
SOME HERMITE-HADAMARD TYPE INTEGRAL
INEQUALITIES FOR CONVEX FUNCTIONS DEFINED ON

CONVEX BODIES IN Rn

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper, by the use of Divergence Theorem, we establish
some integral inequalities of Hermite-Hadamard type for convex functions of
several variables de�ned on closed and bounded convex bodies in the Euclidean
space Rn for any n � 2:

1. Introduction

In the following, consider D a closed and bounded convex subset of R2. De�ne

AD :=

Z Z
D

dxdy

the area of D and (xD; yD) the centre of mass for D; where

xD :=
1

AD

Z Z
D

xdxdy; yD :=
1

AD

Z Z
D

ydxdy:

Consider the function of two variables f = f (x; y) and denote by @f
@x the partial

derivative with respect to the variable x and @f
@y the partial derivative with respect

to the variable y:
In the recent paper [9] we obtained the following Hermite-Hadamard type in-

equalities:

Theorem 1. Let f : D ! R be a di¤erentiable convex function on D; a closed
and bounded convex subset of R2 surrounded by the smooth curve @D: Then for all
(u; v) 2 D we have

(1.1)
@f

@x
(u; v) (xD � u) +

@f

@y
(u; v) (yD � v) + f (u; v)

� 1

AD

Z Z
D

f (x; y) dxdy

� 1

3
f (u; v) +

1

3AD

I
@D

[(v � y) f (x; y) dx+ (x� u) f (x; y) dy] :
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In particular,

(1.2) f (xD; yD) �
1

AD

Z Z
D

f (x; y) dxdy

� 1

3
f (xD; yD) +

1

3AD

I
@D

[(yD � y) f (x; y) dx+ (x� xD) f (x; y) dy] :

We also have:

Corollary 1. With the assumptions of Theorem 1 we have

(1.3) f (xD; yD) �
1

AD

Z Z
D

f (x; y) dxdy

� 1

2AD

I
@D

[(yD � y) f (x; y) dx+ (x� xD) f (x; y) dy] :

Some examples for rectangle and disks on the plane were also provided in [9].
The case of convex function de�ned on convex body from space was considered

in [10] were we obtained the following result:

Theorem 2. Let B be a convex body in the three dimensional space R3 bounded
by an orientable closed surface @B and f : B ! C a continuously di¤erentiable
function de�ned on a open set containing B. If f is convex on B; then for any
(u; v; w) 2 B we have

(1.4) f (u; v; w) + (xB � u)
@f (u; v; w)

@x

+ (yB � v)
@f (u; v; w)

@y
+ (zB � w)

@f (u; v; w)

@z

� 1

V (B)

ZZZ
B

f (x; y; z) dxdydz

� 1

4
f (u; v; w) +

1

4

1

V (B)

�Z Z
@B

(x� u) f (x; y; z) dy ^ dz

+

Z Z
@B

(y � v) f (x; y; z) dz ^ dx+
Z Z

@B

(z � w) f (x; y; z) dx ^ dy
�
;

where

xB :=
1

V (B)

ZZZ
B

xdxdydz; yB :=
1

V (B)

ZZZ
B

ydxdydz

and

zB :=
1

V (B)

ZZZ
B

zdxdydz:

In particular, we have

(1.5) f (xB ; yB ; zB) �
1

V (B)

ZZZ
B

f (x; y; z) dxdydz

� 1

4
f (xB ; yB ; zB) +

1

4

1

V (B)

�Z Z
@B

(x� xB) f (x; y; z) dy ^ dz

+

Z Z
@B

(y � yB) f (x; y; z) dz ^ dx+
Z Z

@B

(z � zB) f (x; y; z) dx ^ dy
�
:
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We also have:

Corollary 2. With the assumptions of Theorem 2,

(1.6)
1

V (B)

ZZZ
B

f (x; y; z) dxdydz � 1

3

1

V (B)

�Z Z
S

(x� xB) f (x; y; z) dy ^ dz

+

Z Z
S

(y � yB) f (x; y; z) dz ^ dx+
Z Z

S

(z � zB) f (x; y; z) dx ^ dy
�
:

Examples for 3-dimensional balls and spheres were also considered in [10].
For other Hermite-Hadamard type integral inequalities for multiple integrals, see

[2]-[8], [11]-[15] and [17]-[19].
Motivated by the above results, in this paper, by the use of Divergence Theo-

rem, we establish some integral inequalities of Hermite-Hadamard type for convex
functions of several variables de�ned on closed and bounded convex bodies in the
Euclidean space Rn for any n � 2:

2. Some Preliminary Facts

Let B be a bounded open subset of Rn (n � 2) with smooth (or piecewise
smooth) boundary @B. Let F = (F1; :::; Fn) be a smooth vector �eld de�ned in
Rn, or at least in B[ @B. Let n be the unit outward-pointing normal of @B. Then
the Divergence Theorem states, see for instance [16]:

(2.1)
Z
B

divFdV =

Z
@B

F � ndA;

where

divF = r � F =
nX
k=1

@Fi
@xi

;

dV is the element of volume in Rn and dA is the element of surface area on @B.
If n = (n1; :::;nn), x = (x1; :::; xn) 2 B and use the notation dx for dV we can

write (2.1) more explicitly as

(2.2)
nX
k=1

Z
B

@Fk (x)

@xk
dx =

nX
k=1

Z
@B

Fk (x)nk (x) dA:

By taking the real and imaginary part, we can extend the above equality for
complex valued functions Fk; k 2 f1; :::; ng de�ned on B:
If n = 2, the normal is obtained by rotating the tangent vector through 90�

(in the correct direction so that it points out). The quantity tds can be written
(dx1; dx2) along the surface, so that

ndA := nds = (dx2;�dx1)
Here t is the tangent vector along the boundary curve and ds is the element of

arc-length.
From (2.2) we get for B � R2 that

(2.3)
Z
B

@F1 (x1; x2)

@x1
dx1dx2 +

Z
B

@F2 (x1; x2)

@x2
dx1dx2

=

Z
@B

F1 (x1; x2) dx2 �
Z
@B

F2 (1; x2) dx1;

which is Green�s theorem in plane.
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If n = 3 and if @B is described as a level-set of a function of 3 variables i.e. @B =�
x1; x2; x3 2 R3 j G(x1; x2; x3) = 0

	
, then a vector pointing in the direction of n is

gradG. We shall use the case where G (x1; x2; x3) = x3 � g(x1; x2); (x1; x2) 2 D;
a domain in R2 for some di¤erentiable function g on D and B corresponds to the
inequality x3 < g(x1; x2), namely

B =
�
(x1; x2; x3) 2 R3 j x3 < g(x1; x2)

	
:

Then

n =
(�gx1 ;�gx2 ; 1)�
1 + g2x1 + g

2
x2

�1=2 ; dA = �1 + g2x1 + g2x2�1=2 dx1dx2
and

ndA = (�gx1 ;�gx2 ; 1) dx1dx2:
From (2.2) we get

(2.4)
Z
B

�
@F1 (x1; x2; x3)

@x1
+
@F2 (x1; x2; x3)

@x2
+
@F3 (x1; x2; x3)

@x3

�
dx1dx2dx3

= �
Z
D

F1 (x1; x2; g(x1; x2)) gx1 (x1; x2) dx1dx2

�
Z
D

F1 (x1; x2; g(x1; x2)) gx2(x1; x2)dx1dx2

+

Z
D

F3 (x1; x2; g(x1; x2)) dx1dx2

which is the Gauss-Ostrogradsky theorem in space.
Following Apostol [1], we can also consider a surface described by the vector

equation

(2.5) r (u; v) = x1 (u; v)
�!
i + x2 (u; v)

�!
j + x3 (u; v)

�!
k

where (u; v) 2 [a; b]� [c; d] :
If x1; x2; x3 are di¤erentiable on [a; b]� [c; d] we consider the two vectors

@r

@u
=
@x1
@u

�!
i +

@x2
@u

�!
j +

@x3
@u

�!
k

and
@r

@v
=
@x1
@v

�!
i +

@x2
@v

�!
j +

@x3
@v

�!
k :

The cross product of these two vectors @r@u�
@r
@v will be referred to as the fundamental

vector product of the representation r: Its components can be expressed as Jacobian
determinants. In fact, we have [1, p. 420]

@r

@u
� @r

@v
=

������
@x2
@u

@x3
@u

@x2
@v

@x3
@v

�������!i +
������
@x3
@u

@x1
@u

@x3
@v

@x1
@v

�������!j +
������
@x1
@u

@x2
@u

@x1
@v

@x2
@v

�������!k(2.6)

=
@ (x2; x3)

@ (u; v)

�!
i +

@ (x3; x1)

@ (u; v)

�!
j +

@ (x1; x2)

@ (u; v)

�!
k :
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Let @B = r(T ) be a parametric surface described by a vector-valued function r
de�ned on the box T = [a; b] � [c; d] : The area of @B denoted A@B is de�ned by
the double integral [1, p. 424-425]

A@B =

Z b

a

Z d

c





 @r@u � @r

@v





 dudv(2.7)

=

Z b

a

Z d

c

s�
@ (x2; x3)

@ (u; v)

�2
+

�
@ (x3; x1)

@ (u; v)

�2
+

�
@ (x1; x2)

@ (u; v)

�2
dudv:

We de�ne surface integrals in terms of a parametric representation for the surface.
One can prove that under certain general conditions the value of the integral is
independent of the representation.
Let @B = r(T ) be a parametric surface described by a vector-valued di¤erentiable

function r de�ned on the box T = [a; b] � [c; d] and let f : @B ! C de�ned and
bounded on @B: The surface integral of f over @B is de�ned by [1, p. 430]Z Z

@B

fdA =

Z b

a

Z d

c

f (x1; x2; x3)





 @r@u � @r

@v





 dudv(2.8)

=

Z b

a

Z d

c

f (x1 (u; v) ; x2 (u; v) ; x3 (u; v))

�

s�
@ (x2; x3)

@ (u; v)

�2
+

�
@ (x3; x1)

@ (u; v)

�2
+

�
@ (x1; x2)

@ (u; v)

�2
dudv:

If @B = r(T ) is a parametric surface, the fundamental vector product N =
@r
@u �

@r
@v is normal to @B at each regular point of the surface. At each such point

there are two unit normals, a unit normal n1, which has the same direction as N ,
and a unit normal n2 which has the opposite direction. Thus

n1 =
N

kNk and n2 = �n1:

Let n be one of the two normals n1 or n2: Let also F be a vector �eld de�ned on
@B and assume that the surface integral,Z Z

@B

(F � n) dA;

called the �ux surface integral, exists. Here F � n is the dot or inner product.
We can write [1, p. 434]Z Z

@B

(F � n) dA = �
Z b

a

Z d

c

F (r (u; v)) �
�
@r

@u
� @r

@v

�
dudv

where the sign " + " is used if n = n1 and the "� " sign is used if n = n2:
If

F (x1; x2; x3) = F1 (x1; x2; x3)
�!
i + F2 (x1; x2; x3)

�!
j + F3 (x1; x2; x3)

�!
k

and

r (u; v) = x1 (u; v)
�!
i + x2 (u; v)

�!
j + x3 (u; v)

�!
k where (u; v) 2 [a; b]� [c; d]
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then the �ux surface integral for n = n1 can be explicitly calculated as [1, p. 435]Z Z
@B

(F � n) dA =
Z b

a

Z d

c

F1 (x1 (u; v) ; x2 (u; v) ; x3 (u; v))
@ (x2; x3)

@ (u; v)
dudv(2.9)

+

Z b

a

Z d

c

F2 (x1 (u; v) ; x2 (u; v) ; x3 (u; v))
@ (x3; x1)

@ (u; v)
dudv

+

Z b

a

Z d

c

F3 (x1 (u; v) ; x2 (u; v) ; x3 (u; v))
@ (x1; x2)

@ (u; v)
dudv:

The sum of the double integrals on the right is often written more brie�y as [1, p.
435]Z Z

@B

F1 (x1; x2; x3) dx2 ^ dx3 +
Z Z

@B

F2 (x1; x2; x3) dx3 ^ dx1

+

Z Z
@B

F3 (x1; x2; x3) dx1 ^ dx2

Let B � R3 be a solid in 3-space bounded by an orientable closed surface @B,
and let n be the unit outer normal to @B. If F is a continuously di¤erentiable
vector �eld de�ned on B, we have the Gauss-Ostrogradsky identity

(GO)
ZZZ

B

(divF ) dV =

Z Z
@B

(F � n) dA:

If we express

F (x1; x2; x3) = F1 (x1; x2; x3)
�!
i + F2 (x1; x2; x3)

�!
j + F3 (x1; x2; x3)

�!
k ;

then (2.4) can be written as

(2.10)
ZZZ

B

�
@F1 (x1; x2; x3)

@x1
+
@F2 (x1; x2; x3)

@x2
+
@F3 (x1; x2; x3)

@x3

�
dx1dx2dx3

=

Z Z
@B

F1 (x1; x2; x3) dx2 ^ dx3 +
Z Z

@B

F2 (x1; x2; x3) dx3 ^ dx1

+

Z Z
@B

F3 (x1; x2; x3) dx1 ^ dx2:

3. General Identities

We have the following identity of interest:

Lemma 1. Let B be a bounded open subset of Rn (n � 2) with smooth (or piecewise
smooth) boundary @B. Let f be a continuously di¤erentiable function de�ned in Rn,
or at least in B[ @B and with complex values. If �k; �k 2 C for k 2 f1; :::; ng withPn

k=1 �k = 1; then

(3.1)
Z
B

f (x) dx =
nX
k=1

Z
B

(�k � �kxk)
@f (x)

@xk
dx

+
nX
k=1

Z
@B

(�kxk � �k) f (x)nk (x) dA:
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We also have

(3.2)
Z
B

f (x) dx =
1

n

nX
k=1

Z
B

(
k � xk)
@f (x)

@xk
dx

+
1

n

nX
k=1

Z
@B

(xk � 
k) f (x)nk (x) dA

for all 
k 2 C where k 2 f1; :::; ng :

Proof. Let x = (x1; :::; xn) 2 B: We consider
Fk (x) = (�kxk � �k) f (x) ; k 2 f1; :::; ng

and take the partial derivatives @Fk(x)
@xk

to get

@Fk (x)

@xk
= �kf (x) + (�kxk � �k)

@f (x)

@xk
; k 2 f1; :::; ng :

If we sum this equality over k from 1 to n we get
nX
k=1

@Fk (x)

@xk
=

nX
k=1

�kf (x) +
nX
k=1

(�kxk � �k)
@f (x)

@xk
(3.3)

= f (x) +

nX
k=1

(�kxk � �k)
@f (x)

@xk

for all x = (x1; :::; xn) 2 B:
Now, if we take the integral in the equality (3.3) over (x1; :::; xn) 2 B we get

(3.4)
Z
B

 
nX
k=1

@Fk (x)

@xk

!
dx =

Z
B

f (x) dx+
nX
k=1

Z
B

�
(�kxk � �k)

@f (x)

@xk

�
dx:

By the Divergence Theorem (2.2) we also have

(3.5)
Z
B

 
nX
k=1

@Fk (x)

@xk

!
dx =

nX
k=1

Z
@B

(�kxk � �k) f (x)nk (x) dA

and by making use of (3.4) and (3.5) we getZ
B

f (x) dx+
nX
k=1

Z
B

�
(�kxk � �k)

@f (x)

@xk

�
dx

=
nX
k=1

Z
@B

(�kxk � �k) f (x)nk (x) dA

which gives the desired representation (3.1).
The identity (3.2) follows by (3.1) for �k = 1

n and �k =
1
n
k; k 2 f1; :::; ng : �

For the body B we consider the coordinates for the centre of gravity

GB := G (xB;1; :::; xB;n)

de�ned by

xB;k :=
1

V (B)

Z
B

xkdx; k 2 f1; :::; ng ;
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where

V (B) :=

Z
B

xdx

is the volume of B:

Corollary 3. With the assumptions of Lemma 1 we have

(3.6)
Z
B

f (x) dx =
nX
k=1

Z
B

�k (xB;k � xk)
@f (x)

@xk
dx

+
nX
k=1

Z
@B

�k (xk � xB;k) f (x)nk (x) dA

and, in particular,

(3.7)
Z
B

f (x) dx =
1

n

nX
k=1

Z
B

(xB;k � xk)
@f (x)

@xk
dx

+
1

n

nX
k=1

Z
@B

(xk � xB;k) f (x)nk (x) dA:

The proof follows by (3.1) on taking �k = �kxB;k; k 2 f1; :::; ng :
For a function f as in Lemma 1 above, we de�ne the points

xB;@f;k :=

R
B
xk

@f(x)
@xk

dxR
B
@f(x)
@xk

dx
; k 2 f1; :::; ng ;

provided that all denominators are not zero.

Corollary 4. With the assumptions of Lemma 1 we have

(3.8)
Z
B

f (x) dx =
nX
k=1

Z
@B

�k (xk � xB;@f;k) f (x)nk (x) dA

and, in particular,

(3.9)
Z
B

f (x) dx =
1

n

nX
k=1

Z
@B

(xk � xB;@f;k) f (x)nk (x) dA:

The proof follows by (3.1) on taking �k = �kxB;@f;k; k 2 f1; :::; ng and observing
that

nX
k=1

Z
B

(�k � �kxk)
@f (x)

@xk
dx =

nX
k=1

�k

Z
B

(xB;@f;k � xk)
@f (x)

@xk
dx = 0:

For a function f as in Lemma 1 above, we de�ne the points

x@B;f ;k :=

R
@B
xkf (x)nk (x) dAR

@B
f (x)nk (x) dA

; k 2 f1; :::; ng

provided that all denominators are not zero.

Corollary 5. With the assumptions of Lemma 1 we have

(3.10)
Z
B

f (x) dx =
nX
k=1

Z
B

�k (x@B;f ;k �xk)
@f (x)

@xk
dx
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and, in particular,

(3.11)
Z
B

f (x) dx =
1

n

nX
k=1

Z
B

(x@B;f ;k �xk)
@f (x)

@xk
dx:

The proof follows by (3.1) on taking �k = �kx@B;f ;k ; k 2 f1; :::; ng and observing
that

nX
k=1

Z
@B

(�kxk � �k) f (x)nk (x) dA

=
nX
k=1

�k

Z
@B

(xk � x@B;f ;k ) f (x)nk (x) dA = 0:

4. Inequalities for Convex Functions

We have the following result that generalizes the inequalities from Introduction:

Theorem 3. Let B be a bounded convex and closed subset of Rn (n � 2) with
smooth (or piecewise smooth) boundary @B. Let f be a continuously di¤erentiable
convex function de�ned on an open neighborhood of B; then for all y 2 B we have

(4.1) f (y) +
nX
k=1

@f (y)

@xk
(xB;k � yk) �

1

V (B)

Z
B

f (x) dx

� 1

n+ 1
f (y) +

1

n+ 1

nX
k=1

1

V (B)

Z
@B

(xk � yk) f (x)nk (x) dA:

In particular,

(4.2) f (GB) �
1

V (B)

Z
B

f (x) dx

� 1

n+ 1
f (GB) +

1

n+ 1

nX
k=1

1

V (B)

Z
@B

(xk � xB;k) f (x)nk (x) dA;

where GB 2 B is the centre of gravity for B; i.e., GB := G (xB;1; :::; xB;n).

Proof. Since f : B ! R is a di¤erentiable convex function on B; then for all
x = (x1; :::; xn) ; y = (y1; :::; yn) 2 B we have the gradient inequalities

(4.3)
nX
k=1

@f (y)

@xk
(xk � yk) � f (x)� f (y) �

nX
k=1

@f (x)

@xk
(xk � yk) :

Taking the integral mean 1
V (B)

R
B
in (4.3) over the variable x 2 B we deduce

(4.4)
nX
k=1

@f (y)

@xk

�
1

V (B)

Z
B

xkdx� yk
�
� 1

V (B)

Z
B

f (x) dx� f (y)

�
nX
k=1

1

V (B)

Z
B

@f (x)

@xk
(xk � yk) dx:



10 S. S. DRAGOMIR

From the equality (3.2) we get for 
k = yk; k 2 f1; :::; ng thatZ
B

f (x) dx =
1

n

nX
k=1

Z
B

(yk � xk)
@f (x)

@xk
dx

+
1

n

nX
k=1

Z
@B

(xk � yk) f (x)nk (x) dA

namely
nX
k=1

Z
B

(xk � yk)
@f (x)

@xk
dx =

nX
k=1

Z
@B

(xk � yk) f (x)nk (x) dA� n
Z
B

f (x) dx:

Since
nX
k=1

@f (y)

@xk

�
1

V (B)

Z
B

xkdx� yk
�
=

nX
k=1

@f (y)

@xk
(xB;k � yk)

and
nX
k=1

1

V (B)

Z
B

@f (x)

@xk
(xk � yk) dx

=
nX
k=1

1

V (B)

Z
@B

(xk � yk) f (x)nk (x) dA� n
1

V (B)

Z
B

f (x) dx;

hence by (4.4) we get

(4.5)
nX
k=1

@f (y)

@xk
(xB;k � yk) �

1

V (B)

Z
B

f (x) dx� f (y)

�
nX
k=1

1

V (B)

Z
@B

(xk � yk) f (x)nk (x) dA� n
1

V (B)

Z
B

f (x) dx:

Now, from the �rst inequality in (4.5) we get the �rst inequality in (4.1).
The second inequality in (4.5) can be written as

1

V (B)

Z
B

f (x) dx+
n

V (B)

Z
B

f (x) dx

� f (y) +
nX
k=1

1

V (B)

Z
@B

(xk � yk) f (x)nk (x) dA;

which is equivalent to the second part of (4.1). �
Corollary 6. With the assumptions of Theorem 3 we have

(4.6)
1

V (B)

Z
B

f (x) dx � 1

n

nX
k=1

1

V (B)

Z
@B

(xk � xB;k) f (x)nk (x) dA:

Proof. From (4.2) we have

(4.7)
1

V (B)

Z
B

f (x) dx � 1

n+ 1
f (GB)

+
1

n+ 1

nX
k=1

1

V (B)

Z
@B

(xk � xB;k) f (x)nk (x) dA
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and since

f (GB) �
1

V (B)

Z
B

f (x) dx;

hence

(4.8)
1

n+ 1
f (GB) +

1

n+ 1

nX
k=1

1

V (B)

Z
@B

(xk � xB;k) f (x)nk (x) dA

� 1

n+ 1

1

V (B)

Z
B

f (x) dx+
1

n+ 1

nX
k=1

1

V (B)

Z
@B

(xk � xB;k) f (x)nk (x) dA:

By (4.7) and (4.8) we get

1

V (B)

Z
B

f (x) dx � 1

n+ 1

1

V (B)

Z
B

f (x) dx

+
1

n+ 1

nX
k=1

1

V (B)

Z
@B

(xk � xB;k) f (x)nk (x) dA

that is equivalent to (4.6). �

Corollary 7. With the assumptions of Theorem 3 and if the vector (x@B;f ;1 ; :::; x@B;f ;n ) 2
B; then

(4.9) f (x@B;f ;1 ; :::; x@B;f ;n ) +
nX
k=1

@f (y)

@xk
(xB;k � x@B;f ;k )

� 1

V (B)

Z
B

f (x) dx � 1

n+ 1
f (x@B;f ;1 ; :::; x@B;f ;n ) :

The proof follows by (4.1) observing that

nX
k=1

1

V (B)

Z
@B

(xk � x@B;f ;k ) f (x)nk (x) dA = 0:

We also have the following result:

Corollary 8. With the assumptions of Theorem 3 and if we de�ne

(4.10) s@B;k :=
1

A (@B)

Z
@B

ykdS; k 2 f1; :::; ng ;

where A (@B) is the area of the surface @B; then we have the inequality

(4.11)
1

A (@B)

Z
@B

f (y) dS +
nX
k=1

1

A (@B)

Z
@B

@f (y)

@xk
(xB;k � yk) dS

� 1

V (B)

Z
B

f (x) dx

� 1

n+ 1

1

A (@B)

Z
@B

f (y) dS+
1

n+ 1

nX
k=1

1

V (B)

Z
@B

(xk � s@B;k) f (x)nk (x) dA:
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Proof. If we take the integral mean 1
A(@B)

R
@B
(�) dS over the variable y 2 @B; then

we get

(4.12)
1

A (@B)

Z
@B

f (y) dS +
1

A (@B)

Z
@B

 
nX
k=1

@f (y)

@xk
(xB;k � yk)

!
dS

� 1

V (B)

Z
B

f (x) dx

� 1

n+ 1

1

A (@B)

Z
@B

f (y) dS

+
1

n+ 1

1

A (@B)

Z
@B

 
nX
k=1

1

V (B)

Z
@B

(xk � yk) f (x)nk (x) dA
!
dS:

Now, observe that

1

A (@B)

Z
@B

 
nX
k=1

@f (y)

@xk
(xB;k � yk)

!
dS =

nX
k=1

1

A (@B)

Z
@B

@f (y)

@xk
(xB;k � yk) dS

and

1

A (@B)

Z
@B

 
nX
k=1

1

V (B)

Z
@B

(xk � yk) f (x)nk (x) dA
!
dS

=

nX
k=1

1

V (B)

1

A (@B)

Z
@B

�Z
@B

(xk � yk) f (x)nk (x) dA
�
dS

=
nX
k=1

1

V (B)

Z
@B

�
xk �

1

A (@B)

Z
@B

ykdS

�
f (x)nk (x) dA (by Fubini�s theorem)

=

nX
k=1

1

V (B)

Z
@B

(xk � s@B;k) f (x)nk (x) dA (by 4.10).

By making use of the inequality (4.12) we then obtain the desired result (4.11). �
Remark 1. By taking n = 2 in the above inequalities we recapture some results
from [9] while for n = 3 we obtain results from [10]. The details are omitted.
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