HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR PERSPECTIVE FUNCTION

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. Let $f:(0,\infty)\to\mathbb{R}$ be a convex function on $(0,\infty)$. The associated two variables perspective function $P_f:(0,\infty)\times(0,\infty)\to\mathbb{R}$ is defined by

$$P_f(x,y) := xf\left(\frac{y}{x}\right).$$

In this paper we establish some basic and double integral inequalities for the perspective function P_f defined above. Some double integral inequalities in the case of rectangles, squares and circular sectors are also given.

1. Introduction

The following inequality holds for any convex function f defined on \mathbb{R}

$$(1.1) \quad (b-a)f\left(\frac{a+b}{2}\right) \le \int_a^b f(x)dx \le (b-a)\frac{f(a)+f(b)}{2}, \quad a, \ b \in \mathbb{R}, \ a < b.$$

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [7]). But this result was nowhere mentioned in the mathematical literature and was not widely known as Hermite's result.

E. F. Beckenbach, a leading expert on the history and the theory of convex functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In 1974, D. S. Mitrinović found Hermite's note in *Mathesis* [7]. Since (1.1) was known as Hadamard's inequality, the inequality is now commonly referred as the Hermite-Hadamard inequality. For a monograph devoted to this inequality see [6]. Related results can be also found in [4].

In 1990, [3] the author established the following refinement of Hermite-Hadamard inequality for double and triple integrals for the convex function $f:[a,b]\to\mathbb{R}$

$$(1.2) \quad f\left(\frac{a+b}{2}\right) \le \frac{1}{(b-a)^2} \int_a^b \int_a^b f\left(\frac{x+y}{2}\right) dx dy$$

$$\le \frac{1}{(b-a)^2} \int_a^b \int_a^b \int_0^1 f\left((1-t)x + ty\right) dt dx dy \le \frac{1}{b-a} \int_a^b f(x) dx.$$

More recently, [5] we obtained a different double integral inequality of Hermite-Hadamard type for the convex function $f:[a,b]\to\mathbb{R}$,

$$(1.3) f\left(\frac{a+b}{2}\right) \le \frac{1}{\left(d-c\right)^2} \int_{c}^{d} \int_{c}^{d} f\left(\frac{\alpha a + \beta b}{\alpha + \beta}\right) d\beta d\alpha \le \frac{f\left(a\right) + f\left(b\right)}{2}$$

where 0 < c < d.

¹⁹⁹¹ Mathematics Subject Classification. 26D15.

Key words and phrases. Convex functions, Perspective function, Hermite-Hadamard inequality, Double integral inequalities.

Let $f:(0,\infty)\to\mathbb{R}$ be a convex function on $(0,\infty)$. The associated two variables perspective function $P_f:(0,\infty)\times(0,\infty)\to\mathbb{R}$ is defined by

(1.4)
$$P_f(x,y) := xf\left(\frac{y}{x}\right).$$

In this paper we establish some basic and double integral inequalities for the perspective function P_f defined above. Some integral inequalities in the case of rectangles, squares and circular sectors are also given.

2. General Results

We start with the following fundamental fact.

Lemma 1. Let $f:(0,\infty)\to\mathbb{R}$ be a convex function on $(0,\infty)$. Then the perspective function $P_f:(0,\infty)\times(0,\infty)\to\mathbb{R}$ defined by (1.4) is convex on $(0,\infty)\times(0,\infty)$.

Proof. Let (x_1, y_1) , $(x_2, y_2) \in (0, \infty) \times (0, \infty)$ and $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$, then

$$\begin{split} P_f\left(\alpha\left(x_1,y_1\right) + \beta\left(x_2,y_2\right)\right) &= P_f\left(\alpha x_1 + \beta x_2, \alpha y_1 + y_2\beta\right) \\ &= \left(\alpha x_1 + \beta x_2\right) f\left(\frac{\alpha y_1 + y_2\beta}{\alpha x_1 + \beta x}\right) \\ &= \left(\alpha x_1 + \beta x_2\right) f\left(\frac{\alpha x_1 \frac{y_1}{x_1} + \beta x_2 \frac{y_2}{x_2}}{\alpha x_1 + \beta x_2}\right) \\ &\leq \left(\alpha x_1 + \beta x_2\right) \left[\frac{\alpha x_1}{\alpha x_1 + \beta x_2} f\left(\frac{y_1}{x_1}\right) + \frac{\beta x_2}{\alpha x_1 + \beta x_2} f\left(\frac{y_2}{x_2}\right)\right] \\ &= \alpha x_1 f\left(\frac{y_1}{x_1}\right) + \beta x_2 f\left(\frac{y_2}{x_2}\right) = \alpha P_f\left(x_1, y_1\right) + \beta P_f\left(x_2, y_2\right), \end{split}$$

which proves the joint convexity.

We have the following basic inequality for two values of the perspective function:

Theorem 1. Let $f:(0,\infty)\to\mathbb{R}$ be a differentiable convex function on $(0,\infty)$. Then for all (x,y), $(u,v)\in(0,\infty)\times(0,\infty)$ we have the double inequality

$$(2.1) \quad f\left(\frac{y}{x}\right)(x-u) + f'\left(\frac{y}{x}\right)\left(\frac{yu - xv}{x}\right) \ge P_f(x,y) - P_f(u,v)$$

$$\ge f\left(\frac{v}{u}\right)(x-u) + f'\left(\frac{v}{u}\right)\left(\frac{yu - vx}{u}\right).$$

The inequality (2.1) is equivalent to the following two inequalities

(2.2)
$$P_f(x,y) \ge xf\left(\frac{v}{u}\right) + f'\left(\frac{v}{u}\right)\left(\frac{yu - vx}{u}\right)$$

and

(2.3)
$$P_f(u,v) \ge uf\left(\frac{y}{x}\right) - f'\left(\frac{y}{x}\right)\left(\frac{yu - xv}{x}\right)$$

for all (x,y), $(u,v) \in (0,\infty) \times (0,\infty)$.

The inequality (2.1) is also equivalent to the double inequality

$$(2.4) f'\left(\frac{y}{x}\right)\left(y-\frac{xv}{u}\right)+xf\left(\frac{v}{u}\right)\geq P_f\left(x,y\right)\geq xf\left(\frac{v}{u}\right)+f'\left(\frac{v}{u}\right)\left(y-\frac{xv}{u}\right)$$

for all (x,y) , $(u,v)\in(0,\infty)\times(0,\infty)$.

Proof. Observe that the following partial derivatives exist and for all $(x,y) \in (0,\infty) \times (0,\infty)$

$$\begin{split} \frac{\partial P_f\left(x,y\right)}{\partial x} &= \frac{d}{dx} \left(x f\left(\frac{y}{x}\right) \right) = f\left(\frac{y}{x}\right) + x \frac{d}{dx} \left(f\left(\frac{y}{x}\right) \right) \\ &= f\left(\frac{y}{x}\right) + x f'\left(\frac{y}{x}\right) \frac{d}{dx} \left(\frac{y}{x}\right) = f\left(\frac{y}{x}\right) - \frac{y}{x} f'\left(\frac{y}{x}\right), \end{split}$$

$$\begin{split} \frac{\partial P_f\left(x,y\right)}{\partial y} &= \frac{d}{dy} \left(x f\left(\frac{y}{x}\right) \right) = x \frac{d}{dy} \left(f\left(\frac{y}{x}\right) \right) \\ &= x f'\left(\frac{y}{x}\right) \frac{d}{dy} \left(\frac{y}{x}\right) = f'\left(\frac{y}{x}\right). \end{split}$$

Also, for all $(u, v) \in (0, \infty) \times (0, \infty)$ we have

$$\frac{\partial P_f(u,v)}{\partial x} = f\left(\frac{v}{u}\right) - \frac{v}{u}f'\left(\frac{v}{u}\right)$$

and

$$\frac{\partial P_f(u,v)}{\partial y} = f'\left(\frac{v}{u}\right).$$

Since P_f is a convex function on $(0,\infty)\times(0,\infty)$, then for all (x,y), $(u,v)\in(0,\infty)\times(0,\infty)$ we have the gradient inequality

$$\frac{\partial P_{f}(x,y)}{\partial x}(x-u) + \frac{\partial P_{f}(x,y)}{\partial y}(y-v)$$

$$\geq P_{f}(x,y) - P_{f}(u,v)$$

$$\geq \frac{\partial P_{f}(u,v)}{\partial x}(x-u) + \frac{\partial P_{f}(u,v)}{\partial y}(y-v),$$

namely, by the calculations above,

(2.5)
$$\left[f\left(\frac{y}{x}\right) - \frac{y}{x} f'\left(\frac{y}{x}\right) \right] (x - u) + f'\left(\frac{y}{x}\right) (y - v) \\ \ge P_f(x, y) - P_f(u, v) \\ \ge \left[f\left(\frac{v}{u}\right) - \frac{v}{u} f'\left(\frac{v}{u}\right) \right] (x - u) + f'\left(\frac{v}{u}\right) (y - v).$$

Since

$$\begin{split} & \left[f\left(\frac{v}{u}\right) - \frac{v}{u} f'\left(\frac{v}{u}\right) \right] (x - u) + f'\left(\frac{v}{u}\right) (y - v) \\ & = f\left(\frac{v}{u}\right) (x - u) + f'\left(\frac{v}{u}\right) (y - v) - \frac{v}{u} f'\left(\frac{v}{u}\right) (x - u) \\ & = f\left(\frac{v}{u}\right) (x - u) + f'\left(\frac{v}{u}\right) \left[y - v - \frac{v}{u} (x - u) \right] \\ & = f\left(\frac{v}{u}\right) (x - u) + f'\left(\frac{v}{u}\right) \left(\frac{yu - vx}{u}\right) \end{split}$$

$$\begin{split} & \left[f\left(\frac{y}{x}\right) - \frac{y}{x} f'\left(\frac{y}{x}\right) \right] (x-u) + f'\left(\frac{y}{x}\right) (y-v) \\ & = f\left(\frac{y}{x}\right) (x-u) - \frac{y}{x} f'\left(\frac{y}{x}\right) (x-u) + f'\left(\frac{y}{x}\right) (y-v) \\ & = f\left(\frac{y}{x}\right) (x-u) + f'\left(\frac{y}{x}\right) (y-v) - \frac{y}{x} f'\left(\frac{y}{x}\right) (x-u) \\ & = f\left(\frac{y}{x}\right) (x-u) + f'\left(\frac{y}{x}\right) \left(\frac{yu - xv}{x}\right), \end{split}$$

hence by (2.5) we get (2.1).

Now, observe that

$$f\left(\frac{v}{u}\right)(x-u) + f'\left(\frac{v}{u}\right)\left(\frac{yu - vx}{u}\right)$$

$$= f\left(\frac{v}{u}\right)x - f\left(\frac{v}{u}\right)u + f'\left(\frac{v}{u}\right)\left(\frac{yu - vx}{u}\right)$$

$$= f\left(\frac{v}{u}\right)x - P_f(u,v) + f'\left(\frac{v}{u}\right)\left(\frac{yu - vx}{u}\right)$$

and by the second inequality in (2.1) we get

$$P_f(x,y) - P_f(u,v) \ge f\left(\frac{v}{u}\right)x - P_f(u,v) + f'\left(\frac{v}{u}\right)\left(\frac{yu - vx}{u}\right)$$

namely (2.2).

Also,

$$f\left(\frac{y}{x}\right)(x-u) + f'\left(\frac{y}{x}\right)\left(\frac{yu - xv}{x}\right)$$

$$= xf\left(\frac{y}{x}\right) - uf\left(\frac{y}{x}\right) + f'\left(\frac{y}{x}\right)\left(\frac{yu - xv}{x}\right)$$

$$= P_f(x,y) - uf\left(\frac{y}{x}\right) + f'\left(\frac{y}{x}\right)\left(\frac{yu - xv}{x}\right)$$

and by the first inequality in (2.1) we have

$$P_f(x,y) - uf\left(\frac{y}{x}\right) + f'\left(\frac{y}{x}\right)\left(\frac{yu - xv}{x}\right) \ge P_f(x,y) - P_f(u,v),$$

namely (2.3).

The inequality (2.3) can also be written as

$$f'\left(\frac{y}{x}\right)\left(\frac{yu-xv}{x}\right)+uf\left(\frac{v}{u}\right)\geq uf\left(\frac{y}{x}\right).$$

By multiplying this inequality by x and dividing with u we get

$$f'\left(\frac{y}{x}\right)\left(\frac{yu-xv}{u}\right)+xf\left(\frac{v}{u}\right)\geq P_f\left(x,y\right),$$

which proves the last part of the theorem.

Corollary 1. With the assumptions of Theorem 1 we have

$$(2.6) \quad \left[f\left(\frac{y}{x}\right) - f'\left(\frac{y}{x}\right) \left(\frac{y+x}{x}\right) \right] (x-y) \ge P_f(x,y) - P_f(y,x)$$

$$\ge \left[f\left(\frac{x}{y}\right) - f'\left(\frac{x}{y}\right) \left(\frac{y+x}{y}\right) \right] (x-y),$$

$$(2.7) f'\left(\frac{y}{x}\right)(y-v) \ge P_f(x,y) - P_f(x,v) \ge f'\left(\frac{v}{x}\right)(y-v)$$

and

(2.8)
$$\left[f\left(\frac{y}{x}\right) - \frac{y}{x} f'\left(\frac{y}{x}\right) \right] (x - u) \ge P_f(x, y) - P_f(u, y)$$

$$\ge \left[f\left(\frac{y}{y}\right) - \frac{y}{y} f'\left(\frac{y}{y}\right) \right] (x - u).$$

If f is normalized, namely f(1) = 0, then

$$(2.9) f\left(\frac{y}{x}\right)(x-u) + \frac{u}{x}f'\left(\frac{y}{x}\right)(y-x) \ge P_f(x,y) \ge f'(1)(y-x)$$

and

$$(2.10) f'\left(\frac{y}{x}\right)(y-x) \ge P_f(x,y) \ge f'(1)(y-x).$$

Remark 1. From the inequality (2.4) we have for u = y and v = x, that

$$(2.11) \ f'\left(\frac{y}{x}\right)\left(\frac{y^2-x^2}{y}\right) + xf\left(\frac{x}{y}\right) \ge P_f\left(x,y\right) \ge xf\left(\frac{x}{y}\right) + f'\left(\frac{x}{y}\right)\left(\frac{y^2-x^2}{y}\right).$$

By taking u = x in (2.4), we get

$$(2.12) f'\left(\frac{y}{x}\right)(y-v) + xf\left(\frac{v}{x}\right) \ge P_f(x,y) \ge xf\left(\frac{v}{x}\right) + f'\left(\frac{v}{x}\right)(y-v).$$

Also, for v = y in (2.4), we get

$$(2.13) \quad f'\left(\frac{y}{x}\right)\left(\frac{u-x}{u}\right)y+xf\left(\frac{y}{u}\right)\geq P_f\left(x,y\right)\geq xf\left(\frac{y}{u}\right)+f'\left(\frac{y}{u}\right)\left(\frac{u-x}{u}\right)y.$$

Consider the convex function $f(t) = -\ln t$, t > 0. Then by the inequality (2.4) we get

$$(2.14) \frac{x^2v}{yu} - x + x \ln\left(\frac{u}{v}\right) \ge x \ln\left(\frac{x}{v}\right) \ge x \ln\left(\frac{u}{v}\right) + x - \frac{yu}{v}$$

for all (x, y), $(u, v) \in (0, \infty) \times (0, \infty)$.

If we divide by x > 0, then we get

$$(2.15) \frac{xv}{yu} - 1 + \ln\left(\frac{u}{v}\right) \ge \ln\left(\frac{x}{y}\right) \ge \ln\left(\frac{u}{v}\right) + 1 - \frac{yu}{xv}$$

for all (x, y), $(u, v) \in (0, \infty) \times (0, \infty)$.

Also, consider the convex function $f(t) = t \ln t$, t > 0. Then by the inequality (2.4) we have

$$\left(\ln\left(\frac{y}{x}\right) + 1\right)\left(y - \frac{xv}{u}\right) + \frac{xv}{u}\ln\left(\frac{v}{u}\right) \ge y\ln\left(\frac{y}{x}\right)$$

$$\ge \frac{xv}{u}\ln\left(\frac{v}{u}\right) + \left(\ln\left(\frac{v}{u}\right) + 1\right)\left(y - \frac{xv}{u}\right)$$

namely, by division with y > 0,

(2.16)
$$\left(\ln\left(\frac{y}{x}\right) + 1\right) \left(1 - \frac{xv}{yu}\right) + \frac{xv}{yu} \ln\left(\frac{v}{u}\right)$$

$$\geq \ln\left(\frac{y}{x}\right)$$

$$\geq \frac{xv}{yu} \ln\left(\frac{v}{u}\right) + \left(\ln\left(\frac{v}{u}\right) + 1\right) \left(1 - \frac{xv}{yu}\right)$$

for all (x, y), $(u, v) \in (0, \infty) \times (0, \infty)$.

3. Double Integral Inequalities

Consider G a closed and bounded subset of $(0, \infty) \times (0, \infty)$. Define

$$A_G := \int \int_G dx dy$$

the area of G and $(\overline{x_G}, \overline{y_G})$ the centre of mass for G, where

$$\overline{x_G} := \frac{1}{A_G} \int \int_G x dx dy, \ \overline{y_G} := \frac{1}{A_G} \int \int_G y dx dy.$$

Observe that if $f:(0,\infty)\to\mathbb{R}$ is convex and G a closed and bounded subset of $(0,\infty)\times(0,\infty)$, then the double integral

$$\int \int_{G} P_{f}(x, y) dxdy = \int \int_{G} x f\left(\frac{y}{x}\right) dxdy$$

exists.

We have the following main result:

Theorem 2. If $f:(0,\infty)\to\mathbb{R}$ is differentiable convex on $(0,\infty)$ and G a closed and bounded subset of $(0,\infty)\times(0,\infty)$, then

$$(3.1) \qquad \frac{1}{A_{G}} \left[\int \int_{G} f'\left(\frac{y}{x}\right) y dx dy - \frac{v}{u} \int \int_{G} f'\left(\frac{y}{x}\right) x dx dy \right] + \overline{x_{G}} f\left(\frac{v}{u}\right)$$

$$\geq \frac{1}{A_{G}} \int \int_{G} P_{f}\left(x,y\right) dx dy \geq \overline{x_{G}} f\left(\frac{v}{u}\right) + \left(\overline{y_{G}} - \overline{x_{G}}\frac{v}{u}\right) f'\left(\frac{v}{u}\right)$$

for all $(u, v) \in G$.

Proof. By taking the integral in the inequality (2.4) over (x, y) on G, we get

(3.2)
$$\int \int_{G} f'\left(\frac{y}{x}\right) \left(y - \frac{xv}{u}\right) dxdy + \int \int_{G} xf\left(\frac{v}{u}\right) dxdy$$
$$\geq \int \int_{G} P_{f}(x, y) dxdy$$
$$\geq \int \int_{G} xf\left(\frac{v}{u}\right) dxdy + \int \int_{G} f'\left(\frac{v}{u}\right) \left(y - \frac{xv}{u}\right).$$

Observe that

$$\int \int_{G} f'\left(\frac{y}{x}\right) \left(y - \frac{xv}{u}\right) dxdy$$

$$= \int \int_{G} f'\left(\frac{y}{x}\right) y dxdy - \frac{v}{u} \int \int_{G} f'\left(\frac{y}{x}\right) x dxdy,$$

$$\int \int_G x f\left(\frac{v}{u}\right) dx dy = f\left(\frac{v}{u}\right) \int \int_G x dx dy = \overline{x_G} A_G f\left(\frac{v}{u}\right)$$

$$\int \int_{G} f'\left(\frac{v}{u}\right) \left(y - \frac{xv}{u}\right) dxdy = f'\left(\frac{v}{u}\right) \int \int_{G} \left(y - \frac{xv}{u}\right) dxdy$$
$$= A_{G}\left(\overline{y_{G}} - \overline{x_{G}}\frac{v}{u}\right) f'\left(\frac{v}{u}\right).$$

By replacing these values in (3.2) and dividing by the area A_G we obtain the desired result (3.1).

Corollary 2. With the assumptions of Theorem 2 we have

$$(3.3) \leq \frac{1}{A_G} \int \int_G P_f(x, y) \, dx dy - \overline{x_G} f\left(\frac{\overline{y_G}}{\overline{x_G}}\right)$$

$$\leq \frac{1}{A_G} \int \int_G f'\left(\frac{y}{x}\right) \left(y - \frac{\overline{y_G}}{\overline{x_G}}x\right) dx dy.$$

The proof follows by taking $\frac{v}{u} = \frac{\overline{y_G}}{\overline{x_G}}$ in (3.1). We define for $f:(0,\infty) \to \mathbb{R}$ a differentiable function on $(0,\infty)$ the quantity

$$\ell_{G}\left(f'\right) := \frac{\int \int_{G} f'\left(\frac{y}{x}\right) y dx dy}{\int \int_{G} f'\left(\frac{y}{x}\right) x dx dy},$$

provided that the denominator is nonzero.

Corollary 3. With the assumptions of Theorem 2 and if $\ell_G(f') > 0$, then

$$(3.4) \ 0 \leq \overline{x_G} f\left(\ell_G\left(f'\right)\right) - \frac{1}{A_G} \int \int_G P_f\left(x,y\right) dx dy \geq \left(\overline{x_G} \ell_G\left(f'\right) - \overline{y_G}\right) f'\left(\ell_G\left(f'\right)\right).$$

The proof follows by taking $\frac{v}{u} = \ell_G(f')$ in (3.1). We observe that the condition f is strictly increasing on $(0, \infty)$ implies that $\ell_G(f') > 0.$

In 2002, Cerone and Dragomir [2] obtained the following refinement of Grüss inequality for the general Lebesgue integral:

Lemma 2. Let $w, f, g: \Omega \to \mathbb{R}$ be μ -measurable functions on Ω and $w \geq 0$ μ -almost everywhere on Ω . If there exists the constants δ , Δ such that

$$-\infty < \delta \le g \le \Delta < \infty$$
,

 μ -almost everywhere on Ω , then

$$(3.5) \quad \left| \frac{\int_{\Omega} w(x) f(x) g(x) d\mu(x)}{\int_{\Omega} w(x) d\mu(x)} - \frac{\int_{\Omega} w(x) g(x) d\mu(x)}{\int_{\Omega} w(x) d\mu(x)} \frac{\int_{\Omega} w(x) f(x) d\mu(x)}{\int_{\Omega} w(x) d\mu(x)} \right| \\ \leq \frac{1}{2} \frac{\Delta - \delta}{\int_{\Omega} w(x) d\mu(x)} \int_{\Omega} \left| g(y) - \frac{1}{\int_{\Omega} w(x) d\mu(x)} \int_{\Omega} w(x) g(x) d\mu(x) \right| d\mu(y).$$

The constant $\frac{1}{2}$ is best possible.

We have:

Theorem 3. If $f:(0,\infty)\to\mathbb{R}$ is differentiable convex on $(0,\infty)$ and G a closed and bounded subset of $(0,\infty)\times(0,\infty)$. Assume that there exists the constants γ , Γ such that

$$(3.6) -\infty < \gamma \le f'\left(\frac{y}{x}\right) \le \Gamma < \infty$$

for almost every $(x, y) \in G$, then

$$(3.7) \quad 0 \leq \frac{1}{A_G} \int \int_G P_f(x, y) \, dx dy - \overline{x_G} f\left(\frac{\overline{y_G}}{\overline{x_G}}\right)$$

$$\leq \frac{1}{2} \left(\Gamma - \gamma\right) \frac{1}{A_G} \int \int_G \left| y - \frac{\overline{y_G}}{\overline{x_G}} x \right| dx dy \leq \frac{1}{2} \left(\Gamma - \gamma\right) I_G^{1/2},$$

where

$$I_G := \frac{1}{A_G} \int \int_G y^2 dx dy - 2 \frac{\overline{y_G}}{\overline{x_G}} \frac{1}{A_G} \int \int_G xy dx dy + \left(\frac{\overline{y_G}}{\overline{x_G}}\right)^2 \frac{1}{A_G} \int \int_G x^2 dx dy.$$

Proof. Observe that

$$\frac{1}{A_G} \int \int_G \left(y - \frac{\overline{y_G}}{\overline{x_G}} x \right) dx dy = \frac{1}{A_G} \left(\int \int_G y dx dy - \frac{\overline{y_G}}{\overline{x_G}} \int \int_G x dx dy \right)$$
$$= \overline{y_G} - \frac{\overline{y_G}}{\overline{x_G}} \overline{x_G} = 0.$$

Then by the inequality (3.5) for functions defined on G we get

$$\begin{split} \left| \frac{1}{A_G} \int \int_G f'\left(\frac{y}{x}\right) \left(y - \frac{\overline{y_G}}{\overline{x_G}}x\right) dx dy \right| &= \left| \frac{1}{A_G} \int \int_G f'\left(\frac{y}{x}\right) \left(y - \frac{\overline{y_G}}{\overline{x_G}}x\right) dx dy \right| \\ &- \frac{1}{A_G} \int \int_G f'\left(\frac{y}{x}\right) dx dy \frac{1}{A_G} \int \int_G \left(y - \frac{\overline{y_G}}{\overline{x_G}}x\right) dx dy \right| \\ &\leq \frac{1}{2} \left(\Gamma - \gamma\right) \frac{1}{A_G} \int \int_G \left| y - \frac{\overline{y_G}}{\overline{x_G}}x - \frac{1}{A_G} \int \int_G \left(u - \frac{\overline{y_G}}{\overline{x_G}}v\right) du dv \right| dx dy \\ &\leq \frac{1}{2} \left(\Gamma - \gamma\right) \frac{1}{A_G} \int \int_G \left| y - \frac{\overline{y_G}}{\overline{x_G}}x \right| dx dy. \end{split}$$

By utilising (3.3) we get

$$0 \leq \frac{1}{A_G} \int \int_G P_f(x, y) \, dx dy - \overline{x_G} f\left(\frac{\overline{y_G}}{\overline{x_G}}\right)$$

$$\leq \frac{1}{2} \left(\Gamma - \gamma\right) \frac{1}{A_G} \int \int_G \left| y - \frac{\overline{y_G}}{\overline{x_G}} x \right| dx dy,$$

which proves the second inequality in (3.7).

Using Cauchy-Schwarz inequality for the double integral, we have

$$(3.8) \qquad \frac{1}{A_G} \int \int_G \left| y - \frac{\overline{y_G}}{\overline{x_G}} x \right| dx dy \le \left(\frac{1}{A_G} \int \int_G \left(y - \frac{\overline{y_G}}{\overline{x_G}} x \right)^2 dx dy \right)^{1/2}.$$

Since

$$\begin{split} \int \int_G \left(y - \frac{\overline{y_G}}{\overline{x_G}} x \right)^2 dx dy &= \int \int_G \left(y^2 - 2 \frac{\overline{y_G}}{\overline{x_G}} x y + \left(\frac{\overline{y_G}}{\overline{x_G}} \right)^2 x^2 \right) dx dy \\ &= \int \int_G y^2 dx dy - 2 \frac{\overline{y_G}}{\overline{x_G}} \int \int_G xy dx dy + \left(\frac{\overline{y_G}}{\overline{x_G}} \right)^2 \int \int_G x^2 dx dy, \end{split}$$

hence by (3.8) we get the last part of (3.7).

Corollary 4. With the assumptions of Theorem 3 and if there exists $0 < m < M < \infty$ such that

(3.9)
$$\frac{y}{x} \in [m, M] \text{ for all } (x, y) \in G,$$

then

$$(3.10) \quad 0 \leq \frac{1}{A_G} \int \int_G P_f(x, y) \, dx dy - \overline{x_G} f\left(\frac{\overline{y_G}}{\overline{x_G}}\right)$$

$$\leq \frac{1}{2} \left[f'(M) - f'(m) \right] \frac{1}{A_G} \int \int_G \left| y - \frac{\overline{y_G}}{\overline{x_G}} x \right| dx dy \leq \frac{1}{2} \left[f'(M) - f'(m) \right] I_G^{1/2}.$$

Proof. Since f' is increasing, then by (3.9) we have $f'(m) \leq f'(\frac{y}{x}) \leq f'(M)$, and by (3.7) we get the desired result.

We have:

Theorem 4. If $f:(0,\infty)\to\mathbb{R}$ is differentiable convex on $(0,\infty)$ and G a closed and bounded subset of $(0,\infty)\times(0,\infty)$. Assume that there exists the constants γ , Γ such that

$$\left| f'\left(\frac{y}{x}\right) - f'\left(\frac{u}{v}\right) \right| \le \Lambda \left| \frac{y}{x} - \frac{u}{v} \right| < \infty$$

for almost every $(x, y) \in G$, then

(3.12)
$$0 \le \frac{1}{A_G} \int \int_G P_f(x, y) \, dx dy - \overline{x_G} f\left(\frac{\overline{y_G}}{\overline{x_G}}\right) \le \Lambda J_G,$$

where

$$J_G := \frac{1}{A_G} \int \int_G \frac{y^2}{x} dx dy - \frac{(\overline{y_G})^2}{\overline{x_G}}.$$

Proof. Observe that

$$\begin{split} \frac{1}{A_G} \int \int_G f'\left(\frac{y}{x}\right) \left(y - \frac{\overline{y_G}}{\overline{x_G}}x\right) dx dy \\ &= \frac{1}{A_G} \int \int_G \left[f'\left(\frac{y}{x}\right) - f'\left(\frac{\overline{y_G}}{\overline{x_G}}\right)\right] \left(y - \frac{\overline{y_G}}{\overline{x_G}}x\right) dx dy. \end{split}$$

Therefore

$$(3.13) \quad \frac{1}{A_G} \int \int_G f'\left(\frac{y}{x}\right) \left(y - \frac{\overline{y_G}}{\overline{x_G}}x\right) dx dy$$

$$\leq \frac{1}{A_G} \int \int_G \left| \left[f'\left(\frac{y}{x}\right) - f'\left(\frac{\overline{y_G}}{\overline{x_G}}\right)\right] \left(y - \frac{\overline{y_G}}{\overline{x_G}}x\right) \right| dx dy$$

$$\leq \frac{1}{A_G} \Lambda \int \int_G \left| \left(\frac{y}{x} - \frac{\overline{y_G}}{\overline{x_G}}\right) \left(y - \frac{\overline{y_G}}{\overline{x_G}}x\right) \right| dx dy$$

$$= \frac{1}{A_G} \Lambda \int \int_G \left| \left(\frac{y}{x} - \frac{\overline{y_G}}{\overline{x_G}}\right) \left(\frac{y}{x} - \frac{\overline{y_G}}{\overline{x_G}}\right) \right| x dx dy$$

$$= \frac{1}{A_G} \Lambda \int \int_G \left(\frac{y}{x} - \frac{\overline{y_G}}{\overline{x_G}}\right)^2 x dx dy$$

$$= \frac{1}{A_G} \Lambda \int \int_G \left[\frac{y^2}{x^2} - 2\frac{\overline{y_G}}{\overline{x_G}}\frac{y}{x} + \left(\frac{\overline{y_G}}{\overline{x_G}}\right)^2\right] x dx dy.$$

Since

$$\int \int_{G} \left[\frac{y^{2}}{x^{2}} - 2 \frac{\overline{y_{G}}}{\overline{x_{G}}} \frac{y}{x} + \left(\frac{\overline{y_{G}}}{\overline{x_{G}}} \right)^{2} \right] x dx dy$$

$$= \int \int_{G} \frac{y^{2}}{x} dx dy - 2 \frac{\overline{y_{G}}}{\overline{x_{G}}} \int \int_{G} \frac{y}{x} x dx dy + \left(\frac{\overline{y_{G}}}{\overline{x_{G}}} \right)^{2} \int \int_{G} x dx dy$$

$$= \int \int_{G} \frac{y^{2}}{x} dx dy - 2 \frac{\overline{y_{G}}}{\overline{x_{G}}} \int \int_{G} y dx dy + \left(\frac{\overline{y_{G}}}{\overline{x_{G}}} \right)^{2} \int \int_{G} x dx dy$$

$$= \int \int_{G} \frac{y^{2}}{x} dx dy - 2 A_{G} \frac{\overline{y_{G}}}{\overline{x_{G}}} \overline{y_{G}} + A_{G} \left(\frac{\overline{y_{G}}}{\overline{x_{G}}} \right)^{2} \overline{x_{G}} = \int \int_{G} \frac{y^{2}}{x} dx dy - A_{G} \frac{(\overline{y_{G}})^{2}}{\overline{x_{G}}},$$

hence

$$\frac{1}{A_G} \int \int_G \left[\frac{y^2}{x^2} - 2 \frac{\overline{y_G}}{\overline{x_G}} \frac{y}{x} + \left(\frac{\overline{y_G}}{\overline{x_G}} \right)^2 \right] x dx dy = \frac{1}{A_G} \int \int_G \frac{y^2}{x} dx dy - \frac{(\overline{y_G})^2}{\overline{x_G}}$$

and by (3.13) we get (3.12).

Corollary 5. If $f:(0,\infty) \to \mathbb{R}$ is twice differentiable convex on $(0,\infty)$ and if there exists $0 < m < M < \infty$ such that the condition (3.9) holds, then we have

$$(3.14) 0 \leq \frac{1}{A_G} \int \int_G P_f(x, y) \, dx dy - \overline{x_G} f\left(\frac{\overline{y_G}}{\overline{x_G}}\right) \leq \|f''\|_{[m, M], \infty} J_G,$$

where

$$||f''||_{[m,M],\infty} := \sup_{t \in [m,M]} |f'(t)| < \infty.$$

4. Examples for Functions Defined on Rectangles

If $G = [a, b] \times [c, d]$ is a rectangle from $(0, \infty) \times (0, \infty)$, then

$$\int_{a}^{b} \int_{c}^{d} P_{f}(x, y) dx dy = \int_{a}^{b} x \left(\int_{c}^{d} f\left(\frac{y}{x}\right) dy \right) dx = \int_{a}^{b} x^{2} \left(\int_{\frac{c}{x}}^{\frac{d}{x}} f(u) du \right) dx,$$

$$A_G = (b-a)(d-c)$$
, $\overline{x_G} = \frac{a+b}{2}$ and $\overline{y_G} = \frac{c+d}{2}$.

If F is an antiderivative for f, namely F'(x) = f(x), then integrating by parts we have the following identity that can be used in applications to calculate $\int_a^b \int_c^d P_f(x,y) \, dx \, dy$

$$\int_{a}^{b} x^{2} \left(\int_{\frac{c}{x}}^{\frac{d}{x}} f(u) du \right) dx = \int_{a}^{b} x^{2} \left(F\left(\frac{d}{x}\right) - F\left(\frac{c}{x}\right) \right) dx$$

$$= \frac{1}{3} \int_{a}^{b} \left(F\left(\frac{d}{x}\right) - F\left(\frac{c}{x}\right) \right) d\left(x^{3}\right)$$

$$= \frac{1}{3} \left[\left(F\left(\frac{d}{b}\right) - F\left(\frac{c}{b}\right) \right) b^{3} - \left(F\left(\frac{d}{a}\right) - F\left(\frac{c}{a}\right) \right) a^{3} \right]$$

$$- \frac{1}{3} \int_{a}^{b} x^{3} \left(-F'\left(\frac{d}{x}\right) \left(\frac{d}{x^{2}}\right) + F'\left(\frac{c}{x}\right) \frac{c}{x^{2}} \right) dx$$

$$= \frac{1}{3} \left[\left(F\left(\frac{d}{b}\right) - F\left(\frac{c}{b}\right) \right) b^{3} - \left(F\left(\frac{d}{a}\right) - F\left(\frac{c}{a}\right) \right) a^{3} \right]$$

$$- \frac{1}{3} \int_{a}^{b} x \left(-df\left(\frac{d}{x}\right) + cf\left(\frac{c}{x}\right) \right) dx$$

$$= \frac{1}{3} \left[\left(F\left(\frac{d}{b}\right) - F\left(\frac{c}{b}\right) \right) b^{3} - \left(F\left(\frac{d}{a}\right) - F\left(\frac{c}{a}\right) \right) a^{3} \right]$$

$$+ \frac{1}{3} d \int_{a}^{b} x f\left(\frac{d}{x}\right) dx - \frac{1}{3} c \int_{a}^{b} x f\left(\frac{c}{x}\right) dx.$$

We also have

$$\begin{split} I_{[a,b]\times[c,d]} &= \frac{(b-a)\left(d^3-c^3\right)}{3\left(b-a\right)\left(d-c\right)} - 2\frac{c+d}{a+b}\frac{\left(b^2-a^2\right)\left(d^2-c^2\right)}{4\left(b-a\right)\left(d-c\right)} \\ &\quad + \left(\frac{c+d}{a+b}\right)^2\frac{\left(d-c\right)\left(b^3-a^3\right)}{3\left(b-a\right)\left(d-c\right)} \\ &\quad = \frac{\left(d^2+dc+c^2\right)}{3} - \frac{c+d}{a+b}\frac{\left(b+a\right)\left(d+c\right)}{2} + \left(\frac{c+d}{a+b}\right)^2\frac{\left(b^2+ba+a^2\right)}{3} \end{split}$$

$$= \frac{1}{6(a+b)^2} \times \left[2(d^2+dc+c^2)(a+b)^2 - 3(b+a)^2(d+c)^2 + 2(d+c)^2(b^2+ba+a^2) \right]$$

$$= \frac{1}{6(a+b)^2} \times \left[2((d+c)^2 - dc)(a+b)^2 - 3(b+a)^2(d+c)^2 + 2(d+c)^2((b+a)^2 - ba) \right]$$

$$= \frac{1}{6(a+b)^2} \left[(d+c)^2(a+b)^2 - 2dc(a+b)^2 - 2ba(d+c)^2 \right].$$

On the other hand,

$$J_{[a,b]\times[c,d]} := \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} \frac{y^{2}}{x} dx dy - \frac{(c+d)^{2}}{2(a+b)}$$

$$= \frac{(\ln b - \ln a) (d^{2} + dc + c^{2})}{3(b-a)} - \frac{(c+d)^{2}}{2(a+b)}.$$

If $(x,y) \in [a,b] \times [c,d] \subset (0,\infty) \times (0,\infty)$, then

$$m = \frac{c}{b} \le \frac{y}{x} \le \frac{d}{a} = M$$

From the inequality (3.10) we have for a differentiable convex function $f:(0,\infty)\to\mathbb{R}$

$$(4.1) \quad 0 \le \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} P_{f}(x,y) \, dx dy - \frac{a+b}{2} f\left(\frac{c+d}{a+b}\right)$$

$$\le \frac{1}{2} \left[f'\left(\frac{d}{a}\right) - f'\left(\frac{c}{b}\right) \right] \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} \left| y - \frac{c+d}{a+b} x \right| \, dx dy$$

$$\le \frac{1}{2\sqrt{6}(a+b)} \left[f'\left(\frac{d}{a}\right) - f'\left(\frac{c}{b}\right) \right]$$

$$\times \left[(d+c)^{2} (a+b)^{2} - 2dc (a+b)^{2} - 2ba (d+c)^{2} \right]^{1/2}$$

If $f:(0,\infty)\to\mathbb{R}$ is twice differentiable convex function, then by (3.14)

$$(4.2) \quad 0 \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} P_{f}(x,y) \, dx dy - \frac{a+b}{2} f\left(\frac{c+d}{a+b}\right)$$

$$\leq \|f''\|_{\left[\frac{c}{b},\frac{d}{a}\right],\infty} \left[\frac{(\ln b - \ln a)\left(d^{2} + dc + c^{2}\right)}{3(b-a)} - \frac{(c+d)^{2}}{2(a+b)}\right].$$

The case of squares $[a, b] \times [a, b]$ provides simpler forms as follows,

$$(4.3) \quad 0 \le \frac{1}{(b-a)^2} \int_a^b \int_a^b P_f(x,y) \, dx dy - \frac{a+b}{2} f(1)$$

$$\le \frac{1}{2} \left[f'\left(\frac{b}{a}\right) - f'\left(\frac{a}{b}\right) \right] \frac{1}{(b-a)^2} \int_a^b \int_a^b |y-x| \, dx dy$$

$$= \frac{1}{6} \left[f'\left(\frac{b}{a}\right) - f'\left(\frac{a}{b}\right) \right] (b-a)$$

for a differentiable convex function $f:(0,\infty)\to\mathbb{R}$ and $[a,b]\subset(0,\infty)$, and

$$(4.4) \quad 0 \le \frac{1}{(b-a)^2} \int_a^b \int_a^b P_f(x,y) \, dx dy - \frac{a+b}{2} f(1)$$

$$\le \|f''\|_{\left[\frac{a}{b},\frac{b}{a}\right],\infty} \left[\frac{(\ln b - \ln a) \left(a^2 + ab + b^2\right)}{3(b-a)} - \frac{a+b}{2} \right]$$

if $f:(0,\infty)\to\mathbb{R}$ is twice differentiable convex function and $[a,b]\subset(0,\infty)$.

5. Examples for Functions Defined on Circular Sectors

We consider the first quarter of the circle

$$Q\left(R\right) := \left\{ (x,y) \mid x = r \cos \theta, \ y = r \sin \theta \text{ with } r \in \left[0,R\right], \ \theta \in \left[0,\frac{\pi}{2}\right] \right\}.$$

Using the polar coordinates change of variable we have

$$\int \int_{Q(R)} P_f(x, y) dxdy = \int \int_{Q(R)} x f\left(\frac{y}{x}\right) dxdy$$
$$= \int_0^R \int_0^{\frac{\pi}{2}} r^2 \cos\theta f(\tan(\theta)) drd\theta = \frac{R^3}{3} \int_0^{\frac{\pi}{2}} \cos\theta f(\tan(\theta)) d\theta$$

where $f:(0,\infty)\to\mathbb{R}$ is convex and the integral $\int_0^{\frac{\pi}{2}}\cos\theta f(\tan(\theta))\,d\theta$ is finite. We have

$$\begin{split} A_{Q(R)} &= \int \int_{Q(R)} dx dy = \int_0^R \int_0^{\frac{\pi}{2}} r dr d\theta = \frac{\pi R^2}{4} \\ \overline{x_{Q(R)}} &:= \frac{1}{A_{Q(R)}} \int \int_{Q(R)} x dx dy = \frac{1}{\frac{\pi R^2}{4}} \int_0^R \int_0^{\frac{\pi}{2}} r^2 \cos \theta dr d\theta = \frac{4}{3\pi} R \end{split}$$

and

$$\overline{y_{Q(R)}} := \frac{1}{A_{Q(R)}} \int \int_{Q(R)} y dx dy = \frac{1}{\frac{\pi R^2}{4}} \int_0^R \int_0^{\frac{\pi}{2}} r^2 \sin \theta dr d\theta = \frac{4}{3\pi} R.$$

From the inequality (3.3) we have

$$(5.1) \qquad 0 \le \int_0^{\frac{\pi}{2}} \cos \theta f(\tan(\theta)) d\theta - f(1) \le \int_0^{\frac{\pi}{2}} f'(\tan(\theta)) (\sin \theta - \cos \theta) d\theta,$$

for $f:(0,\infty)\to\mathbb{R}$ convex and provided that the involved integral exist. Consider

(5.2)
$$\ell_{Q(R)}(f') := \frac{\int_0^{\frac{\pi}{2}} f'(\tan(\theta)) \cos \theta d\theta}{\int_0^{\frac{\pi}{2}} f'(\tan(\theta)) \sin \theta d\theta},$$

provided the involved integrals exists and assume that $\ell_{Q(R)}\left(f'\right) > 0$, then by (3.4) we get

$$(5.3) \ 0 \le f\left(\ell_{Q(R)}\left(f'\right)\right) - \int_{0}^{\frac{\pi}{2}} \cos\theta f\left(\tan\left(\theta\right)\right) d\theta \le \left(\ell_{Q(R)}\left(f'\right) - 1\right) f'\left(\ell_{Q(R)}\left(f'\right)\right),$$

for $f:(0,\infty)\to\mathbb{R}$ convex and provided that the involved integral exist.

We can also consider the circular sector

$$Q\left(R,\theta_{1},\theta_{2}\right):=\left\{ \left(x,y\right)|\ x=r\cos\theta,\ y=r\sin\theta\ \text{with}\ r\in\left[0,R\right],\ \theta\in\left[\theta_{1},\theta_{2}\right]\right\},$$
 where $\left[\theta_{1},\theta_{2}\right]\subset\left[0,\frac{\pi}{2}\right]$.

Ther

$$\int \int_{Q(R,\theta_1,\theta_2)} P_f(x,y) dx dy = \frac{R^3}{3} \int_{,\theta_1}^{\theta_2} \cos \theta f(\tan(\theta)) d\theta$$
$$A_{Q(R,\theta_1,\theta_2)} = \frac{R^2}{2} (\theta_2 - \theta_1),$$
$$\frac{1}{x_{Q(R,\theta_1,\theta_2)}} = \frac{2R}{3} \frac{\sin \theta_2 - \sin \theta_1}{\theta_2 - \theta_1}$$

$$\overline{y_{Q(R,\theta_1,\theta_2)}} = \frac{2R}{3} \frac{\cos \theta_1 - \cos \theta_2}{\theta_2 - \theta_1}.$$

We also have

$$J_{Q(R,\theta_1,\theta_2)} := \frac{2R}{3} \frac{1}{\theta_2 - \theta_1} \left[\int_{\theta_1}^{\theta_2} \frac{\sin^2 \theta}{\cos \theta} d\theta - \frac{(\cos \theta_2 - \cos \theta_1)^2}{\sin \theta_2 - \sin \theta_1} \right].$$

Since

$$\int_{\theta_1}^{\theta_2} \frac{\sin^2 \theta}{\cos \theta} d\theta = \ln \left(\frac{\tan \left(\frac{\theta_2}{2} + \frac{\pi}{4} \right)}{\tan \left(\frac{\theta_1}{2} + \frac{\pi}{4} \right)} \right) - \left(\sin \theta_2 - \sin \theta_1 \right),$$

hence

$$\begin{split} & \int_{\theta_1}^{\theta_2} \frac{\sin^2 \theta}{\cos \theta} d\theta - \frac{\left(\cos \theta_2 - \cos \theta_1\right)^2}{\sin \theta_2 - \sin \theta_1} \\ & = \ln \left(\frac{\tan \left(\frac{\theta_2}{2} + \frac{\pi}{4}\right)}{\tan \left(\frac{\theta_1}{2} + \frac{\pi}{4}\right)}\right) - \frac{\left(\sin \theta_2 - \sin \theta_1\right)^2 + \left(\cos \theta_2 - \cos \theta_1\right)^2}{\sin \theta_2 - \sin \theta_1}. \end{split}$$

Moreover,

$$\frac{y}{x} = \frac{\sin \theta}{\cos \theta} = \tan (\theta) \in [\tan (\theta_1), \tan (\theta_2)]$$

and by (3.14) we get

$$(5.4) \quad 0 \leq \frac{1}{\theta_2 - \theta_1} \int_{,\theta_1}^{\theta_2} \cos \theta f(\tan(\theta)) d\theta - \frac{\sin \theta_2 - \sin \theta_1}{\theta_2 - \theta_1} f\left(\frac{\cos \theta_1 - \cos \theta_2}{\sin \theta_2 - \sin \theta_1}\right)$$

$$\leq \|f''\|_{[\tan(\theta_1), \tan(\theta_2)], \infty}$$

$$\times \frac{1}{\theta_2 - \theta_1} \left[\ln\left(\frac{\tan\left(\frac{\theta_2}{2} + \frac{\pi}{4}\right)}{\tan\left(\frac{\theta_2}{2} + \frac{\pi}{4}\right)}\right) - \frac{(\sin \theta_2 - \sin \theta_1)^2 + (\cos \theta_2 - \cos \theta_1)^2}{\sin \theta_2 - \sin \theta_1} \right]$$

provided $f:(0,\infty)\to\mathbb{R}$ is twice differentiable convex on $(0,\infty)$ and $[\theta_1,\theta_2]\subset[0,\frac{\pi}{2}]$.

By utilising the above general results the interested reader may obtain other inequalities for the integral of perspective on the circular sectors. The details are not presented here.

References

- [1] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54(1948), 439-460.
- [2] P. Cerone and S. S. Dragomir, A refinement of the Grüss inequality and applications, Tamkang J. Math. Volume 38, Number 1, 37-49, Spring 2007. Preprint RGMIA Res. Rep. Coll. 5 (2002), No. 2, Art. 14. [Online http://rgmia.org/papers/v5n2/RGIApp.pdf].
- [3] S. S. Dragomir, Two refinements of Hadamard's inequalities. Zb. Rad. (Kragujevac) No. 11 (1990), 23–26.
- [4] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Aust. J. Math. Anal. Appl. 14 (2017), no. 1, Art. 1, 283 pp.
- [5] S. S. Dragomir, Double integral inequalities of Hermite-Hadamard type for h-convex functions on linear spaces. Analysis (Berlin) 37 (2017), no. 1, 13–22.
- [6] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online https://rgmia.org/monographs/hermite_hadamard.html].
- [7] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985), 229–232.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E\text{-}mail\ address: \verb"sever.dragomir@vu.edu.au"$

 URL : http://rgmia.org/dragomir

 2 DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, & Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa