
SOME f-DIVERGENCE MEASURES RELATED TO JENSEN�S
ONE

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we introduce some f -divergence measures that are
related to the Jensen�s divergence introduced by Burbea and Rao in 1982.
We establish their joint convexity and provide some inequalities between these
measures and a combination of Csiszár�s f -divergence, f -midpoint divergence
and f -integral divergence measures.

1. Introduction

Let (X;A) be a measurable space satisfying jAj > 2 and � be a �-�nite measure
on (X;A) : Let P be the set of all probability measures on (X;A) which are ab-
solutely continuous with respect to �: For P; Q 2 P, let p = dP

d� and q =
dQ
d� denote

the Radon-Nikodym derivatives of P and Q with respect to �:
Two probability measures P; Q 2 P are said to be orthogonal and we denote

this by Q ? P if
P (fq = 0g) = Q (fp = 0g) = 1:

Let f : [0;1) ! (�1;1] be a convex function that is continuous at 0; i.e.,
f (0) = limu#0 f (u) :
In 1963, I. Csiszár [4] introduced the concept of f -divergence as follows.

De�nition 1. Let P; Q 2 P. Then

(1.1) If (Q;P ) =

Z
X

p (x) f

�
q (x)

p (x)

�
d� (x) ;

is called the f-divergence of the probability distributions Q and P:

Remark 1. Observe that, the integrand in the formula (1.1) is unde�ned when
p (x) = 0: The way to overcome this problem is to postulate for f as above that

(1.2) 0f

�
q (x)

0

�
= q (x) lim

u#0

�
uf

�
1

u

��
; x 2 X:

We now give some examples of f -divergences that are well-known and often used
in the literature (see also [3]).
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2 S. S. DRAGOMIR

1.1. The Class of ��-Divergences. The f -divergences of this class, which is
generated by the function ��; � 2 [1;1); de�ned by

�� (u) = ju� 1j� ; u 2 [0;1)

have the form

(1.3) If (Q;P ) =

Z
X

p

����qp � 1
����� d� = Z

X

p1�� jq � pj� d�:

From this class only the parameter � = 1 provides a distance in the topologi-
cal sense, namely the total variation distance V (Q;P ) =

R
X
jq � pj d�: The most

prominent special case of this class is, however, Karl Pearson�s �2-divergence

�2 (Q;P ) =

Z
X

q2

p
d�� 1

that is obtained for � = 2:

1.2. Dichotomy Class. From this class, generated by the function f� : [0;1)!
R

f� (u) =

8>>>><>>>>:
u� 1� lnu for � = 0;

1
�(1��) [�u+ 1� �� u

�] for � 2 Rn f0; 1g ;

1� u+ u lnu for � = 1;

only the parameter � = 1
2

�
f 1
2
(u) = 2 (

p
u� 1)2

�
provides a distance, namely, the

Hellinger distance

H (Q;P ) =

�Z
X

(
p
q �pp)2 d�

� 1
2

:

Another important divergence is the Kullback-Leibler divergence obtained for
� = 1;

KL (Q;P ) =

Z
X

q ln

�
q

p

�
d�:

1.3. Matsushita�s Divergences. The elements of this class, which is generated
by the function '�; � 2 (0; 1] given by

'� (u) := j1� u�j
1
� ; u 2 [0;1);

are prototypes of metric divergences, providing the distances
�
I'� (Q;P )

��
:

1.4. Puri-Vincze Divergences. This class is generated by the functions ��; � 2
[1;1) given by

�� (u) :=
j1� uj�

(u+ 1)
��1 ; u 2 [0;1):

It has been shown in [26] that this class provides the distances [I�� (Q;P )]
1
� :
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1.5. Divergences of Arimoto-type. This class is generated by the functions

	� (u) :=

8>>>>><>>>>>:

�
��1

h
(1 + u�)

1
� � 2 1

��1 (1 + u)
i

for � 2 (0;1) n f1g ;

(1 + u) ln 2 + u lnu� (1 + u) ln (1 + u) for � = 1;

1
2 j1� uj for � =1:

It has been shown in [28] that this class provides the distances [I	�
(Q;P )]

min(�; 1� )

for � 2 (0;1) and 1
2V (Q;P ) for � =1:

For f continuous convex on [0;1) we obtain the �-conjugate function of f by

f� (u) = uf

�
1

u

�
; u 2 (0;1)

and
f� (0) = lim

u#0
f� (u) :

It is also known that if f is continuous convex on [0;1) then so is f�:
The following two theorems contain the most basic properties of f -divergences.

For their proofs we refer the reader to Chapter 1 of [27] (see also [3]).

Theorem 1 (Uniqueness and Symmetry Theorem). Let f; f1 be continuous convex
on [0;1): We have

If1 (Q;P ) = If (Q;P ) ;

for all P; Q 2 P if and only if there exists a constant c 2 R such that
f1 (u) = f (u) + c (u� 1) ;

for any u 2 [0;1):

Theorem 2 (Range of Values Theorem). Let f : [0;1) ! R be a continuous
convex function on [0;1):
For any P;Q 2 P, we have the double inequality

(1.4) f (1) � If (Q;P ) � f (0) + f� (0) :
(i) If P = Q; then the equality holds in the �rst part of (1.4).

If f is strictly convex at 1; then the equality holds in the �rst part of (1.4) if and
only if P = Q;

(ii) If Q ? P; then the equality holds in the second part of (1.4).
If f (0) + f� (0) <1; then equality holds in the second part of (1.4) if and only

if Q ? P:

The following result is a re�nement of the second inequality in Theorem 2 (see
[3, Theorem 3]).

Theorem 3. Let f be a continuous convex function on [0;1) with f (1) = 0 (f is
normalised) and f (0) + f� (0) <1: Then

(1.5) 0 � If (Q;P ) �
1

2
[f (0) + f� (0)]V (Q;P )

for any Q; P 2 P.

For other inequalities for f -divergence see [2], [7]-[20].
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2. Some Preliminary Facts

For a function f de�ned on an interval I of the real line R , by following the
paper by Burbea & Rao [1], we consider the J -divergence between the elements t;
s 2 I given by

Jf (t; s) :=
1

2
[f (t) + f (s)]� f

�
t+ s

2

�
:

As important examples of such divergences, we can consider [1],

J� (t; s) :=

8<: (�� 1)�1
�
1
2 (t

� + s�)�
�
t+s
2

���
; � 6= 1;�

t ln (t) + s ln (s)� (t+ s) ln
�
t+s
2

��
; � = 1:

If f is convex on I; then Jf (t; s) � 0 for all (t; s) 2 I � I:
The following result concerning the joint convexity of Jf also holds:

Theorem 4 (Burbea-Rao, 1982 [1]). Let f be a C2 function on an interval I: Then
Jf is convex (concave) on I � I; if and only if f is convex (concave) and 1

f 00 is
concave (convex) on I:

We de�ne the Hermite-Hadamard trapezoid and mid-point divergences

(2.1) Tf (t; s) :=
1

2
[f (t) + f (s)]�

Z 1

0

f ((1� �) t+ �s) d�

and

(2.2) Mf (t; s) :=

Z 1

0

f ((1� �) t+ �s) d� � f
�
t+ s

2

�
for all (t; s) 2 I � I:
We observe that

(2.3) Jf (t; s) = Tf (t; s) +Mf (t; s)

for all (t; s) 2 I � I:
If f is convex on I; then by Hermite-Hadamard inequalities

f (a) + f (b)

2
�
Z 1

0

f ((1� �) a+ �b) d� � f
�
a+ b

2

�
for all a; b 2 I; we have the following fundamental facts
(2.4) Tf (t; s) � 0 andMf (t; s) � 0
for all (t; s) 2 I � I:
Using Bullen�s inequality, see for instance [22, p. 2],

0 �
Z 1

0

f ((1� �) a+ �b) d� � f
�
a+ b

2

�
� f (a) + f (b)

2
�
Z 1

0

f ((1� �) a+ �b) d�

we also have

(2.5) 0 �Mf (t; s) � Tf (t; s) :
Let us recall the following special means:
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a) The arithmetic mean

A (a; b) :=
a+ b

2
; a; b > 0;

b) The geometric mean

G (a; b) :=
p
ab; a; b � 0;

c) The harmonic mean

H (a; b) :=
2

1
a +

1
b

; a; b > 0;

d) The identric mean

I (a; b) :=

8>><>>:
1

e

�
bb

aa

� 1
b�a

if b 6= a

a if b = a

; a; b > 0

e) The logarithmic mean

L (a; b) :=

8><>:
b� a

ln b� ln a if b 6= a

a if b = a

; a; b > 0

f) The p-logarithmic mean

Lp (a; b) :=

8>><>>:
�
bp+1 � ap+1
(p+ 1) (b� a)

� 1
p

if b 6= a; p 2 Rn f�1; 0g

a if b = a

; a; b > 0:

If we put L0 (a; b) := I (a; b) and L�1 (a; b) := L (a; b) ; then it is well known that
the function R 3p 7! Lp (a; b) is monotonic increasing on R.
We observe that for p 2 Rn f�1; 0g we haveZ 1

0

[(1� �) a+ �b]p d� = Lpp (a; b) ;
Z 1

0

[(1� �) a+ �b]�1 d� = L�1 (a; b)

and Z 1

0

ln [(1� �) a+ �b] d� = ln I (a; b) :

Using these notations we can de�ne the following divergences for (t; s) 2 In� In
where I is an interval of positive numbers:

Tp (t; s) := A (tp; sp)� Lpp (t; s)
and

Mp (t; s) := L
p
p (t; s)�Ap (t; s)

for all p 2 Rn f�1; 0g ;
T�1 (t; s) := H�1 (t; s)� L�1 (t; s)

and
M�1 (t; s) := L

�1 (t; s)�A�1 (t; s)
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for p = �1 and

T0 (t; s) := ln
�
G (t; s)

I (t; s)

�
and

M0 (t; s) := ln

�
I (t; s)

A (t; s)

�
for p = 0:
Since the function f (�) = �p; � > 0 is convex for p 2 (�1; 0) [ (1;1); then we

have

(2.6) Tp (t; s) ; Mp (t; s) � 0

for all (t; s) 2 I � I:
For p 2 (0; 1) the function f (�) = �p; � > 0 and for p = 0; the function

f (�) = ln � are concave, then we have for p 2 [0; 1) that

(2.7) Tp (t; s) ; Mp (t; s) � 0

for all (t; s) 2 I � I:
Finally for p = 1 we have both T1 (t; s) =M1 (t; s) = 0 for all (t; s) 2 I � I:
We need the following convexity result that is a consequence of Burbea-Rao�s

theorem above:

Lemma 1. Let f be a C2 function on an interval I: Then Tf andMf are convex
(concave) on I � I; if and only if f is convex (concave) and 1

f 00 is concave (convex)
on I:

Proof. If Tf andMf are convex on I� I then the sum Tf +Mf = Jf is convex on
I � I, which, by Burbea-Rao theorem implies that f is convex and 1

f 00 is concave
on I:
Now, if f is convex and 1

f 00 is concave on I; then by the same theorem we have
that the function Jf : I � I ! R

Jf (t; s) :=
1

2
[f (t) + f (s)]� f

�
t+ s

2

�
is convex.
Let t; s; u; v 2 I. We de�ne

' (�) := Jf ((1� �) (t; s) + � (u; v)) = Jf (((1� �) t+ �u; (1� �) s+ �v))

=
1

2
[f ((1� �) t+ �u) + f ((1� �) s+ �v)]

� f
�
(1� �) t+ �u+ (1� �) s+ �v

2

�
=
1

2
[f ((1� �) t+ �u) + f ((1� �) s+ �v)]

� f
�
(1� �) t+ s

2
+ �

u+ v

2

�
for � 2 [0; 1] :
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Let �1; �2 2 [0; 1] and �; � � 0 with �+ � = 1: By the convexity of Jf we have

' (��1 + ��2)

= Jf ((1� ��1 � ��2) (t; s) + (��1 + ��2) (u; v))
= Jf ((�+ � � ��1 � ��2) (t; s) + (��1 + ��2) (u; v))
= Jf (� (1� �1) (t; s) + � (1� �2) (t; s) + ��1 (u; v) + ��2 (u; v))
= Jf (� [(1� �1) (t; s) + �1 (u; v)] + � [(1� �2) (t; s) + �2 (u; v)])
� �Jf ((1� �1) (t; s) + �1 (u; v)) + �Jf ((1� �2) (t; s) + �2 (u; v))
= �' (�1) + �' (�2) ;

which proves that ' is convex on [0; 1] for all t; s; u; v 2 I:
Applying the Hermite-Hadamard inequality for ' we get

(2.8)
1

2
[' (0) + ' (1)] �

Z 1

0

' (�) d�

and since

' (0) =
1

2
[f (t) + f (s)]� f

�
t+ s

2

�
;

' (1) =
1

2
[f (u) + f (v)]� f

�
u+ v

2

�
and Z 1

0

' (�) d� =
1

2

�Z 1

0

f ((1� �) t+ �u) d� +
Z 1

0

f ((1� �) s+ �v) d�
�

�
Z 1

0

f

�
(1� �) t+ s

2
+ �

u+ v

2

�
d� ;

hence by (2.8) we get

1

2

�
1

2
[f (t) + f (s)]� f

�
t+ s

2

�
+
1

2
[f (u) + f (v)]� f

�
u+ v

2

��
� 1

2

�Z 1

0

f ((1� �) t+ �u) d� +
Z 1

0

f ((1� �) s+ �v) d�
�

�
Z 1

0

f

�
(1� �) t+ s

2
+ �

u+ v

2

�
d� :

Re-arranging this inequality, we get

1

2

�
f (t) + f (u)

2
�
Z 1

0

f ((1� �) t+ �u) d�
�

+
1

2

�
f (s) + f (v)

2
�
Z 1

0

f ((1� �) s+ �v) d�
�

� 1

2

�
f

�
t+ s

2

�
+ f

�
u+ v

2

�
�
Z 1

0

f

�
(1� �) t+ s

2
+ �

u+ v

2

�
d�

�
;
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which is equivalent to

1

2
[Tf (t; u) + Tf (s; v)] � Tf

�
t+ s

2
;
u+ v

2

�
= Tf

�
1

2
(t; u) +

1

2
(s; v)

�
;

for all (t; u) ; (s; v) 2 I � I, which shows that Tf is Jensen�s convex on I � I: Since
Tf is continuous on I � I, hence Tf is convex in the usual sense on I � I:
Now, if we use the second Hermite-Hadamard inequality for ' on [0; 1] ; we have

(2.9)
Z 1

0

' (�) d� � '
�
1

2

�
:

Since

'

�
1

2

�
=
1

2

�
f

�
t+ u

2

�
+ f

�
s+ v

2

��
� f

�
1

2

t+ s

2
+
1

2

u+ v

2

�
hence by (2.9) we have

1

2

�Z 1

0

f ((1� �) t+ �u) d� +
Z 1

0

f ((1� �) s+ �v) d�
�

�
Z 1

0

f

�
(1� �) t+ s

2
+ �

u+ v

2

�
d�

� 1

2

�
f

�
t+ u

2

�
+ f

�
s+ v

2

��
� f

�
1

2

�
t+ s

2
+
u+ v

2

��
;

which is equivalent to

1

2

�Z 1

0

f ((1� �) t+ �u) d� � f
�
t+ u

2

��
+
1

2

�Z 1

0

f ((1� �) s+ �v) d� � f
�
s+ v

2

��
�
Z 1

0

f

�
(1� �) t+ s

2
+ �

u+ v

2

�
d� � f

�
1

2

�
t+ s

2
+
u+ v

2

��
that can be written as

1

2
[Mf (t; u) +Mf (s; v)] �Mf

�
t+ s

2
;
u+ v

2

�
=Mf

�
1

2
(t; u) +

1

2
(s; v)

�
for all (t; u) ; (s; v) 2 I� I, which shows thatMf is Jensen�s convex on I� I: Since
Mf is continuous on I � I, henceMf is convex in the usual sense on I � I: �

The following reverses of the Hermite-Hadamard inequality hold:
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Lemma 2 (Dragomir, 2002 [10] and [11]). Let h : [a; b] ! R be a convex function
on [a; b] : Then

0 � 1

8

�
h+

�
a+ b

2

�
� h�

�
a+ b

2

��
(b� a)(2.10)

� h (a) + h (b)

2
� 1

b� a

Z b

a

h (�) d�

� 1

8
[h� (b)� h+ (a)] (b� a)

and

0 � 1

8

�
h+

�
a+ b

2

�
� h�

�
a+ b

2

��
(b� a)(2.11)

� 1

b� a

Z b

a

h (�) d� � h
�
a+ b

2

�
� 1

8
[h� (b)� h+ (a)] (b� a) :

The constant 18 is best possible in all inequalities from (2.10) and (2.11).

We also have:

Lemma 3. Let f be a C1 convex function on an interval I: If �I is the interior of
I; then for all (t; s) 2 �I ��I we have

(2.12) 0 �Mf (t; s) � Tf (t; s) �
1

8
Cf 0 (t; s)

where

(2.13) Cf 0 (t; s) := [f 0 (t)� f 0 (s)] (t� s) :
Proof. Since for b 6= a

1

b� a

Z b

a

f (t) dt =

Z 1

0

f ((1� t) a+ tb) dt;

then from (2.10) we get

f (t) + f (s)

2
�
Z 1

0

f ((1� �) t+ �s) dt � 1

8
[f 0 (t)� f 0 (s)] (t� s)

for all (t; s) 2 �I ��I: �
Remark 2. If


 = inf
t2�I
f 0 (t) and � = sup

t2�I
f 0 (t)

are �nite, then
Cf 0 (t; s) � (�� 
) jt� sj

and by (2.12) we get the simpler upper bound

0 �Mf (t; s) � Tf (t; s) �
1

8
(�� 
) jt� sj :

Moreover, if t; s 2 [a; b] � �I and since f 0 is increasing on �I; then we have the
inequalities

(2.14) 0 �Mf (t; s) � Tf (t; s) �
1

8
[f 0 (b)� f 0 (a)] jt� sj :
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Since Jf (t; s) = Tf (t; s) +Mf (t; s) ; hence

0 � Jf (t; s) �
1

4
[f 0 (b)� f 0 (a)] jt� sj :

Corollary 1. With the assumptions of Lemma 3 and if the derivative f 0 is Lip-
schitzian with the constant K > 0; namely

jf 0 (t)� f 0 (s)j � K jt� sj for all t; s 2 �I;
then we have the inequality

(2.15) 0 �Mf (t; s) � Tf (t; s) �
1

8
K (t� s)2 :

3. Main Results

Let P; Q; W 2 P and f : (0;1)! R. We de�ne the following f -divergence

(3.1) Jf (P;Q;W ) :=
Z
X

w (x)Jf
�
p (x)

w (x)
;
q (x)

w (x)

�
d� (x)

=
1

2

�Z
X

w (x) f

�
p (x)

w (x)

�
d� (x) +

Z
X

w (x) f

�
q (x)

w (x)

�
d� (x)

�
�
Z
X

w (x) f

�
p (x) + q (x)

2w (x)

�
:

If we consider the mid-point divergence measure Mf de�ned by

Mf (Q;P;W ) :=

Z
X

f

�
q (x) + p (x)

2w (x)

�
w (x) d� (x)

for any Q; P; W 2 P, then from (3.1) we get

(3.2) Jf (P;Q;W ) =
1

2
[If (P;W ) + If (Q;W )]�Mf (Q;P;W ) :

We can also consider the integral divergence measure

Af (Q;P;W ) :=

Z
X

�Z 1

0

f

�
(1� t) q (x) + tp (x)

w (x)

�
dt

�
w (x) d� (x) :

We introduce the related f -divergences

Tf (P;Q;W ) :=
Z
X

w (x) Tf
�
p (x)

w (x)
;
q (x)

w (x)

�
d� (x)(3.3)

=
1

2
[If (P;W ) + If (Q;W )]�Af (Q;P;W )

and

Mf (P;Q;W ) :=

Z
X

w (x)Mf

�
p (x)

w (x)
;
q (x)

w (x)

�
d� (x)(3.4)

= Af (Q;P;W )�Mf (Q;P;W ) :

We observe that

Jf (P;Q;W ) = Tf (P;Q;W ) +Mf (P;Q;W ) :

If f is convex on (0;1) then by the Hermite-Hadamard and Bullen�s inequalities
we have the positivity properties

0 �Mf (P;Q;W ) � Tf (P;Q;W )
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and

0 � Jf (P;Q;W )

for P; Q; W 2 P.
We have the following result:

Theorem 5. Let f be a C2 function on an interval (0;1) : If f is convex on (0;1)
and 1

f 00 is concave on (0;1) ; then for all W 2 P, the mappings

P � P 3 (P;Q) 7! Jf (P;Q;W ) ; Mf (P;Q;W ) ; Tf (P;Q;W )

are convex.

Proof. Let (P1; Q1) ; (P2; Q2) 2 P � P and �; � � 0 with �+ � = 1. We have

Jf (� (P1; Q1;W ) + � (P2; Q2;W )) = Jf (�P1 + �P2; �Q1 + �Q2;W )

=

Z
X

w (x)Jf
�
�p1 (x) + �p2 (x)

w (x)
;
�q1 (x) + �q2 (x)

w (x)

�
d� (x)

=

Z
X

w (x)Jf
�
�
p1 (x)

w (x)
+ �

p2 (x)

w (x)
; �
q1 (x)

w (x)
+ �

q2 (x)

w (x)

�
d� (x)

=

Z
X

w (x)Jf
�
�

�
p1 (x)

w (x)
;
q1 (x)

w (x)

�
+ �

�
p2 (x)

w (x)
;
q2 (x)

w (x)

��
d� (x)

�
Z
X

w (x)

�
�Jf

�
p1 (x)

w (x)
;
q1 (x)

w (x)

�
+ �Jf

�
p2 (x)

w (x)
;
q2 (x)

w (x)

��
d� (x)

= �

Z
X

w (x)Jf
�
p1 (x)

w (x)
;
q1 (x)

w (x)

�
d� (x) + �

Z
X

w (x)Jf
�
p2 (x)

w (x)
;
q2 (x)

w (x)

�
d� (x)

= �Jf (P1; Q1;W ) + �Jf (P2; Q2;W ) ;

which proves the convexity of P � P 3 (P;Q) 7! Jf (P;Q;W ) for all W 2 P.
The convexity of the other two mappings follows in a similar way and we omit

the details. �

Theorem 6. Let f be a C1 function on an interval (0;1) : If f is convex on
(0;1) ; then for all W 2 P

(3.5) 0 �Mf (P;Q;W ) � Tf (P;Q;W ) �
1

8
�f 0 (Q;P;W )

where

(3.6) �f 0 (Q;P;W ) :=

Z
X

�
f 0
�
q (x)

w (x)

�
� f 0

�
p (x)

w (x)

��
(q (x)� p (x)) d� (x) :

Proof. From the inequality (2.12) we have

1

2

�
f

�
p (x)

w (x)

�
+ f

�
q (x)

w (x)

��
�
Z 1

0

f

�
(1� t) p (x)

w (x)
+ t

q (x)

w (x)

�
dt

� 1

8

�
f 0
�
p (x)

w (x)

�
� f 0

�
q (x)

w (x)

���
p (x)

w (x)
� q (x)

w (x)

�
for all x 2 X:
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If we multiply by w (x) > 0 and integrate on X we get

1

2
[If (P;W ) + If (P;W )]�Af (Q;P;W )

� 1

8

Z
X

w (x)

�
f 0
�
p (x)

w (x)

�
� f 0

�
q (x)

w (x)

���
p (x)

w (x)
� q (x)

w (x)

�
d� (x)

=
1

8

Z
X

�
f 0
�
p (x)

w (x)

�
� f 0

�
q (x)

w (x)

��
(p (x)� q (x)) d� (x) ;

which implies the desired inequality. �

Corollary 2. With the assumptions of Theorem 6 and if f 0 is Lipschitzian with
the constant K > 0; namely

jf 0 (s)� f 0 (t)j � K js� tj for all t; s 2 (0;1) ;
then

(3.7) 0 �Mf (P;Q;W ) � Tf (P;Q;W ) �
1

8
Kd�2 (Q;P;W ) ;

where

(3.8) d�2 (Q;P;W ) :=

Z
X

(q (x)� p (x))2

w (x)
d� (x) :

Remark 3. If there exists 0 < r < 1 < R < 1 such that the following condition
holds

((r,R)) r � q (x)

w (x)
;
p (x)

w (x)
� R for �-a.e. x 2 X;

then

(3.9) 0 �Mf (P;Q;W ) � Tf (P;Q;W ) �
1

8
[f 0 (R)� f 0 (r)] d1 (Q;P )

where

d1 (Q;P ) :=

Z
X

jq (x)� p (x)j d� (x) :

Moreover, if f is twice di¤erentiable and

(3.10) kf 00k[r;R];1 := sup
t2[r;R]

jf 00 (t)j <1

then

(3.11) 0 �Mf (P;Q;W ) � Tf (P;Q;W ) �
1

8
kf 00k[r;R];1 d�2 (Q;P;W ) :

We also have:

Theorem 7. Let f be a C2 function on an interval (0;1) : If f is convex on (0;1)
and 1

f 00 is concave on (0;1) ; then for all W 2 P,

(3.12) 0 � Jf (P;Q;W ) �
1

2
[	f 0 (P;Q;W ) + 	f 0 (Q;P;W )] ;

where

	f 0 (P;Q;W )

:=

Z
X

�
f 0
�
p (x)

w (x)

�
� f 0

�
q (x) + p (x)

2w (x)

��
(p (x)� w (x)) d� (x) :
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Proof. It is well known that if the function of two independent variables F : D �
R� R! R is convex on the convex domain D and has partial derivatives @F

@x and
@F
@y on D then for all (t; s) ; (u; v) 2 D we have the gradient inequalities

@F (t; s)

@x
(t� u) + @F (t; s)

@y
(s� v)(3.13)

� F (t; s)� F (u; v)

� @F (u; v)

@x
(t� u) + @F (u; v)

@y
(s� v) :

Now, if we take F : (0;1)� (0;1)! R given by

F (t; s) =
1

2
[f (t) + f (s)]� f

�
t+ s

2

�
and observe that

@F (t; s)

@x
=
1

2

�
f 0 (t)� f 0

�
t+ s

2

��
and

@F (t; s)

@y
=
1

2

�
f 0 (s)� f 0

�
t+ s

2

��
and since F is convex on (0;1)� (0;1) ; then by (3.13) we get

1

2

�
f 0 (t)� f 0

�
t+ s

2

��
(t� u) + 1

2

�
f 0 (s)� f 0

�
t+ s

2

��
(s� v)(3.14)

� 1

2
[f (t) + f (s)]� f

�
t+ s

2

�
� 1
2
[f (u) + f (v)] + f

�
u+ v

2

�
� 1

2

�
f 0 (u)� f 0

�
u+ v

2

��
(t� u) + 1

2

�
f 0 (v)� f 0

�
u+ v

2

��
(s� v) :

If we take u = v = 1 in (3.14), then we have

1

2

�
f 0 (t)� f 0

�
t+ s

2

��
(t� 1) + 1

2

�
f 0 (s)� f 0

�
t+ s

2

��
(s� 1)(3.15)

� 1

2
[f (t) + f (s)]� f

�
t+ s

2

�
� 0

for all (t; s) 2 (0;1)� (0;1) :
If we take t = p(x)

w(x) and s =
q(x)
w(x) in (3.15) then we obtain

1

2

�
f 0
�
p (x)

w (x)

�
� f 0

�
q (x) + p (x)

2w (x)

���
p (x)

w (x)
� 1
�

(3.16)

+
1

2

�
f 0
�
q (x)

w (x)

�
� f 0

�
q (x) + p (x)

2w (x)

���
q (x)

w (x)
� 1
�

� 1

2

�
f

�
p (x)

w (x)

�
+ f

�
q (x)

w (x)

��
� f

�
q (x) + p (x)

2w (x)

�
� 0:
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By multiplying this inequality with w (x) > 0 we get

0 � 1

2

�
w (x) f

�
p (x)

w (x)

�
+ w (x) f

�
q (x)

w (x)

��
� w (x) f

�
q (x) + p (x)

2w (x)

�
� 1

2

�
f 0
�
p (x)

w (x)

�
� f 0

�
q (x) + p (x)

2w (x)

��
(p (x)� w (x))

+
1

2

�
f 0
�
q (x)

w (x)

�
� f 0

�
q (x) + p (x)

2w (x)

��
(q (x)� w (x))

for all x 2 X: �

Corollary 3. With the assumptions of Theorem 6 and if f 0 is Lipschitzian with
the constant K > 0; then

(3.17) 0 � Jf (P;Q;W )

� 1

4
K

Z
X

jp (x)� q (x)j
����� p (x)w (x)

� 1
����+ ���� q (x)w (x)

� 1
����� d� (x) :

Proof. We have that

	f 0 (P;Q;W )

�
Z
X

����f 0� p (x)w (x)

�
� f 0

�
q (x) + p (x)

2w (x)

����� jp (x)� w (x)j d� (x)
� K

Z
X

���� p (x)w (x)
� q (x) + p (x)

2w (x)

���� jp (x)� w (x)j d� (x)
= K

Z
X

����p (x)� q (x)2w (x)

���� jp (x)� w (x)j d� (x)
=
1

2
K

Z
X

jp (x)� q (x)j jp (x)� w (x)j d� (x)
w (x)

=
1

2
K

Z
X

jp (x)� q (x)j
���� p (x)w (x)

� 1
���� d� (x)

and similarly

	f 0 (P;Q;W ) �
1

2
K

Z
X

jp (x)� q (x)j
���� q (x)w (x)

� 1
���� d� (x) :

Finally, by the use of (3.12) we get the desired result. �

Remark 4. If there exist 0 < r < 1 < R < 1 such that the following condition
(r;R) holds and if f is twice di¤erentiable and (3.10) is valid, then

(3.18) 0 � Jf (P;Q;W ) �
1

4
kf 00k[r;R];1

�
Z
X

jp (x)� q (x)j
����� p (x)w (x)

� 1
����+ ���� q (x)w (x)

� 1
����� d� (x) :

Since ���� p (x)w (x)
� 1
���� ; ���� q (x)w (x)

� 1
���� � max fR� 1; 1� rg

and ���� p (x)w (x)
� q (x)

w (x)

���� � R� r;
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hence by (3.18) we get the simpler bound

(3.19) 0 � Jf (P;Q;W ) �
1

2
kf 00k[r;R];1 (R� r)max fR� 1; 1� rg :

We also have:

Theorem 8. With the assumptions of Theorem 6 and if f 0 is Lipschitzian with the
constant K > 0; then

0 � Tf (P;Q;W )(3.20)

� 1

6
K

Z
X

jp (x)� q (x)j
����� p (x)w (x)

� 1
����+ ���� q (x)w (x)

� 1
����� d� (x) :

Proof. Let (x; y) ; (u; v) 2 (0;1)�(0;1) : If we take F : (0;1)�(0;1)! R given
by

F (t; s) =
f (t) + f (s)

2
�
Z 1

0

f ((1� �) t+ �s) d�

then

@F (t; s)

@x
=
1

2
f 0 (t)�

Z 1

0

(1� �) f 0 ((1� �) t+ �s) d�

=

Z 1

0

(1� �) [f 0 (t)� f 0 ((1� �) t+ �s)] d�

and

@F (t; s)

@y
=
1

2
f 0 (s)�

Z 1

0

�f 0 ((1� �) t+ �s) d�

=

Z 1

0

� [f 0 (s)� f 0 ((1� �) t+ �s)] d�

and since F is convex on (0;1)� (0;1) ; then by (3.1) we get

(t� u)
Z 1

0

(1� �) [f 0 (t)� f 0 ((1� �) t+ �s)] d�(3.21)

+ (s� v)
Z 1

0

� [f 0 (s)� f 0 ((1� �) t+ �s)] d�

� f (t) + f (s)

2
�
Z 1

0

f ((1� �) t+ �s) d�

� f (u) + f (v)
2

+

Z 1

0

f ((1� �)u+ �v) d�

� (t� u)
Z 1

0

(1� �) [f 0 (u)� f 0 ((1� �)u+ �v)] d�

+ (s� v)
Z 1

0

� [f 0 (v)� f 0 ((1� �)u+ �v)] d�

for all (t; s) ; (u; v) 2 (0;1)� (0;1) :
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If we take u = v = 1 in (3.21), then we have

(t� 1)
Z 1

0

(1� �) [f 0 (t)� f 0 ((1� �) t+ �s)] d�(3.22)

+ (s� 1)
Z 1

0

� [f 0 (s)� f 0 ((1� �) t+ �s)] d�

� f (t) + f (s)

2
�
Z 1

0

f ((1� �) t+ �s) d� � 0

for all (u; v) 2 (0;1)� (0;1) :
If we take t = p(x)

w(x) and s =
q(x)
w(x) in (3.22) then we get�

p (x)

w (x)
� 1
�Z 1

0

(1� �)
�
f 0
�
p (x)

w (x)

�
� f 0

�
(1� �) p (x)

w (x)
+ �

q (x)

w (x)

��
d�(3.23)

+

�
q (x)

w (x)
� 1
�Z 1

0

�

�
f 0
�
q (x)

w (x)

�
� f 0

�
(1� �) p (x)

w (x)
+ �

q (x)

w (x)

��
d�

�
f
�
p(x)
w(x)

�
+ f

�
q(x)
w(x)

�
2

�
Z 1

0

f

�
(1� �) p (x)

w (x)
+ �

q (x)

w (x)

�
d� � 0:

Since f 0 is Lipschitzian with the constant K > 0, hence

0 �
f
�
p(x)
w(x)

�
+ f

�
q(x)
w(x)

�
2

�
Z 1

0

f

�
(1� �) p (x)

w (x)
+ �

q (x)

w (x)

�
d�

�
���� p (x)w (x)

� 1
���� Z 1

0

(1� �)
����f 0� p (x)w (x)

�
� f 0

�
(1� �) p (x)

w (x)
+ �

q (x)

w (x)

����� d�
+

���� q (x)w (x)
� 1
���� Z 1

0

�

����f 0� q (x)w (x)

�
� f 0

�
(1� �) p (x)

w (x)
+ �

q (x)

w (x)

����� d�
� K

���� p (x)w (x)
� 1
���� ���� p (x)w (x)

� q (x)

w (x)

���� Z 1

0

(1� �) �d�

+K

���� q (x)w (x)
� 1
���� ���� p (x)w (x)

� q (x)

w (x)

���� Z 1

0

(1� �) �d�

=
1

6
K

���� p (x)w (x)
� q (x)

w (x)

���� ����� p (x)w (x)
� 1
����+ ���� q (x)w (x)

� 1
����� :

If we multiply this inequality by w (x) > 0 and integrate, then we get the desired
result (3.20). �

Corollary 4. If there exist 0 < r < 1 < R < 1 such that the condition (r;R)
holds and if f is twice di¤erentiable and (3.10) is valid, then

(3.24) 0 � Tf (P;Q;W ) �
1

3
kf 00k[r;R];1 (R� r)max fR� 1; 1� rg :

Finally, we also have:
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Theorem 9. With the assumptions of Theorem 6 and if f 0 is Lipschitzian with the
constant K > 0; then

0 �Mf (P;Q;W )(3.25)

� 1

8
K

Z
X

jp (x)� q (x)j
����� p (x)w (x)

� 1
����+ ���� q (x)w (x)

� 1
����� d� (x) :

Proof. Let (t; s) ; (u; v) 2 (0;1)� (0;1) : If we take F : (0;1)� (0;1)! R given
by

F (t; s) =

Z 1

0

f ((1� �) t+ �s) d� � f
�
t+ s

2

�
then

@F (t; s)

@x
=

Z 1

0

(1� �) f 0 ((1� �) t+ �s) d� � 1
2
f 0
�
t+ s

2

�
=

Z 1

0

(1� �)
�
f 0 ((1� �) t+ �s)� f 0

�
t+ s

2

��
d� ;

@F (t; s)

@y
=

Z 1

0

�f 0 ((1� �) t+ �s) d� � 1
2
f 0
�
t+ s

2

�
=

Z 1

0

�

�
f 0 ((1� �) t+ �s)� f 0

�
t+ s

2

��
d�

and since F is convex on (0;1)� (0;1) ; then by (3.1) we get

(t� u)
�Z 1

0

(1� �)
�
f 0 ((1� �) t+ �s)� f 0

�
t+ s

2

��
d�

�
(3.26)

+ (s� v)
�Z 1

0

�

�
f 0 ((1� �) t+ �s)� f 0

�
t+ s

2

��
d�

�
�
Z 1

0

f ((1� �) t+ �s) d� � f
�
t+ s

2

�
�
Z 1

0

f ((1� �)u+ �v) d� + f
�
u+ v

2

�
� (t� u)

�Z 1

0

(1� �)
�
f 0 ((1� �)u+ �v)� f 0

�
u+ v

2

��
d�

�
+ (s� v)

Z 1

0

�

�
f 0 ((1� �)u+ �v)� f 0

�
u+ v

2

��
d� :

If we take u = v = 1 in (3.26), then we have

(t� 1)
�Z 1

0

(1� �)
�
f 0 ((1� �) t+ �s)� f 0

�
t+ s

2

��
d�

�
(3.27)

+ (s� 1)
�Z 1

0

�

�
f 0 ((1� �) t+ �s)� f 0

�
t+ s

2

��
d�

�
�
Z 1

0

f ((1� �) t+ �s) d� � f
�
t+ s

2

�
� 0

for all (t; s) 2 (0;1)� (0;1) :
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If we take t = p(x)
w(x) and s =

q(x)
w(x) in (3.27) then we get

(3.28) 0 �
Z 1

0

f

�
(1� �) p (x)

w (x)
+ �

q (x)

w (x)

�
d� � f

�
p (x) + q (x)

2w (x)

�
�
�
p (x)

w (x)
� 1
�

�
�Z 1

0

(1� �)
�
f 0
�
(1� �) p (x)

w (x)
+ �

q (x)

w (x)

�
� f 0

�
p (x) + q (x)

2w (x)

��
d�

�
+

�
q (x)

w (x)
� 1
�

�
�Z 1

0

�

�
f 0
�
(1� �) p (x)

w (x)
+ �

q (x)

w (x)

�
� f 0

�
p (x) + q (x)

2w (x)

��
d�

�

�
���� p (x)w (x)

� 1
����

�
�Z 1

0

(1� �)
����f 0�(1� �) p (x)w (x)

+ �
q (x)

w (x)

�
� f 0

�
p (x) + q (x)

2w (x)

����� d��
+

���� q (x)w (x)
� 1
����

�
�Z 1

0

�

����f 0�(1� �) p (x)w (x)
+ �

q (x)

w (x)

�
� f 0

�
p (x) + q (x)

2w (x)

����� d��
� K

���� p (x)w (x)
� 1
���� ���� p (x)w (x)

� q (x)

w (x)

���� Z 1

0

(1� �)
����� � 12

���� d�
+K

���� q (x)w (x)
� 1
���� ���� p (x)w (x)

� q (x)

w (x)

���� Z 1

0

(1� �)
����� � 12

���� d� :
Since Z 1

0

(1� �)
����� � 12

���� d� = 1

8
;

hence

0 �
Z 1

0

f

�
(1� �) p (x)

w (x)
+ �

q (x)

w (x)

�
d� � f

�
p (x) + q (x)

2w (x)

�
� 1

8
K

���� p (x)w (x)
� q (x)

w (x)

���� ����� p (x)w (x)
� 1
����+ ���� q (x)w (x)

� 1
�����

for all x 2 X:
If we multiply this inequality by w (x) > 0 and integrate, then we get the desired

result (3.20). �

Corollary 5. If there exist 0 < r < 1 < R < 1 such that the condition (r;R)
holds and if f is twice di¤erentiable and (3.10) is valid, then

(3.29) 0 �Mf (P;Q;W ) �
1

4
kf 00k[r;R];1 (R� r)max fR� 1; 1� rg :
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4. Some Examples

The Dichotomy Class of f -divergences are generated by the functions f� :
[0;1)! R de�ned as

f� (u) =

8>>>><>>>>:
u� 1� lnu for � = 0;

1
�(1��) [�u+ 1� �� u

�] for � 2 Rn f0; 1g ;

1� u+ u lnu for � = 1:

Observe that

f 00� (u) =

8>>>><>>>>:
1
u2 for � = 0;

u��2 for � 2 Rn f0; 1g ;

1
u for � = 1:

In this family of functions only the functions f� with � 2 [1; 2) are both convex
and with 1

f 00�
concave on (0;1) :

We have

If� (P;W ) =

Z
X

w (x) f�

�
p (x)

w (x)

�
d� (x)

=

8><>:
1

�(��1)
�R
X
w1�� (x) p� (x) d� (x)� 1

�
; � 2 (1; 2) ;

R
X
p (x) ln

�
p(x)
w(x)

�
d� (x) ; � = 1;

and

Mf� (Q;P;W ) =

Z
X

f

�
q (x) + p (x)

2w (x)

�
w (x) d� (x)

=

8>><>>:
1

�(��1)

hR
X

h
q(x)+p(x)

2

i�
w1�� (x) d� (x)� 1

i
; � 2 (1; 2)

R
X

h
q(x)+p(x)

2

i
ln
h
q(x)+p(x)
2w(x)

i
d� (x) ; � = 1:

We also have Z 1

0

[(1� t) a+ tb] ln [(1� t) a+ tb] dt

=
1

4
(b+ a) ln I

�
a2; b2

�
=
1

2
A (a; b) ln I

�
a2; b2

�
:

Therefore

Af� (Q;P;W ) :=

Z
X

�Z 1

0

f

�
(1� t) q (x) + tp (x)

w (x)

�
dt

�
w (x) d� (x)

=

8>>><>>>:
1

�(��1)

hR
X
L��

�
q(x)
w(x) ;

p(x)
w(x)

�
w (x) d� (x)� 1

i
; � 2 (1; 2)

1
2

R
X
A
�
q(x)
w(x) ;

p(x)
w(x)

�
ln I

��
q(x)
w(x)

�2
;
�
p(x)
w(x)

�2�
w (x) d� (x) ; � = 1:
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We have

Jf� (P;Q;W ) =
1

2
[If� (P;W ) + If� (Q;W )]�Mf� (Q;P;W ) ;

Tf� (P;Q;W ) =
1

2
[If� (P;W ) + If� (Q;W )]�Af� (Q;P;W )

and
Mf� (P;Q;W ) = Af� (Q;P;W )�Mf� (Q;P;W ) :

According to Theorem 5, for all � 2 [1; 2), the mappings
P � P 3 (P;Q) 7! Jf� (P;Q;W ) ; Mf� (P;Q;W ) ; Tf� (P;Q;W )

are convex for all W 2 P.
If 0 < r < 1 < R, then

kf 00�k[r;R];1 = sup
t2[r;R]

f 00� (t) =
1

r2��
for � 2 [1; 2):

If there exists 0 < r < 1 < R <1 such that the following condition holds

((r,R)) r � q (x)

w (x)
;
p (x)

w (x)
� R for �-a.e. x 2 X;

then by (3.19), (3.24) and (3.29) we get

(4.1) 0 � Jf� (P;Q;W ) �
1

2
kf 00k[r;R];1 (R� r)max fR� 1; 1� rg ;

(4.2) 0 � Tf� (P;Q;W ) �
1

3

(R� r)
r2��

max fR� 1; 1� rg

and

(4.3) 0 �Mf� (P;Q;W ) �
1

4

(R� r)
r2��

max fR� 1; 1� rg ;

for all � 2 [1; 2) and W 2 P.
The interested reader may apply the above general results for other particular

divergences of interest generated by the convex functions provided in the introduc-
tion. We omit the details.
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