HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR
PERSPECTIVE FUNCTION

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let f:(0,00) — R be a convex function on (0, 00). The associated
two variables perspective function Py : (0,00) X (0,00) — R is defined by
— Y
Py (z,y) :=af <a:> .

In this paper we establish some basic and double integral inequalities for the
perspective function Py defined above. Some double integral inequalities in
the case of rectangles, squares and circular sectors are also given.

1. INTRODUCTION

The following inequality holds for any convex function f defined on R

(L)) (b—a)f (““’) /f Jdz < ( )f();rfu, 4, bER, a<b.

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [7]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In
1974, D. S. Mitrinovié¢ found Hermite’s note in Mathesis [7]. Since (1.1) was known
as Hadamard’s inequality, the inequality is now commonly referred as the Hermite-
Hadamard inequality. For a monograph devoted to this inequality see [6]. Related
results can be also found in [4].

In 1990, [3] the author established the following refinement of Hermite-Hadamard
inequality for double and triple integrals for the convex function f : [a,b] — R

)<t e

b ///f ((1—t x+ty)dtdxdy<ﬁ abf()

More recently, [5] we obtalned a different double integral inequality of Hermite-
Hadamard type for the convex function f : [a,b] — R,

(1.3) f(a;b> T // <O‘“+ﬂb>dﬁda§f@);“b)

where 0 < ¢ < d.
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Let f : (0,00) — R be a convex function on (0, 00). The associated two variables
perspective function Py : (0,00) x (0,00) — R is defined by

(1.4) Pi(z,y) =af (%) .

In this paper we establish some basic and double integral inequalities for the
perspective function Py defined above. Some integral inequalities in the case of
rectangles, squares and circular sectors are also given.

2. GENERAL RESULTS
We start with the following fundamental fact.

Lemma 1. Let f : (0,00) — R be a convez function on (0,00). Then the perspective
function Py : (0,00) x (0,00) — R defined by (1.4) is convex on (0,00) x (0,00).

Proof. Let (z1,y1), (x2,y2) € (0,00) x (0,00) and a, 8 > 0 with a+ 3 =1, then
Py (a(z1,y1) + B (x2,92)) = Py (awy + Bag, ayr + y28)

= (azy + Bx2) f (i.illiyéf)

Y Y2
azyy + Bo =
axy + P

oaxy Y1 RE Y2
< (az1 + PBz2) [Wf (x1> * mf (5”2)}

=arf (iﬁ) + Braf (ii) = Py (21,41) + BPs (22, y2),

which proves the joint convexity. ([l

= (awy + Bag) f (

We have the following basic inequality for two values of the perspective function:

Theorem 1. Let f : (0,00) — R be a differentiable convex function on (0,00).
Then for all (z,y), (u,v) € (0,00) x (0,00) we have the double inequality

2 F(D) -0+ (1) (M) 2 P ) - Py o)
21 (3) @ (3) (M)

The inequality (2.1) is equivalent to the following two inequalities

22 Pz ar (5) 47 (2) (25)

u
and

2 P = g (2) - (2) (2520)

xT x

for all (z,y), (u,v) € (0,00) x (0,00).
The inequality (2.1) is also equivalent to the double inequality

o0 P et ()2 m e () 1 () - )
for all (z,y), (u,v) € (0,00) x (0,00).
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Proof. Observe that the following partial derivatives exist and for all (z,y) €
(0,00) x (0,00)

Also, for all (u,v) € (0,00) x (0,00) we have
0Py (u,v) v v, (v
o =) ()

and

1 (3)

u

Since Py is a convex function on (0,00) X (0,00), then for all (z,y), (u,v) €
(0,00) x (0,00) we have the gradient inequality

OPs (z,y) 0P (z,y)
T(m—u)—i— oy (y —v)
> P (z,y) — Py (u,v)
0Py (u,v) 0Py (u,v)
Oz (x—u)—&—T(y—v),

AV

namely, by the calculations above,

0 (- Ga-o

T
pr (Iay)fpf (u,v)

[ (D)- L) wer (-

Since
1) o () e (3) =
(2 e-w+r(C)-v-<f(2) @-u
=1 (s (e o)
() -+ (2) (2
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and
ORTO I R
(D) e-w-2rE)e-w+r (L) u-v
() e-w+r (D e-v-2r (L) @-w
(s (9 (252).

hence by (2.5) we get (2.1).
Now, observe that

() e-wer(2) (1)
1)1 e () ()
=1 (B pr () ()

and by the second inequality in (2.1) we get

prta) = 21 ()2 Fr o7 () (5)

u

namely (2.2).
Also,

f <yu xv>
<> oy HOIC=3
~rpta-u (2) 4 (2) (252)

and by the first inequality in (2.1) we have

Py —uf (2) 4 7 (2) (B55) 2 Py e = Py o),

T

namely (2.3).
The inequality (2.3) can also be written as

PO () (G 2 (3):

By multiplying this inequality by x and dividing with u we get

P (22 ar (D) 2 e,

which proves the last part of the theorem.
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Corollary 1. With the assumptions of Theorem 1 we have

2o 1) -r () () @-nzrren-rrea

e e

(2.7) F(2) @02 Prey) - Prao) = f (5) =)
and
@8) (L) =L (Y] @-w = Pr@y) - Pr(wy)

=) -2 (2 e

If f is normalized, namely f (1) =0, then
29 f(E)e-w+f () y-0 =Py > Q-2

T
and

(2.10) () -2 Py = O)y-a.

Remark 1. From the inequality (2.4) we have for v =y and v = x, that

o ) (755 ()2 2o () or () (557)

By taking u = x in (2.4), we get
@12) (L) w-v+af(C) 2@y zar (D)1 (5) w-v).

v v
x T

Also, forv =1y in (2.4), we get
i £(2) () orat (U 2 e zer () 1 (2) (450w

Consider the convex function f (t) = —Int, ¢ > 0. Then by the inequality (2.4)
we get

2

(2.14) “—x—&-xln(zj)len(x)len(3)+x_w

yu Y v

for all (x,y), (u,v) € (0,00) x (0,00).
If we divide by « > 0, then we get

(2.15) Z—l+ln(3)>ln<;€)>ln(z>+1_iz

for all (z,y), (u,v) € (0,00) x (0,00).
Also, consider the convex function f(¢) = tlnt, ¢ > 0. Then by the inequality
(2.4) we have

(n(2) ) (- 2)+ Zn(2) 2 (Y
5 (2)+ (n(3) +1) - 5)
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namely, by division with y > 0,

(2.16) (1n( )+1) (1 - yu) + y—ul (u)
(Y
)+ () ) - 2)
for all (z,y), (u,v) € (0,00) x (0,00).

3. DOUBLE INTEGRAL INEQUALITIES

Consider G a closed and bounded subset of (0,00) x (0,00) . Define

Ag ::// dzxdy

the area of G and (mg,y(; ) the centre of mass for G, where

Tg = // zdzxdy, yg = // ydzdy.
Ac

Observe that if f : (0,00) — R is convex and G a closed and bounded subset of
(0,00) x (0,00), then the double integral

//GPf (m,y)d;vdy://Gacf (%) dzdy
exists.

We have the following main result:

Theorem 2. If f : (0,00) — R is differentiable convex on (0,00) and G a closed
and bounded subset of (0, oo) x (0,00), then

GRS [// yd:cdy— 7// xd:cdy} +9cgf(2)
_AG//Pf v,y)dedy > 757 (V) + (76 -7a2) 7' (%)

for all (u,v) € G.

Proof. By taking the mtegral in the inequality (2.4) over (z,y) on G, we get

(3.2) // y—— d:cdy+//a:f dxdy
//Pf y) dzdy
2//G:ch " d:cdy—f—// a:)

//f’ 6 y_ﬂ)d:,;dy
/ / Y ydrdy —* / / Y dwdy,

Observe that
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//sz(%)dzdy:f(%)//Gmdxdy:@Ach)

L7 @) -2y aan=r (2) [ [ o 2) o
—AG< G—TG- )f’(%)

By replacing these values in (3.2) and dividing by the area Ag we obtain the desired
result (3.1). O

and

Corollary 2. With the assumptions of Theorem 2 we have

LG//GPf (@) dudy — TG f (yG)
- AG // < yz )dxdy

The proof follows by taking £ = Z< in (3.1).

TG

We define for f: (0,00) — R a differentiable function on (0, c0) the quantity

S Jo I (%) ydudy
[ S £ (%) wdzdy’

provided that the denominator is nonzero.

la (f') =

Corollary 3. With the assumptions of Theorem 2 and if £g (f') > 0, then
34 0<7af (66 (1) =5 [ [ Prlendody > wata (1) =~ 50) 1t (7).

The proof follows by taking £ = £g (f') in (3.1).
We observe that the condition f is strictly increasing on (0,00) implies that

la (f/) > 0.
In 2002, Cerone and Dragomir [2] obtained the following refinement of Griiss
inequality for the general Lebesgue integral:

Lemma 2. Let w, f, g : Q@ — R be u-measurable functions on £ and w > 0
u-almost everywhere on . If there exists the constants §, A such that

—00< I <g< A<,

u-almost everywhere on ), then

f@)g@du(z) [ow(z)g(x)du(z) [ow ) dp (z)
f w (z) dp () f (x) ) fg ()du()

;fg x; )/Q g(y)— @ /Qw dp ()| dps (y) -

The constant % 18 best possible.

(3.5) Jo

‘We have:
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o0) — R is differentiable convex on (0,00) and G a closed

Theorem 3. If f : ( ,
of (0,00) x (0,00). Assume that there exists the constants v, T’

and bounded subset
such that
(3.6) —oo<'y<f(x><F<oo

for almost every (z,y) € G, then

(3.7) o<7//Pf dxdyng<g>

1
dady < 2 (T = 7) 102,

where

=ac ] e ) ] [ [
Ia AG// dxdy GAG zydzdy + =) Ag dxdy

Proof. Observe that

L// (yycx) dxdy = € (// ydzdy—g// xdzdy)
Ac ) Ja Tg Ag e za ) Ja

Then by the inequality (3.5) for functions defined on G we get

// (y—yzx>da:dy’= i//f’ Q (y—iix)dxdy
O L e

5, //( v)dudv
Sa“‘”%//c‘y‘iif“

1 — ([ Yc
i | [ e sy -z ()
1 1 Ya
2O [ [ -

which proves the second inequality in (3.7).
Using Cauchy-Schwarz inequality for the double integral, we have

iy < ( [ (o) dmy)

dxdy

1
<I(r-
<5 7AG

dxdy.

By utilising (3.3) we get

o
IN

IA

dxdy,

(3.8)

i€l
Yy— —2
ra

Ag
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Since

-8 o[- (2) )
- o | [t () [ o

hence by (3.8) we get the last part of (3.7). O

&Hm

Corollary 4. With the assumptions of Theorem 3 and if there exists 0 < m <
M < oo such that

(3.9 % € [m, M] for all (z,y) € G,

then

(3.10) 0<—//Pf xy)d:cdy—xcf( )

< < [f (M) - drdy < = [f( ) — ' (m)] 1.

y——x

1
2 AG

Proof. Since f’ is increasing, then by (3.9) we have f/ (m) < f' (£) < f/ (M), and
by (3.7) we get the desired result. O

‘We have:

,00) — R is differentiable convex on (0,00) and G a closed
f (0,00) x (0,00). Assume that there exists the constants v, T’

1) -r Glsals -l <=

T

Theorem 4. If f : (
and bounded subset o
such that

(3.11)

for almost every (x,y) € G, then

(3.12) OgA—//Pf T,y dxdy—ng< ><AJG,
G

where
1 2 v6)?
Jg = —// y—dmdy— @
AG a T el
Proof. Observe that

I
L ()
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Therefore

(3.13) // <y — sz) dxdy
G

1 /(Y (VG
S Ll ()] - )
1 e Y
<aM LG5 (v ) aes
= ! (y—yG> y—yG> xdxdy
Ag xra r xqg

Since

2
//l2 yGy-ﬁ-(m)]wdxdy
xT rg ¥ rqg
// y—dmd —2 // a:dxdy—i—(y) //xdmdy
G

G y? (7e)
// —dxdy — 2AGyG+Ag< ) ﬁ:// “—dxdy — Ag-———,

TG G T TG

hence

AG//G[ﬁ_2ﬁz+< ”xdxdy_AG//ydd

and by (3.13) we get (3.12).

Corollary 5. If f : (0,00) — R is twice differentiable convex on (0,00) and if there
exists 0 < m < M < oo such that the condition (3.9) holds, then we have

(3.14) 0< —// Py (z,y dwdy—mf( ) < N vay,00 65

where

)

O

sup |f' (#)] < ox.

||f”H[m7M]7oo =
te[m,M]

4. EXAMPLES FOR FUNCTIONS DEFINED ON RECTANGLES

a,b] x [¢,d] is a rectangle from (0, 00) x (0,00), then

//pfxydmdy_/ (/ f(i)c@)dx:/abx?(/:f(u)du>dw
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and

b d
Ac=(b—a)(d—0), 7,:“; and%:cz

If F is an antiderivative for f, namely F’(z) = f(x), then integrating by
parts we have the following identity that can be used in applications to calculate

f; fcd Pf (xa y) dxdy

We also have

I (d3—c) c—i—d(b 2)(d2—02)
fab]xcle.d] = ( —¢) “atb 4(b—a)(d—c)
<c—|—d> —c) (b — a®)
a+b/) 3(b-—a)({d-rc)
(d2+dc+c _c+d(b+a)(d+c)+<c+d>2(b2+ba+a2)
3 a+b 2 a+b 3

1
6 (a+b)°
X [2(d2+dc+c2) (a+b)°=3(b+a)*(d+c)+2(d+c)? (b2+ba+a2)]
1
6(a+b)°
x [2 ((dm)%dc) (@a+0)2—3(0b+a)(d+c)+2(d+c)? ((bm)tba)}
1

:m |:(d+c)2(a+b)2_2dc(a+b)2_2ba(d+c)2:| -



12 S.S. DRAGOMIR

On the other hand,

o c+d)
Jlap)x[e,d) = 7 _C// dxdy (atb)
_(1nb_1na)(d2+dc+c2) (c+d)*
3(b—a) 2(a+b)
If (z,y) € [a,b] X [e,d] C (0,00) x (0,00), then
m:g<g<£l:M
b~ x " a

From the inequality (3.10) we have for a differentiable convex function f :
(0,00) = R

R
<317 (2)- f(bﬂ =3
2\f(a+b) [f@)_f’(zﬂ

X [(d 4% (a+b)? — 2dc(a+ b)> — 2ba (d + ¢)?

x| dxdy

}1/2.

If f:(0,00) — R is twice differentiable convex function, then by (3.14)

142) o< gt [ [ -2 (20

<1 s 4]0 [Unb_lna) (®+det+c?)  (c+d)’

3(b—a) 2(a +b)

The case of squares [a, b] X [a, b] provides simpler forms as follows,

(4.3) 0< o //Pf mydxdy—if()

<l [f’ (Z)f (‘;)] (bla)Q/ / ly — 2| dudy
Q)

for a differentiable convex function f : (0,00) — R and [a, b] C (0,00), and

O |

(4.4) Pf v,y) dedy — 07 (1)

g (Inb—Ina) (a*>+ab+b?) a+b
< 17N rg 200 30— a) T2

if f:(0,00) — R is twice differentiable convex function and [a, b] C (0, 00).
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5. EXAMPLES FOR FUNCTIONS DEFINED ON CIRCULAR SECTORS

We consider the first quarter of the circle
Q(R):= {(x,y)| x=rcosl, y=rsind withr € [0,R], 6 € {0, g] }

Using the polar coordinates change of variable we have

//Q(R) P (z,y) dedy = //Q(R) zf (%) dxdy

R 3 3
:/0 /0 rzcosﬂf(tan(ﬁ))drdﬁjf/o cos@f (tan (0)) do

where f : (0,00) — R is convex and the integral fog cos@f (tan (9)) d@ is finite.

We have P ,
Aq(r) = // dxdy :/ /2 rdrdf = i
Q(R) o Jo 4

T b // xdxdy L /R/Z 72 cos Odrde 1 R
Q R) ‘= = T = —
W Ao J o) = Jo Jo 3

R ™

1 // dad 1//22'0dd0 4R
7 = ydzdy = —5 r“sinfdrdfd = —R.
U Aam J Jam == Jo Jo 3T

From the inequality (3.3) we have

and

(5.1) 0< /02 cosff (tan (0))df — f (1) < /07 1 (tan (0)) (sin @ — cos 0) do,

for f: (0,00) — R convex and provided that the involved integral exist.
Consider

_ fo% 1! (tan (9)) cos 6d0
[ 7 (tan (8)) sin 0d6

provided the involved integrals exists and assume that £g(g) (f") > 0, then by (3.4)
we get

(5.2) lor) (') :

™

(5.3) 0= f (Locr) (f’))—/ cosOf (tan (0)) d0 < (boer) (f') — 1) f' (Lo () -
0
for f: (0,00) — R convex and provided that the involved integral exist.
We can also consider the circular sector
Q(R,01,03) :=={(z,y)| x =rcosf, y=rsind with r € [0, R], 0 € [01,02]},
where [01, 62] C [O, g] .
Then

3 b2
// Pi (z,y) dedy = = cos@f (tan (0)) do
Q(R.0:,62) 3 Jo

R2
AQ(R791,92) = 9 (92 - 91) )

2R sin A5 — sin 6,
LQ(R,01,02) = 3 0y — 0,
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and
2R cos 1 — cos O,
YQ(R,01,02) = 3 6,-6,

We also have

JQ(R791,92) T ? 0y — 0,

2R 1 92 in2 g (cos s — cos 01)2
do
0

cos sin @9 — sin 64
Since
02 in2 g tan (2 + 2
/ 7 0= (02 4) — (sinfy —sinéy),
b cosd ton (5 + %)
hence
%2 gin? g (cos By — cos 0y)”
df — — .
9, cosl sin @9 — sin 04
I tan (%2 + T) ~ (sinfp — sin01)® + (cos 3 — cos 91)2.
tan (9—21 + g) sin 0y — sin 6,
Moreover,
y  sinf

A = tan (0) € [tan (61) , tan (62)]
and by (3.14) we get

1 02 sin 05 — sin 6, cos 1 — cos by
4 P 3 —
(54) 0= 0o — 0, /91 cos 0 (tan (6)) df 0 — 6, / (siné‘g — sin 6, )

< isan(o1), san(82)],00

" 1 tan (% + 7) (sin B — sin 6;)” + (cos O3 — cos 0;)*
n J—
02 — 0, tan (%1 +1) sin @y — sin 6,

provided f : (0,00) — R is twice differentiable convex on (0,00) and [01,602] C
[0.5]

2

By utilising the above general results the interested reader may obtain other
inequalities for the integral of perspective on the circular sectors. The details are
not presented here.

REFERENCES

(1] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54(1948), 439-460.

[2] P. Cerone and S. S. Dragomir, A refinement of the Griiss inequality and applications, Tamkang
J. Math. Volume 38, Number 1, 37-49, Spring 2007. Preprint RGMIA Res. Rep. Coll. 5 (2002),
No. 2, Art. 14. [Online http://rgmia.org/papers/vbn2/RGIApp.pdf].

(3] S. S. Dragomir, Two refinements of Hadamard’s inequalities. Zb. Rad. (Kragujevac) No. 11
(1990), 23-26.

[4] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results.
Aust. J. Math. Anal. Appl. 14 (2017), no. 1, Art. 1, 283 pp.

[5] S.S. Dragomir, Double integral inequalities of Hermite-Hadamard type for h-convex functions
on linear spaces. Analysis (Berlin) 37 (2017), no. 1, 13-22.

[6] S. S. Dragomir and C. E. M. Pearce, Selected  Topics on  Hermite-
Hadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online
https://rgmia.org/monographs/hermite_hadamard.html].

[7] D. S. Mitrinovi¢ and I. B. Lackovi¢, Hermite and convexity, Aequationes Math. 28 (1985),
229-232.



INTEGRAL INEQUALITIES FOR PERSPECTIVE FUNCTION 15

IMATHEMATICS, COLLEGE OF ENGINEERING & SCIENCE, VICTORIA UNIVERSITY, PO Box 14428,
MELBOURNE CiTY, MC 8001, AUSTRALIA.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

2DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES,
ScHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-
SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA





