SOME NEW f-DIVERGENCE MEASURES AND THEIR BASIC
PROPERTIES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we introduce some new f-divergence measures that
we call t-asymmetric/symmetric divergence measure and integral divergence
measure, establish their joint convexity and provide some inequalities that
connect these f-divergences to the classical one intyroduced by Csiszar in
1963. Applications for the dichotomy class of convex functions are provided
as well.

1. INTRODUCTION

Let (X, .A) be a measurable space satisfying |.4| > 2 and p be a o-finite measure
on (X, A). Let P be the set of all probability measures on (X,.A) which are ab-
solutely continuous with respect to u. For P, Q € P, let p = % and g = % denote
the Radon-Nikodym derivatives of P and @) with respect to p.

Two probability measures P, @@ € P are said to be orthogonal and we denote

this by Q L P if
P{q=0})=Q({p=0}) =1

Let f : [0,00) — (—00,00] be a convex function that is continuous at 0, i.e.,
f(0) =limy o f (u).

In 1963, I. Csiszar [3] introduced the concept of f-divergence as follows.

Definition 1. Let P, Q € P. Then

(1) 1@ = [ s |5 ).

is called the f-divergence of the probability distributions Q and P.

Remark 1. Observe that, the integrand in the formula (1.1) is undefined when
p(x) = 0. The way to overcome this problem is to postulate for f as above that

0 or[1] < gt or ()] e x.

0 10

We now give some examples of f-divergences that are well-known and often used
in the literature (see also [2]).
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1.1. The Class of xy“-Divergences. The f-divergences of this class, which is
generated by the function x%, « € [1,00), defined by

X* (u) = Ju—1|", uel0,0)

have the form

(1.3) Iy (Q, P) =/ p

«

q _

’—1 du=/p1 *lq — p|* dp.
x |P X

From this class only the parameter a« = 1 provides a distance in the topologi-
cal sense, namely the total variation distance V (Q,P) = [y |¢ — p| dp. The most
prominent special case of this class is, however, Karl Pearson’s x2-divergence

@
XZ(Q,P)Z/ —dp—1
x P
that is obtained for oo = 2.

1.2. Dichotomy Class. From this class, generated by the function f, : [0,00) —
R

u—1—Inu for a =0;
fo (u) = ﬁ[au—&—l—a—uo‘] for a e R\{0,1};
l—u+4ulnu for a=1;

only the parameter v = 1 (f; (u) =2 u— 1)2) provides a distance, namely, the

Hellinger distance

H(Q,P)—UX(\/Q\/@QCIMF-

Another important divergence is the Kullback-Leibler divergence obtained for

a=1,
KL(Q,P):/qun (g)) dy.

1.3. Matsushita’s Divergences. The elements of this class, which is generated
by the function ¢, a € (0,1] given by

@a(u) ::|17ua|c%, ’LLE[0,00),

are prototypes of metric divergences, providing the distances [Iwa (Q, P)}

1.4. Puri-Vincze Divergences. This class is generated by the functions ®,, o €
[1,00) given by
1—uf"

T

u € [0, 00).

Q=

It has been shown in [19] that this class provides the distances [, (Q, P)]~ .
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1.5. Divergences of Arimoto-type. This class is generated by the functions

2 [t -2 1w for a € (0,00)\ {1}
U (u) == I4+u)n2+ulnu—(1+u)ln(l4+wu) for a=1;
%|17u| for a = oco.

It has been shown in [21] that this class provides the distances [Iy, (Q, P)]min(a’é)
for a € (0,00) and %V(Q,P) for o = oo.
For f continuous convex on [0,00) we obtain the -conjugate function of f by

= (3). ue0)

and

f7(0) = lim f* (u) .

|0
It is also known that if f is continuous convex on [0, 00) then so is f*.
The following two theorems contain the most basic properties of f-divergences.
For their proofs we refer the reader to Chapter 1 of [20] (see also [2]).

Theorem 1 (Uniqueness and Symmetry Theorem). Let f, fi be continuous convex
on [0,00). We have
Iy, (@, P) = I (Q, P),
for all P, Q € P if and only if there exists a constant ¢ € R such that
fi(w)=f(u)+c(u—-1),
for any u € [0, 0).
Theorem 2 (Range of Values Theorem). Let f : [0,00) — R be a continuous

convez function on [0, 00).
For any P,Q € P, we have the double inequality

(1.4) fQQ) <1 (Q,P) < f(0)+ f(0).
(i) If P = Q, then the equality holds in the first part of (1.4).
If f is strictly convex at 1, then the equality holds in the first part of (1.4) if and
only if P = Q;
(ii) If Q L P, then the equality holds in the second part of (1.4).

If £(0) + f*(0) < oo, then equality holds in the second part of (1.4) if and only
ifQ L P

The following result is a refinement of the second inequality in Theorem 2 (see
[2, Theorem 3]).

Theorem 3. Let f be a continuous convez function on [0,00) with f (1) =0 (f is
normalised) and f (0) + f* (0) < co. Then

(15) 0< I (@P)< £ (0)+ 5 O]V (Q.P)
for any Q, P € P.

For other inequalities for f-divergence see [1], [4]-[17].
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2. SOME BASIC PROPERTIES

Let f be a continuous convex function on [0,00) with f (1) = 0 and ¢ € [0,1].
We define the t-asymmetric divergence measure Ay by

_ (1 —t)q(x) +tp(x)
ey agQrw = [ |00 w (@) du (2)
and the t-symmetric divergence measure Sy, by
(22) Sf,t (Qv Pv W) = % [Af,t (Qv Pv W) + Af,lft (Qv Pa W)]

for any @, P, W € P.

For t = % we consider the mid-point divergence measure My by

M (Q,P,W) := /X f {W} w () dp ()
:Af,l/Q(Q7P7W):val/Q(Q’P’W)7

for any @, P, W € P.
We can also consider the integral divergence measure

1 1
A (Q.PW) = /0 A (Q P,W)dt = /0 S0 (Q)P,W)

L ([ g,

The following result contains some basic facts concerning the divergence mea-
sures above:

Theorem 4. Let f be a continuous convex function on [0,00) with f (1) = 0. Then
forall@Q, P, W € P andt € [0,1]

(2.3) 0< A5 (QPW) < (A=) 15 (Q,W) + iy (P,W)
and the mapping
(2.4) PxP3(Q,P)— A (Q,P,W) € [0,00)

is conver as a function of two variables.
We have the inequalities

(2'5) 0 < My (QvPa W) < Sﬁt (Q’Pv W) < [If (Q)W) + Iy (Pa W)}

DN | =

for all Q, P, W € P and the mapping
(2.6) PxP>3(Q,P)— S5 (Q,P,W) € [0,00)

is conver as a function of two variables.
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Proof. Let t € [0,1] and @, P, W € P. We use Jensen’s integral inequality to get

Ay = [ By ) o)

w (x)

[ )

([ 10-00@ + @l )

f(a=0 [ a@dn@ e [ pau) = 1w =0

By the convexity of f we also have

Af,t@,P,W):/Xf{(1‘”‘””2“1”(”]wu)du(x)

w (@)
<a-0 [ |20 v@an e [ 120 w@ )

=1 -t 1 (Q,W)+tl; (P,W)

for t € [0,1] and @, P, W € P, and the inequality (2.3) is proved.
Let o, 8 > 0 and such that o+ 8 = 1. If (Q1, P1), (Q2, P2) € P X P, then

Afi (a(Qr, Pr,W) + 3(Qa, P2, W)
= Af,t ((OéQl + BQanPI + BP%W))
_ /X p {(1 —t) (aQ1 + BQ2) +t (aP1 + BPQ)} w (z) dp ()

:/ f[oz l—t Ql-l—tPl —é—f[(l—t)QQ—FtPQ]] ()du( )
X

<o [ [EE2BEP y@ydua) 40 [ £ [EEDLE o) d)

w ()
—O[Aft(Ql P1 )+5Af,t(Q2aP27W)a

which proves the joint convexity of the mapping defined in (2.4).
Using the convexity of f we have

f (; [(1 — 1) qw(f:z;_ tp(@) , _t)l;(gf tq (@D

{(1—t)p(w)+tq(m)”7

cH{rfe-tagpee.

o5

< 1 {f [(1 —t)ci)(?ci;rtp(a;)

} L {(1—t)p(w)+tq($)”7

w (z)

DO |

for z € X.
By multiplying (2.7) with w (x) and integrating over p(z) we get the second
inequality inequality in (2.5).
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We have, by (2.3) that

S5 (@ P,W) = L (A7 (Q.P.W) + Ay (QP.W)

< % [(1 — ) I (QW) +tIf (P,W) + 1 (Q, W) + (1 —tI), (P, W)]
1
2

which proves the third inequality in (2.5).
The convexity of the mapping defined by (2.6) follows by the same property of
the mapping defined by (2.4). O

[If (QvW) +If (P7 W)] ’

Corollary 1. Let f be a continuous convex function on [0, 00) with f (1) = 0. Then
for all Q, P, W € P we have the inequalities

(2.8) 0<Mp(Q,P,W) < Ap (Q,P,W) < S [I1 (Q,W) + Iy (P,W)].

N |

The mapping
(2.9) P xP 3 (Q.P) Af (Q.P,W) € [0,00)
is convex as a function of two variables.

Proof. The inequality (2.8) follows by integrating over t in the inequality (2.5).
Since the mapping

PxP2(Q,P)r— Sr.(Q,P,W) € [0,00)

is convex as a function of two variables for all ¢ € [0,1], then it remains convex if
one takes the integral over ¢ € [0, 1]. O

The following reverses of the Hermite-Hadamard inequality hold:

Lemma 1 (Dragomir, 2002 [6] and [7]). Let h : [a,b] — R be a convex function on
[a,b]. Then

(2.10) 0< % [h+ (a;b) —h_ (a;bﬂ (b—a)
Sh(a);h(b)_bia/abh(x)dx
< 5l = hy @] (-0

and

(2.11) 0< é [th (a;b) —h_ (a;bﬂ (b—a)
< bia/abh(z)dxh<a;rb>
< S[h ()~ hs @] (0 a).

The constant % 1s best posstible in all inequalities.

We have the reverse inequalities:
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Theorem 5. Let [ be a differentiable convex function on [0,00) with f (1) =
Then for all Q, P, W € P we have

(2.12) 0< A (@ P.I) = My (@ P.W) < SAp (QPW)
and
(213) 01 (Q.W) + I (P,W)] ~ Af (Q.P.W) < LA (Q PW)
where

. d(a@) L (p) o) — 1 (x .
219 8p@rw)= [ (L8 -y (2] ) - p ) o)

Proof. Let @, P, W € P. By the inequality (2.11) we have
0< /1f [(1—?5)61(m)+tp(x)] g f (q(x)+p(w)>
0

w (x) (z

)
[ () (R G5 -45)

(
If we multiply this inequality by w () > 0 and integrate on X we get (2.12).
From (2.10) we also have

()0 (28) - e
r(28)-r () (55 -28)

and integrate on X we get (2.12). O

0

IN

IN

If we multiply this inequality by w (x)

Corollary 2. Let f be a differentiable convex function on [0,00) with f(1) =0
and Q, P, W € P. If there exists 0 < r < 1 < R < oo such that the following
condition holds

((R)) r< 3)((?) Z(é)) <R for p-a.e. z € X,
then
(215)  0<A[(@QPW) - M (@QPW) < L [f (B)~ /(] d: (Q,P)
and
(216) 0= 3 [17 (Q. W) + Iy (P,W)] — Ay (@ P,W) < [ (B) — £ ()] ds (Q, P)
where
1@.P)= [ 0@ ~p@du ).

Proof. Since f’ is increasing on [r, R], then

17 @&) = () < 1 (R) = f'(r)

for all ¢, s € [r, R].
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Therefore

ap@rwy= [ |1 (25 r (28)] @@ - p(e) duta)
|

</ )
X

) 12

which proves the desired inequalities (2.15) and (2.16). O

Corollary 3. Let f be a twice differentiable convex function on [0,00) with f (1) =
0 and Q, P, W € P. If there exists 0 <1 < 1 < R < oo such that the condition
(r,R) holds and

(2.17) 17y oe == sUD_ 17" ()] < o0,
te[r,R)
then
1
(218) 0 S Af (Q7P7 W) - Mf (Q,P, W) S g ||f//||[r,R],oo dX2 (Q7P7 W)
and
(2.19)

1 1
0< S QW)+ 11 (PW)) = Ap (QPW) < < 11"y oz (Q. W),

where

(2.20) dp(Q PW) = / (g(@) —p(2))”

Proof. We have

srawr () () i
[ (25 - f’(w \q #)| du (z)

<||f"||[TR] [ 48— 28 ) - p )t
= ||f//||[T7R],OO/X(q()(x))dM(JE)a

which proves the desired results (2.18) and (2.19). O

3. FURTHER RESULTS

We have the following result for convex functions that is of interest in itself as
well:
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Lemma 2. Let f: 1 CR — R be a convex function on the interval I, a, b € f, the
interior of I, with a < b and v € [0,1]. Then
(3.1) v(l—v)(b—a) [fL(Q1=v)a+vb) — f.((1-v)a+wvb)]

< (U=v) f(@) +vf (b) — [ (1= v)a+vb)

<v(A-v)(b-a)[fL(b)— fi(a)].

In particular, we have
1 ,(ath , (atD fla)+ f(b) atb
s e-ole () -r ()] < LY (4

HOSIACE AT

The constant i is best possible in both inequalities from (8.2).

IN

Proof. The case v =0 or v = 1 reduces to equality in (3.1).

Since f is convex on I it follows that the function is differentiable on I except
a countably number of points, the lateral derivatives f) exists in each point of I ,
they are increasing on [ and f < fi on I.

For any z, y € I we have for the Lebesgue integral

x 1
(3.3) f<x>:f<y>+/ f’(S)d8=f(y)+(rv—y)/0 £~ by + t) d.

Assume that a < b and v € (0,1). By (3.3) we have
(3.4) f((1=v)a+vd)

:f(a)—i—l/(b—a)/o Fl=t)att((1=v)atvb))dt
and

(3.5) f((1—v)a+vb)

:f(b)—(l—y)(b—a)/o F A= 8)b+t((1—v)a+ b)) dt.

If we multiply (3.4) by 1 — v, (3.4) by v and add the obtained equalities, then we
get

f((A=v)atvb)=(1-v)f(a)+vf(b)
—l—(l—u)y(b—a)/olf’((l—t)a—i—t((l—y)a—i—ub))dt
(11/)y(ba)/01f'((1t)b+t((1y)a+ub))dt,
which is equivalent to
(36) (1-v)f(a)+vf®) —-f((1-v)a+vd)=(1-v)v(b—a)
></Ol[f’((l—t)b+t((1—u)a+ub))—f’((l—t)a+t((1—z/)a+z/b))]dt.

That is an equality of interest in itself.
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Since a < b and v € (0,1), then (1 —v)a+ vb € (a,b) and
I-t)ha+t((1—v)a+vd)€la,(1—v)a+ v

while
1-t)o+t((1-v)a+uvb) €[(1—-v)a+vbb]

for any t € [0,1].
By the monotonicity of the derivative we have

(3.7) L((=v)a+vb) < f[(1—=)b+t((1—v)a+vb) < fL(b)
and
38  fil@<f((A-ta+tt(d-v)atwb) < f ((1-v)atwvb)
for any t € [0,1].

By integrating the inequalities (3.7) and (3.8) we get

f’+((1—V)a+Vb)§/0 P =b+t((1—v)a+vb))dt < f. (b)
and
1
fi(a)S/O P =t)a+t((1—v)a+vb)di < f.((1—v)a+vb),

which implies that
1
fi((l—=v)a+vb)— fL((1—v)a+vd) S/o F((1=t)b+t((1—v)a+vb))dt

1
—/O f(=t)a+t((1—v)a+wvb))dt < f(b)— fi (a).

Making use of the equality (3.6) we the obtain the desired result (3.1).

If we consider the convex function f : [a,b] — R, f(z) = |z — %52
have f (“E2) =1, f. (%E2) = —1 and by replacing in (3.2) we get in all terms
the same quantity % (b — @) which show that the constant % is best possible in both
inequalities from (3.2). O

, then we

Corollary 4. If the function f: I C R — R is a differentiable convex function on
1, then for any a,b € I and v € [0,1] we have

(3.9) 0<(1-v)f(a)+vf®) —f(1—-v)a+wvb)
v(1—v)(b—a)[f (b) - f (a)].

Proof. If a < b, then the inequality (3.9) follows by (3.1). If b < a, then by (3.1)
we get

<
<

(3.10) 0<(1-=v)fb)+vf(a)— f((1—-v)b+va)
<v(l=v)(b—a)[f (b) - [ (a)]
for any v € [0,1]. If we replace v by 1 — v in (3.10), then we get (3.9). O

We can prove now the following reverse of the second inequality in (2.3) and the
first inequality in (2.5).



SOME NEW f-DIVERGENCE MEASURES AND THEIR BASIC PROPERTIES 11
Theorem 6. Let [ be a differentiable convex function on [0,00) with f (1) =
Then for all Q, P, W € P and t € [0, 1] we have
(3.11) 0< (1= Ip(QW)+tlf (P,W)—Ass (Q,P,W)

and

(3.12) 0<8S::(Q,P,W)—M;(Q,P,W) <

N =

(- sr@rm,

where
8@ PW) = [ (a@)=p(a)
y {f, <(1_t) p(z) +tq(w)> Ly ((1_t) q(z) +tp(x)>}du(x).

(z) (z)

Proof. From the inequality (3.11) we get

o osa-07 () v (Gg) 2 (0035 1)
<o | (365) - (55)] (55 - 563):

If we multiply this inequality by w () > 0 and integrate on X we get (3.11).
For any x, y € I we have

iy o< TEIO G (TH) L@ - .

If in this inequality we take = (1 —t)a + tb, y = (1 — t) b+ ta with a, b € I and
t € [0, 1], then we get

(3.15) 0<f((l—t)a+tb)—;—f((1—t)b+ta)_f<a+b)
%((1—t)a+tb—(1—t)b—ta)
X [f'(1=t)a+tb) — f ((1 —t)b+ta)]
1 1 , ,
:2(t—2>(b—a)[f (L —t)a+th) — f ((1—t)b+ta)].

From this inequality we have

(a0 2 ],

w(z) w(z)

If we multiply this inequality by w () > 0 and integrate on X we get (3.11). O
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Corollary 5. Let f be a differentiable convex function on [0,00) with f (1) = 0
and Q, P, W € P. If there exists 0 < r < 1 < R < oo such that the condition
((r,R)) holds, then

(3.16) 0<A—-8t)Ip(QW)+tl; (P,W)—A;(Q,P,W)
<t@=t)[f (R) - f (r)]di (Q,P)
and
(3.17) 0<5:(Q,P,W)—Ms(Q,P,W)
<3|t @ - el Q.

Proof. The inequality (3.16) is obvious. For (3.17), we have

1 1 1

—i\/x|q<w>—p<x>|

Corollary 6. Let f be a twice differentiable convex function on [0,00) with f (1) =
0 and Q, P, W € P. If there exists 0 < r < 1 < R < oo such that the conditions

((r,R)) and (2.17) hold, then
(3.18) <A =01 (QW) + 1ty (P,W) = Ape (Q, P, W)
St( ) 1", .00 D2 (@ P V)

and

2

1
(319) 0< Sf’t (vav W) - Mf (Q7P7 W) < ‘t - § HfHH[r,R],oo dX2 (Q7P7 W)

Proof. We have

1 1
2(t_>Aft(QPW 2’t—‘/|q

f’<(1—t) (z) 2 x) f((l—t) (x)-l—tp(x))‘du(m)

X
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y
<5t 5|1l [ 0@ =@
x (1t)f;(())+ i((z))ut)i((”;))ti((?) dp ()
‘t— e [ o) = p @12 g
- \t e e @ P,
which proves (3.19). O

4. EXAMPLES

Consider the dichotomy class generated by the function f, : [0,00) — R that is
given by

u—1—Inu for a = 0;
fa(u) = ﬁ[au+lfa7ua] for o € R\{0,1};
l1—u+ulnu for a=1.
We have
Ao @) = [ | IR 4 ) g o)
— [xw(z)n {%} du () for a = 0;

- ﬁ [1 - [x A =t)q(z)+tp ()] wt= (z) dp (z)] for o€ R\{0,1};

Jx [(1= ) (@) + tp (2)] In [ C=29EIR ] gy () for =1
and
[ @@
My @ rw) = [ [ o) dua)
—Jxw(z)n [%&51’)} du () for a = 0;

= m [1 - Jx [M]awl’a (x) du (x)} for o€ R\{0,1};

fy [220)] n [see)] gy 1) for = 1.

Let us recall the following special means:

a) The arithmetic mean

a+b

Al(a,b) = , a,b>0,

b) The geometric mean

G (a,b) = Vab; a,b> 0,
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¢) The harmonic mean

d) The identric mean

1(“’)”‘"’
I(a,b):={ ¢ \a

e) The logarithmic mean

b—a
L(a,b) := Inb—Ina
a

f) The p-logarithmic mean
pptl _ gptl

L, (a,b) := <(p+1)(b—a)>p y

a if

if b#a
; a,b>0

if b=a

if b#a
; a,b>0

if b=a

b#aa pER\{—LO}
; a,b>0.

b=a

If we put Lo (a,b) := I (a,b) and L_q (a,b) := L (a,b), then it is well known that
the function R 3p — L, (a,b) is monotonic increasing on R.
We observe that for p € R\ {—1,0} we have

/1[(1_t)a+tb]pdt=Lg(a,b),/

0 0

and

[(1—t)a+tb] " dt=L""(a,b)

/lln[(lt)athb]dtlnI(a,b).
0

We also have

/1[(1—t)a—i—tb]ln[(l—t)a—i—tb]dt

1

1

o>
|

a

{b%nb—azlna—

b 1 1 b )
:m 3 tintdt = §m/a lntd(t)

b2 _a2:|

2

>
|

1 [b2Ind? —a?lna?
a

b2 _ a2:|

b—a 2
(

Bl N~ N~ N

1 b2 —a? [b2Inb? — a2lna?
b2 _ a2

b+a)lnl (a®b%) =

X

%A (a,b)In1 (a®,b%).
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v

[y (fol In [%} dt) w (z) dp

(1 —t)q(x) +tp(x)
0 (@) } dt> w(x) dp ()
(x) for o = 0;

=S artm [1- S (U [0 22] ) w (@) du(@)]  for a e R\{0, 1}
Ix f ({(1 t)%f);”p(w)] In {(1_”%8;@(1)] dt) w(z)dp(z) fora=1
= [xInI (1(2)7 SJ((Z))) w () dp (2) for o = 0;
= ﬁ {1 - Jx La (i((fp))v i((?)) w () dp (30)} for « € R\ {0,1};
3 xA (w(x ((?))IHI<($((;)))27(S((";)))2) () dp(z) for a=1

According to Corollary 1 we have

(1) 0< My, (Q.P,W) < Ag, (Q.P,W) < 3 [Ty, (Q.W) + Iy, (P, W)
and the mapping
(4.2) PxP>3(Q,P)— As, (Q,P,W) € [0,00)
is convex.
Observe also that
1-— % for a=0;
fiw)=¢ == (1—-u*"t) for acR\{0,1};
Inu for a=1,
which implies that
, _ / Q(iﬂ))_ /(p(x)ﬂ B
s @rw)= [ |1 (w D)= (2| w@ - ) dute)
Ix (Q(pm(z 5((;” w (z) dp (x) for a=0;
= iy T (@)~ p @) du () for a € R\{0,1};
[ (@(z) = p(x))In (pg;g) dp (z) for a=1.

For all Q, P, W € P we have by Theorem 5 th

at

1
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and

1 1
If there exists 0 < r < 1 < R < oo such that the following condition holds

((r,R)) r< ¢(2) , p(@) < R for p-a.e. x € X,

then by Corollary 2

(45) 0 S Afa (Qa P7 W) - Mfa (Qa P, W)

R;;{ for a = 0;
<L @P)) B o aeR\{0.1);
In (}j) for a=1
and
(16) 0< 5117 QW)+ I (P,W)] ~ A7 (Q. P, W)
E;;{ for a =0;
< édl (@, P) % for a € R\{0,1};
In (f) for a=1.
Further, since
u% for a = 0;
f(u)=4 u*? for aeR\{0,1};
1 for a=1,
hence by Corollary 3 we have
(4.7) 0< Ap(Q,P,W) — My (Q,P,W)
%2 for a = 0;
1 R*=2 for a > 2;
< gdxz (Q,P,W) oo

r for « <2, a € R\ {0,1};

1 for a=1,
I



and

(4.8
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) 0< 5L QW)+ I (PW)] = A (Q, P, W)

N =

for a=0;

e

1 R*2 for a >2;
< gdx2 (Q, P, W)
r* 2 fora <2, a € R\{0,1};

S =

for a=1.

The interested reader may apply the above general results for other particular
divergences of interest generated by the convex functions provided in the introduc-
tion. We omit the details.
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