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Abstract. In this paper, we established some new approximation formulas

for calculating Glaisher-Kinkelin constant.

1. Introduction

The Glaisher-Kinkelin Constant A = 1.28242713 . . . is defined by

A = lim
n→∞
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It is very important to construct new sequences which converge to these funda-
mental constants with increasingly higher speed. The Glaisher-Kinkelin Constant
first appeared in Bares[1] and is also related to Riemann zeta function ζ, or the
Euler-Mascheroni constant γ = 0.5772 such as
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}
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Many useful formulas related to A exist, such as∫ ∞
0

x lnx
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4
lnπ +
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2
lnA.

in references[3, 4, 5].
To our knowledge, one of the useful sequences is

un =
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k=1

k ln k −
(
n2

2
+
n

2
+

1

12

)
lnn+

n2

4
(1.1)

which converges constant lnA. Up to now, many mathematicians made great efforts
in the area of concerning the rate of convergence of these sequences and establishing
faster sequences to converge to constant A. In [7], Mortici showed an inequality for
constant A.

un −
1
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5040n4
− 1

10080n6
< lnA < un −

1

720n2
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5040n4
. (1.2)
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Later, Lu and Mortici[6] also established a convergent sequence for the Glaisher-
Kinkelin Constant as follows
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k ln k −
(
n2

2
+
n

2
+

1

12

)
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+ · · ·
)
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4
(1.3)

where a3 = 1
360 , a4 = − 1

360 and a5 = 29
15120 . Based on this sequence, they also

gave a new inequality for constant A. Recently, You[10] established the following
approximate sequence

wn(i) =
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n2

4
(1.4)

where η0(n) = 0, η1(n) = a1
n3+b2n2+b1n+b0

, · · · Hence, he proved the following in-
equality
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. (1.5)

In view of (1.1), we define the sequence {αn}n∈N and {βn}n∈N by
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(1.7)
We are devote to finding the values of the parameters p, q, r, s, t such that {αn}n∈N
and {βn}n∈N are the fastest sequences which would converge to zero. In fact, this
provides the best approximations of the form (1.6) and (1.7).

2. Main results

The following Lemma is useful.

Lemma 2.1. If the sequence {λn}n∈N converges to zero and if there exists the
following limit

lim
n→∞

nk (λn − λn+1) = l, (k > 1).

Then

lim
n→∞

nk−1λn =
l

k − 1
.

Remark 2.1. Lemma 2.1 was firstly proved by Mortici in [8]. It is very effective
for accelerating the speed of convergence of the sequence or in constructing some
asymptotic expansions.

Theorem 2.1. Let the sequence {αn}n∈N be defined by (1.6). Then for p = 1, q =
1
6 ±

1
15

√
5, we have lim

n→∞
n4 (αn − αn+1) = 1

240 and lim
n→∞

n3αn = 1
720 . That is the

speed of convergence of the sequence {αn}n∈N is given by the order O(n−3).
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Proof. We calculate the difference αn − αn+1 as the following power series in 1
n :

αn − αn+1 =
(
1
2qp−

1
2q
)
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2qp− qp
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2
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)
.

Applying Lemma 2.1, the parameters p, q which produce the fastest convergence
are given by {

1
2qp−

1
2q = 0,

1
360 + 1

3q + 1
2qp− qp

2 + 1
2q

2 = 0.

Simple computation results in p = 1, q = 1
6 ±

1
15

√
5. Furthermore, we get

αn − αn+1 =
1
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1

n4
+O

(
1
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)
.

Using Lemma 2.1 again, we complete the proof. �

Theorem 2.2. Let the sequence {βn}n∈N be defined by (1.7). Then for s = t =

0, r = 1
6 ±

1
15

√
5, we have lim

n→∞
n4 (βn − βn+1) = 1

80 and lim
n→∞

n3βn = 1
240 . That is

the speed of convergence of the sequence {βn}n∈N is given by the order O(n−3).

Proof. From (1.7), we can easily obtain βn−βn+1 and write the difference on power
of 1

n as
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2
1
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.

Following similar method used in the proof of Theorem 2.1, the parameters r, s, t
satisfy the following equation:

s
2 = 0,
3
2s+ 1

2 t = 0,
1
2r

2 − 1
6r + 1

360 = 0.

So we have s = t = 0 and r = 1
6 ±

1
15

√
5. Applying Lemma 2.1, the proof is

complete. �

Remark 2.2. The numerical computation were performed by using the Maple soft-
ware.

Theorem 2.2 prompts us to pose the following open problem:

Open Problem 2.1. Find the best constants rj , (j ∈ N) such that

lnA ∼
n∑
k=1

k ln k −
(
n2

2
+
n

2
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12

)
ln

n+

∞∑
j=1

rj
(n+ 1)j

+
n2

4
.

Remark 2.3. It is worth noting that Chen[2] gave the asymptotic representation of
the Glaisher-Kinkelin constant

1122 · · ·nn ∼ A · nn2

2 +n
2 + 1

12 e−
n2

4 exp
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−Bk+2

k(k + 1)(k + 2)

1
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}
by using Euler-Maclaurin formula where Bk is Bernoulli number. Later, Wang and
Liu[9] showed

1122 · · ·nn ∼ A · nn2
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