) The arithmetic mean

Ala,b) = aT—|-b7 a,b >0,

b) The geometric mean
G (a,b) := Vab; a,b>0,

¢) The harmonic mean

2
H(a,b) := +—; a,b>0,
a e
d) The identric mean
1
1 b\ b—a
- (b(}) if b#a
I(a,b):= € \a ;a,b>0
a if b=a
e) The logarithmic mean
Wy T 0#e
L(a,b) := no—ma 7 a,b>0
a if b=a

f) The p-logarithmic mean
ppt1l _ gptl
L, (a,b) := ((p+ 1) (b—a)
a if b=a

If we put Lo (a,b) := I (a,b) and L_q (a,b) := L (a,b), then it is well known that
the function R 3p — L, (a,b) is monotonic increasing on R.
We observe that for p € R\ {—1,0} we have

)p if b#a, peR\{-1,0}
; a,b>0.

/O[(l—T)a+Tb]pdT:Lg(a,b)7 /0 (1= 7)a+ 70 dr = L (a, )

and .
/ In[(1—7)a+7bldr =1InI(a,b).
Using these notationsowe can define the following divergences for (t,s) € I"™ x I"™

where [ is an interval of positive numbers:

T, (t,s) := A(t*,s") — LD (t,5)
and

My (t,8) == LE (t,s) — AP (, 5)
for all p € R\ {-1,0},

T 1 (t,s):=H ' (t,s)— L' (t,5)

and

M_y(t,s) =L (t,s) — A71(t,5)
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for p = —1 and

T (t,s) :=1In (?((ttss))>

and

Mo (t,) :=In <i(é‘3>
for p = 0.

Since the function f (7) = 7P, 7 > 0 is convex for p € (—00,0) U (1, 00), then we
have

(26) ,TP (tv 5) ) MP (tﬂ 5) 2 0

for all (¢,s) € I x I.
For p € (0,1) the function f(7) = 77, 7 > 0 and for p = 0, the function
f(7) =1In7 are concave, then we have for p € [0,1) that

(2.7) T, (t,s), My(t,s) <0

for all (¢,s) € I x I.

Finally for p = 1 we have both 77 (¢,s) = Mj (¢,s) =0 for all (¢,s) € I x I.

We need the following convexity result that is a consequence of Burbea-Rao’s
theorem above:

Lemma 1. Let f be a C? function on an interval I. Then Ty and My are convex
(concave) on I x I, if and only if f is convex (concave) and % is concave (conver)
on I.

Proof. If Ty and My are convex on I x I then the sum Ty + My = jf is convex on
I x I, which, by Burbea-Rao theorem implies that f is convex and f” is concave
on I.

Now, if f is convex and f” is concave on I, then by the same theorem we have
that the function Jy: I x I — R

7 (ts)i= 5w+ 16 1 (5
: CL(J);V??:’ u, v € I. We define
e(r) =T (L=7)(t,s) +7(w,v) =T (L =7)t+7u, (1 = 7) s+ 71V))
f((A=7)t+7u)+ f((1—7)s+T0)]

I-7)t+7u+(1—7)s+7v
2 )

(A=)t +7u)+ f((1—7)s+TV)]
i t+s u+v>

RS CY “ﬁ w\»—‘

N\
—
—_
|
S—

5 T

for 7 € [0,1].
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Let 71, 72 € [0,1] and «, 8 > 0 with a + 5 = 1. By the convexity of J; we have

¢ (ary + BT2)

=J; (1 —ary — B12) (. 5) + (ar1 + BT2) (u,v))
=Js((a+ B —ary = Br2) (t,5) + (a1 + B72) (u,v))

=Jp(a(l—71) (@ s) + B (1 —72) (L s) +ari (u,v) + B72 (u,v))
=Jp (X =71) (ts) + 71 (w,0)] + B[(1 = 72) (£, 5) + 72 (u,v)])
<adp (L=71)(ts) + 71 (w,0) + BTf (1= 72) (t,5) + 72 (u,v))
= ap (11) + By (T2)

which proves that ¢ is convex on [0,1] for all ¢, s, u, v € I.
Applying the Hermite-Hadamard inequality for ¢ we get

(28) O+ > [ o
and since
e =30+~ ().
=3+ 71~ (45)
and

/01 (r dT—|:/f 1—Tt+TudT+/01f 1—71) s—l—ﬂ)d]
—/1f<(1— t+s u—i—v)dT’
0

hence by (2.8) we get

{00 se1-7 (%) rweron-r (5]

2;[/01]”((1T)tJrTu)dTJr/Olf((lT)s+Tv)dT}

! t+ s u+v
/Of<(17') 5 + T 3 )d’]’.

Re-arranging this inequality, we get

;[f(t); “)—/Olf((1—7)t+m)d7}
+;[f(8) —/Olf((l—T)s—&-Tv)dT}
Zé[f (t—IQ—s)+f(u;-v> _/01f<(1_7_)t—|2—s+7u;-v>d7],
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which is equivalent to

1
5177 (00 + T (o) 2 77 (55, 150

=T; <; (t7u)+;(8,v)>7

for all (¢,u), (s,v) € I x I, which shows that 7 is Jensen’s convex on I x I. Since
Ty is continuous on I x I, hence 7 is convex in the usual sense on I x I.
Now, if we use the second Hermite-Hadamard inequality for ¢ on [0, 1], we have

(2.9) /0190(7) dr > ¢ <;)
Since
o) =2l (%) (50)) - G )

hence by (2.9) we have

%/Of((l—r)t—l—Tu dr+/f 1—T)8+T11)d7'}

—/Olf((l—T)t—;s-‘rTu_;v)dT

=5 (50 (5] G5 )
which is equivalent to
;[/Olf((l—T)t—i—Tu)dT—f(t—gu)]
+;|:/01f((1—7')8+7'1))d7'—f(8;v>:|
>/01f<(1—7)t;8+r“;”>d7—f(;

that can be written as

3 M (60) 4 My 0] 2 0y

=My (0 + 5 60)

for all (t,u), (s,v) € I x I, which shows that M is Jensen’s convex on I x I. Since
M is continuous on I X I, hence M/ is convex in the usual sense on I x I. O

The following reverses of the Hermite-Hadamard inequality hold:
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Lemma 2 (Dragomir, 2002 [10] and [11]). Let h : [a,b] — R be a convex function
on [a,b]. Then

(2.10) 0< é {h+ (a;b> —h_ (a;bﬂ (b—a)
B h<a>;h<b>_bla/u”h(7)d7
< Slh ()~ hs @] (0 a)

and

(2.11) 0< % {m (a;“b> —h_ (a;bﬂ (b—a)
< bia/abh(T)dT—h<a—2i_b>
< Sl ()~ hs @] (0 a).

The constant § is best possible in all inequalities from (2.10) and (2.11).
We also have:

Lemma 3. Let f be a C! conver function on an interval I. IfIO is the interior of
I, then for all (t,s) € I x I we have

(2.12) 0< M (ts) < T (s) < écf, (t, s)
where
(2.13) Cpr (t,s) :=[f" (1) = [ ()] (t = 5).
Proof. Since for b # a

1

b—a
then from (2.10) we get

W_/Olf((l—T)t+T8)dt< ()~ 1 ()] (- )

for all (t,s) € I x I. O
Remark 2. If

/bf(t)dt: (1 tyat i) d,

ool —

v =inf f/ (t) and T = sup f’ (t)
tel tel

are finite, then
Cp(tys) < (T =)t — s
and by (2.12) we get the simpler upper bound

0< My (6,5) STy (1,5) < 5 (D =)t 5],

Moreover, if t, s € [a,b] C I and since f! is increasing on I, then we have the
inequalities

(2.14) 0< My (ts) <Tp(ts) < 2 [f(0) = f(a)]]t = s].

0| =
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Since Jy (t,s) =Ty (t,8) + My (t,s), hence
]‘ ! !
0<Js(ts) < 7 [F7(0) = [ (a)] |t —s].

Corollary 1. With the assumptions of Lemma 3 and if the derivative f' is Lip-
schitzian with the constant K > 0, namely
[f/(6) = ' ()| < K [t —s| forallt, s€l,

then we have the inequality

(2.15) 0< My (t,s) <Ty(ts) < <K (t—s)°.

co| —

3. MAIN RESULTS

Let P, Q, W € P and f : (0,00) — R. We define the following f-divergence

31 7 (Pew) = [ w@ g (L0 20 i)

w(z) w ()

[ (2 i ()]

If we consider the mid-point divergence measure My defined by

M@ PW) = [ 1 {W} w (@) dy (2)

for any Q, P, W € P, then from (3.1) we get

g

(32 T (P.QW) = [ (PW) + I (QW)] — My (Q W),

We can also consider the integral divergence measure

A @Pw)= [ (/Of [(1"5)‘1("’3)*”’@)] dt)w(x)du(x).

w (z)

We introduce the related f-divergences

6y meew = [ (L0 1) g

_ % L (P,W) + I; (Q,W)] — Ay (Q, P,W)

N p(z) q(@) .
(3.4) M; (P.Q.W) ._/X ( )Mf<w(x)7w(x)>du( )
:Af(Q,P,W)_Mf(Q,PJ/V).
We observe that
Jf (P,Q,W) =T (P,Q,W) 4+ My (P,Q,W).

If f is convex on (0, c0) then by the Hermite-Hadamard and Bullen’s inequalities
we have the positivity properties
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and

for P, Q, W € P.
We have the following result:

Theorem 5. Let f be a C? function on an interval (0,00) . If f is convex on (0, 00)
and ﬁ is concave on (0,00), then for all W € P, the mappings

PxP3(P,Q)— Jp(P,QW), Ms(P,QW), Tf (P,Q. W)
are conver.

Proof. Let (P1,Q1), (P2,Q2) € P x P and o, § > 0 with o + 8 = 1. We have

Tr(a(Pr,Q1, W) + (P2,Q2,W)) = Ty (aPy + P, Q1 + Q2, W)
— [ iy gy (LA ) o @) AR g,
X

w (@) w(z)

i (@) @) @ e@),

-/, ”‘7< @ Pl w(xﬁﬂw(x))d”“
) («) )dm)

o oy (B2 a5 [ i1 (265, 2)
=aJy (P1,Q1, W) + BTy (P2, Q2, W),

which proves the convexity of P x P 3 (P, Q) — J; (P,Q, W) for all W € P.
The convexity of the other two mappings follows in a similar way and we omit
the details. (]

Theorem 6. Let f be a C' function on an interval (0,00). If f is convex on
(0,00), then for all W € P

(3.5) 0< My (P,QW) < T; (P.Q.W) < (Ap (@ P1V)
where

. (a@)\ . (p) o) — 1 (x .
3o ap@rw= [ (L) -y (20| 6@ - s,

Proof. From the inequality (2.12) we have
) G- L (o0 i)
() (2) (2528

forall z € X.
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If we multiply by w () > 0 and integrate on X we get

3 s (W) + I (PIW)] = 47 Q. PW)
<5 Jove (7 (0e) 7 (@) (e - v v
5 L (7 (25) -7 (£2) 0@ - a@ninte).
which implies the desired inequality. O

Corollary 2. With the assumptions of Theorem 6 and if f' is Lipschitzian with
the constant K > 0, namely

lf (s)—f(t)] < K|s—t| forallt, s (0,00),

then
(3.7) 0< My (P,QW) < T; (P.Q.W) < (Kdys (@, P.W),
where
[ W@ —r@)7,
(3.8) de (Q,P,W) = /X ).

Remark 3. If there exists 0 < r <1 < R < oo such that the following condition
holds

((r,R)) r < a(x) , p(2) < R for p-a.e. z € X,
then

(3.9) 0= Mp(P.QW) T (P,QW) < - [f (R) = f'(r)]di (@, P)

ool —

where
4 (QP) = [ laa)=p @)l du(a).
Moreover, if f is twice differentiable and
(3.10) 1" = sup 7 ()] < o
te[r,R]
then
1
(311) 0 S Mf (P7Q7 W) S 7} (Pan W) é g ||fHH[r,R],oo dX2 (Q?Pa W) .
We also have:

Theorem 7. Let f be a C? function on an interval (0,00) . If f is convex on (0, 00)
and # is concave on (0,00), then for all W € P,

(3.12) 0<Jr(P,Q,W) <

N |

[\ij’ (PaQ?W)+\I]f/ (Q7P7W)]7

where
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Proof. 1t is well known that if the function of two independent variables F D -
R x R — R is convex on the convex domain D and has partial derivatives & {T and

%—‘; on D then for all (¢,s), (u,v) € D we have the gradient inequalities

(3.13) % (t—u) + 3F8(;’ %) (s — )

> F(t,s) — F(u,v)

Now, if we take F': (0,00) x (0,00) — R given by

F(t,s) =

N |

rw+rel-7 (5

and observe that

and

s zlro-r () e-wsg[reo-r ()] e-o

> 0+ £ - (52) - d e+ e+ ()
o) ro-r ()

If we take u =v = 1 in (3.14), then we have

(
g5y glro-r ()| e-neglre-r (5| e-y

23U+ re-7(57) 20

for all (¢,s) € (0,00) x (0,00).
If we take ¢ = 22 and s = (w) n (3.15) then we obtain

w(x) (z)

) < >}<azz(1>
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By multiplying this inequality with w (z) > 0 we get

o= et (253) e (263)] v ()
3D () (52 -

for all z € X. O

INA
N = N

Corollary 3. With the assumptions of Theorem 6 and if f' is Lipschitzian with
the constant K > 0, then

(3.17) 0< J5 (P,Q,W)
b - 25 25

W~

Proof. We have that
Uy (P,Q, W)

<[ (p((x)>f’(Q(me(x))‘lp(fc)w(fv)ldu(w)

w (x) 2w (x)

xf[2g e

_K/ ]p ;w 2) — w (x| dp ()

~ Ip () — ¢ @) |p (2) — w (2)| du ()
- 3K /X w ()
p(2)

W 1‘@(:5)

p () —w (z)| dp ()

— 3K [ Ip@) - (@)

and similarly
¥ (P.QW) < 3K [ (@) 0@l 25 1] du(o).

Finally, by the use of (3.12) we get the desired result. O

Remark 4. If there exist 0 < r < 1 < R < oo such that the following condition
(r,R) holds and if f is twice differentiable and (3.10) is valid, then

1
(318) 0 < jf (P;Q7W) < i ||f”||['r,R],oo

| < [ @ = a@n |22 <1+ |29 )
" ‘3221—1‘ ‘fi((z)) 1‘<maX{R—1 1-r}
and
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hence by (3.18) we get the simpler bound
1
(319) 0< L7]‘ (PvQVW) < 5 ||f”||[r,R],oo (R - 71) max {R -1,1- T‘}.

We also have:

Theorem 8. With the assumptions of Theorem 6 and if f' is Lipschitzian with the
constant K > 0, then

(3.20) 0<T; (P,Q,W)
< [ o) oo [ - i - o et

Proof. Let (x,y), (u,v) € (0,00) x (0,00) . If we take F : (0,00) x (0,00) — R given
by

F(t,s)zf(t);f(s)—/o F(L—7)t+7s)dr

then
8F6(3t:,3) :%f'(t)—/o 1-7)f (1=7)t+7s)dr
= [ a=niro-r-nitrsa
and
OF (t,s) 1, t,
oy :§f (s)—/OTf (I=7)t+7s)dr

:/0 TIf (s) = f (1 =7)t+78)]dr
and since F' is convex on (0,00) x (0,00), then by (3.1) we get
(3.21) (t—u)/o (L= ) [F () — F (1 — )t +7s)] dr

1

+(H;>/0 U (3) — £ (L= )t 7s)] dr

_/0 f((l=7)t+71s)dr
v) ' —T1T)u+TV)dr
+/Of((1 Ju+To)d

z(t—w/o (=) [ (w) = f (1= 7)u+70)]dr

+<s—v>/0 1 () = 1 (= 7)u+ )] dr

for all (¢,s), (u,v) € (0,00) x (0,00).
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If we take u = v = 1 in (3.21), then we have
1
(3.22) (t— 1)/0 Q-7 @) - fFf((Q1=7)t+7s)]dr

(s 1)/OT[f’(s) F (=)t +7s)dr
CEIC

>

/f 1—7)t+7s)dr >0

for all (u,v) € (0,00) x (0,00).

If we take t = % and s = % in (3.22) then we get

o) (Zap1) o7 (55
(50l (38) - (0BG erim)e
>f(p ))) () /01f<(1—T)%+TZ((Z))>dT>o.

Since f’ is Lipschitzian with the constant K > 0, hence

]
—
&
I
\
//‘\\
=
|
ﬂ
S—
=3
—~
&
N—
+
\]
)
S
N—
QU
_ 1
QU
ﬂ

px) (@) 1
o< LB TUB) Py (o2t t
<[oy o 0ol (2) - (00 2 i)
(x) ! / (z) / (‘T) (1’)
a1 Ll () - (e EG i)l
<o -1 8- 28 [ 0o
(z) (z) @ | [
ks - [Ra - el a-nre
1 (z) (z) (z) (2)
- EG el lss s )
If we multiply this inequality by w () > 0 and integrate, then we get the desired
result (3.20). O

Corollary 4. If there exist 0 < r < 1 < R < oo such that the condition (r, R)
holds and if f is twice differentiable and (3.10) is valid, then

1
(3.24) 0< T (PQW) < 5 17" 0 (R = 1) max {R — 1,1 =1}

Finally, we also have:
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Theorem 9. With the assumptions of Theorem 6 and if f' is Lipschitzian with the
constant K > 0, then

(3.25) 0< My (P,Q,W)

K [ @) - q(@)

t}:mof, Let (t, )(U,U)G(0700)X(O,oo).IfwetakeF;lzo(’xoo) (0.00) — R given
Y
P = [ @ -nierair—r(152)
then
aFa(at:’ ):/ 1-7)f(1-7)t+ S)dT—%f t2 >
:/ (1-71) {f’((l Vi+7s)— f <t28>}d
8F(9(;’8):/Ole/((l—T)t+Tg)dT_;/ t+

f 2
= [e[r@-ntn - (552)]

and since F' is convex on (0,00) % (0,00), then by (3.1) we get

(3.26) (t —u) [/01(1—7) {f’((l—f)t”s)‘f/(tgs)]w]
oo [ 7| w@-nien - (B2 ar
> [r-neerar— g (52)
_/1f((1—7')u+ v)d +f( ; )
- )U 1 [f +m>—f’<“‘;”)]d{
tta=n) [0 - (450 ar
3

If we take u = v =1 in (3.26), then we hav

B21) (- )[/(1 D=t - (5] o

+(s—1[ T|:f/((l T)t+T8) — f’(t;s)]dr}

2/011‘ (1—7)t+7s)dr—f
)

for all (¢,s) € (0,00) x (0,00).
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)

If we take t = % and s = qé) in (3.27) then we get

1
(3.28) 0< /0 f <(1 —7) w (@) +Tw($) dr

S
8
~ e
(=)
—
5
~
N———
\
kﬁ
7 N
s
—~
5
~
+
(=)
D
~
N———

<[t
[fonlr(oon it +-i5) - (555l ]
Ji -
[l (it erc) - ()l
R A
+K§,((a;))—1 Z((?)—%/Ol(l— )’ —;‘d
Sin
[a-nlr-3ar=1
hen

s [r{r-nt et (55
1
8

S —

for all z € X.

If we multiply this inequality by w (z) > 0 and integrate, then we get the desired
result (3.20). O

Corollary 5. If there exist 0 < r < 1 < R < oo such that the condition (r, R)
holds and if f is twice differentiable and (3.10) is valid, then

(3.29) 0< M;(P,Q,W) < i 1"l e (B — 1) max {R — 1,1 = 7}
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4. SOME EXAMPLES

The Dichotomy Class of f-divergences are generated by the functions f, :
[0,00) — R defined as

u—1—Inu for a =0;
fa (u) = ﬁ[au—&—l—a—u"‘] for a € R\{0,1};
l—u+ulnu for aa=1.
Observe that
u% for a=0;
fl(u)=<¢ u*? for aeR\{0,1};
1 for a=1.

u
In this family of functions only the functions f, with « € [1,2) are both convex
and with # concave on (0, 00).

‘We havea

[ wiz p(z) .
.y = [Cwi) s (25 dute)
oz(alfl) [fX w'=e (:E) pa (l‘) d/”’ (JI) - 1] , € (17 2) y

pr(x)ln(ﬁ((i))) du(z), a=1,

and

My @) = [ [P ) duto)

a(alfl) UX [q(x);p(z)]a wr= (x) dp (z) — 1} , a€(1,2)

I {q(i);p(z)] In {q($)+p(1)] du(z), a=1.

2w(x)

We also have
1
/ (1= t)a+ b In[(1—t)a+ th) dt
0

= i (b+a)InT (a®b°) = %A(a,b) In 1 (a*,b%).

Therefore
A (@PW)= [ ( / ¥ (1_t)(;(2)+tp(x)]dt)w(:c)du(x)
o [y La (43, 28 w @) dp (2) - 1], a € (1,2)
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‘We have

and

Tp. (P.Q.W) = S s, (W) + I1, (QW)] = My, (Q. P,W),

Ty (P.QW) = 5 [Iy, (P,W) + I, (Q.W)] Ay, (@, P, W)

Mfa (P7Q7W) :Afa (QvPVW)_Mfa (Q?PVW)

According to Theorem 5, for all « € [1,2), the mappings

PxP3(PQ)— T (P,QW), My (P,QW), Ty, (P,Q W)

are conver for all W e P.
If0<r<1<R, then

1
1ol ry 00 = S fa () = 5= fora €[1,2).
T

If there exists 0 < r < 1 < R < oo such that the following condition holds

(er) 4@ p@)

< R for p-a.e. z € X,

~w(z) w(z)

then by (3.19), (3.24) and (3.29) we get

L
(A1) 0< Ty (P.QW) < 5 I paye (R— 1) max {R— 1,17},

(4.2) 0< T (P,Q,W) < é(R; ") tmax {R—1,1—r}
r «

and

(4.3) OngQ(P,Q,W)Si(i%;)max{]%fl,l—r},

for all @ € [1,2) and W € P.

The interested reader may apply the above general results for other particular
divergences of interest generated by the convex functions provided in the introduc-
tion. We omit the details.
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