SOME HERMITE-HADAMARD TYPE INTEGRAL
INEQUALITIES FOR CONVEX FUNCTIONS DEFINED ON
CONVEX BODIES IN R"

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper, by the use of Divergence Theorem, we establish
some integral inequalities of Hermite-Hadamard type for convex functions of
several variables defined on closed and bounded convex bodies in the Euclidean
space R™ for any n > 2.

1. INTRODUCTION

In the following, consider D a closed and bounded convex subset of R2. Define

Ap ::// dzdy
D

the area of D and (Tp,yp) the centre of mass for D, where

1 1
Tp = — drdy, Jp = —— ddy.
7= 5= | [ adudy 5= 5= [ [ ydeay

Consider the function of two variables f = f (z,y) and denote by g—;Z the partial
derivative with respect to the variable x and g—i the partial derivative with respect
to the variable y.

In the recent paper [9] we obtained the following Hermite-Hadamard type in-
equalities:

Theorem 1. Let f : D — R be a differentiable convex function on D, a closed
and bounded convex subset of R? surrounded by the smooth curve OD. Then for all
(u,v) € D we have

(1) G o) @0+ G w0 50+ F @)
1
<o [ ] ) day
< g w0)+ o 0= T @) do+ (-0 f (9)dy).
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In particular,
(1.2)  f(zp.Yp) <7// I (z,y) dzdy

< @D.TD) + 5 § (@D~ ) f 2,0) do + (o D) £ (0.0) dy).

oD

W =

We also have:

Corollary 1. With the assumptions of Theorem 1 we have

(1.3) f(@D,¥p) < //f x,y) dxdy
Smj{[(ZTD—y)f(%y)der(x—@)f(g;,y)dy}_

Some examples for rectangle and disks on the plane were also provided in [9].
The case of convex function defined on convex body from space was considered
in [10] were we obtained the following result:

Theorem 2. Let B be a convex body in the three dimensional space R? bounded
by an orientable closed surface OB and f : B — C a continuously differentiable
function defined on a open set containing B. If f is convex on B, then for any
(u,v,w) € B we have

(1.4) f(U,v7w)+(@_u)W
+(y37v)M+( B*w)w
z) dzdydz

1 1 //
< —f(u,v,w)+ -——= x—u) f(x,y,2)dy Ndz
< 7 ( tiv ( [ - Y, %) dy

+//83(y—U)f(xayaz)dz/\dx+//83(z—w)f(x,y,z)dx/\dy ,
- ﬁ / / /B adudydz, T5 = ﬁ / / /B ydadyd:
T dxdydz.
In particular, we have ) ///BZ o
(1.5) f(ZB,¥B.ZB) < V(B /// f(z,y,2)dedydz

if(ﬂfB UB,ZB) {//aB f(z,y,2)dy Ndz
// (y—9B) f (z,y, )dz/\dx+//83 (z=25) f(z,y,2)de ANdy]| .

where

and




SOME HERMITE-HADAMARD TYPE INEQUALITIES 3

We also have:

Corollary 2. With the assumptions of Theorem 2,

ﬁ//Bf(x,y, da:dydzggv [// fz,y,2)dy Ndz
+//S(y—y?)f(x,y,Z)dzAdw+//g(z—5)f(w7y7z)d$/\dy -

Examples for 3-dimensional balls and spheres were also considered in [10].

For other Hermite-Hadamard type integral inequalities for multiple integrals, see
[2]-[8], [11]-][15] and [17]-[19].

Motivated by the above results, in this paper, by the use of Divergence Theo-
rem, we establish some integral inequalities of Hermite-Hadamard type for convex
functions of several variables defined on closed and bounded convex bodies in the
Euclidean space R™ for any n > 2.

2. SOME PRELIMINARY FACTS

Let B be a bounded open subset of R” (n > 2) with smooth (or piecewise
smooth) boundary dB. Let F = (F1,...,F,) be a smooth vector field defined in
R™, or at least in BU 0B. Let n be the unit outward-pointing normal of 9B. Then
the Divergence Theorem states, see for instance [16]:

(2.1) / divFdV = [ F-ndA,
B OB

where

divF=V-F= Zax

dV is the element of volume in R™ and dA is the element of surface area on JB.
If n=(ny,..,n,), z = (z1,..,2,) € B and use the notation dz for dV we can
write (2.1) more explicitly as

OF (z "
(2.2) Z / amk :; /a P () (2) dA.

By taking the real and imaginary part, we can extend the above equality for
complex valued functions Fy, k € {1,...,n} defined on B.

If n = 2, the normal is obtained by rotating the tangent vector through 90°
(in the correct direction so that it points out). The quantity tds can be written
(dz1,dzs) along the surface, so that

ndA = nds = (dxo, —dx)

Here ¢ is the tangent vector along the boundary curve and ds is the element of
arc-length.
From (2.2) we get for B C R? that

I ( F:
(2.3) / OF (x1,22) drydzy + Mdﬁldiﬂg
8%1 B Oz

=/ F1($1,$2)d562—/ F> (1, 22) dxy,
oB

B
which is Green’s theorem in plane.
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If n = 3 and if OB is described as a level-set of a function of 3 variables i.e. 9B =
{:cl, T, w3 € R? | G(w1, 22, 23) = O}, then a vector pointing in the direction of n is
grad G. We shall use the case where G (z1,x2,x3) = 3 — g(x1,x2), (x1,22) € D,
a domain in R? for some differentiable function ¢ on D and B corresponds to the
inequality 3 < g(z1, z2), namely

B = {(xl,fEQaIB) ER? | m3 < g($1,9€2)}-
Then

Yz Yz ;1
T 1)/27 dA = (1+ g2 +¢2)""" dayday
(1+92, +92,)
and
ndA = (7g$1 y TGz, 1) dl’ldl’Q.

From (2.2) we get

(24) / aFl (l‘l,.TQ,.’Eg) + 8F2 <x1a$2;$3) + aFg (331,.’1,'2,.’133)
B 0z, Oxs

) d$1d$2d$3
/ Fy (z1, 22, g(x1,22)) gy (1, 22) dx1d2s
D
/F1 r1, 22, 9(21,72)) Guo (1, T2)d21dT2
D

+/ F3(x1,22,9(x1,22)) deido
D

which is the Gauss-Ostrogradsky theorem in space.
Following Apostol [1], we can also consider a surface described by the vector
equation
(2.5) r(u,v) = z1 (u,v) g Zo (u,v) 7 + z3 (u,v) ¥
where (u,v) € [a,b] x [c,d].
If 21, @, x5 are differentiable on [a, b] X [c, d] we consider the two vectors
or Or1— Or9— Ox3—
ogr _ Y g2 =3
du_ Ou ' * ou ’ * ou
and
or Oxi— Oxa —> 8x3—>
— = — — k.
v dv + do 7 81}

The cross product of these two vectors % X 5o will be referred to as the fundamental
vector product of the representation r. Its components can be expressed as Jacobian
determinants. In fact, we have [1, p. 420]

Omy dzg Oz3 Oz Oz Oy

or or ou ou | — Ou u | — ou ou | —

(2.6) — x —= i+ i+ k
ou v dzy dzy dzz day dz1 dza
ov v v ov ov ov

0(xo,x3)—  0(x3,21)—  0(x1,22) >
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Let 0B = r(T) be a parametric surface described by a vector-valued function r
defined on the box T = [a,b] X [¢,d]. The area of B denoted Ayp is defined by
the double integral [17 p. 424-425)

31" dudv

2 2
332,$3 0 (w3, 21) 0 (w1, 22)
—_— ————= | dudv.
//\/ *(aw,v)) + (o) dut

We define surface integrals in terms of a parametric representation for the surface.
One can prove that under certain general conditions the value of the integral is
independent of the representation.

Let OB = r(T') be a parametric surface described by a vector-valued differentiable
function r defined on the box T' = [a,b] x [¢,d] and let f : OB — C defined and
bounded on dB. The surface integral of f over OB is defined by [1, p. 430]

‘ or 8

(2.8) //andA //f$1,$27333 9
:/G/Cf(xl(u,v),m(u,v),xs(u,v))

0 (z2,x3) 2 0 (x3,71) 2 0 (z1,22) 2
X —_— —_— ————=2) dudv.
\/< o) ) ot ) T\ 00w ) MY
If 0B = r(T) is a parametric surface, the fundamental vector product N =
% X % is normal to OB at each regular point of the surface. At each such point

there are two unit normals, a unit normal n;, which has the same direction as IV,
and a unit normal ny which has the opposite direction. Thus

(2.7)  Asp =

dudv

n; = and ny; = —nj.

N
V]
Let n be one of the two normals n; or ny. Let also F' be a vector field defined on
OB and assume that the surface integral,

T

called the flux surface integral, exists. Here F' - n is the dot or inner product.
We can write [1, p. 434]

(F-n)dA =+ b dF(r(u,v))- I 9 dud
OB a Je ou’ v

where the sign ” + 7 is used if n = n; and the ” —7”

If

sign is used if n = ny.
N

— -
F(v1,29,23) = 1 (v1,22,73) @ + F2 (1, 22,23) J + F3 (21,22, 23) k

and

—

r(u,v) = x1 (u,v) i + 9 (u,v) 7) + z3 (u,v) ¥ where (u,v) € [a,b] X [c,d]
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then the flux surface integral for n = n; can be explicitly calculated as [1, p. 435]

(2.9) //aB (F-n)dA = /b /d F (21 (u,v), 22 (u,v) , 23 (u,v)) Wdudv

/ / Fy (21 (u,v) , 22 (u,v) , 3 (u, v)) aa(a(c?”x)l)dudv

0 (w1, 22)
+/a /L F3 (21 (“»”)7$2(“’”)=$3(“7v))mdudv.

The sum of the double integrals on the right is often written more briefly as [1, p.
435)

// Fy x17$2,$3)d$2/\d1‘3+// Fy .’L‘17$2,.’E3)d$3/\d$1
0B
+// F3 (.’,131,3132,5(13)(11‘1/\(13}2
OB

Let B C R? be a solid in 3-space bounded by an orientable closed surface 05,
and let n be the unit outer normal to 0B. If F' is a continuously differentiable
vector field defined on B, we have the Gauss-Ostrogradsky identity

(GO) ///B(divF)dV://aB(Fm)dA

If we express
— — —
F(xy,22,23) = Fy (x1,22,23) © + F (21,22,23) § + F3(x1,22,23) k,

then (2.4) can be written as

(2.10) /// OFy (w1, 2,23) n OF, (11, 2,23) n OF3 (w1, 2,23) drydiadis
B 8301 8962 8333

:// F1 (ml,xg,l’g)dl’g/\dl‘3+// FQ(I’l,l‘Q,l‘g)dl‘g/\dlEl
0B OB
+// Fg(xl,l’g,wg)dﬂfl /\diITQ.
oB

3. GENERAL IDENTITIES

We have the following identity of interest:

Lemma 1. Let B be a bounded open subset of R™ (n > 2) with smooth (or piecewise
smooth) boundary OB. Let f be a continuously differentiable function defined in R™,
or at least in BU OB and with complex values. If oy, B, € C for k € {1,...,n} with
Son_iar =1, then

(3.1) / f(z)dz = Z/ — agpTy) aggfj)d:c

+ Z/ (arxr — By) f(z) nk (z) dA.
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We also have

62 [ t@a=23 [ go-o
k=1
+ = Z/ (1 — vp) f () g () dA

for all v, € C where k € {1,....,n}.
Proof. Let x = (1, ...,x,) € B. We consider

Fy (x) = (apar — Bg) f (), k€ {1,...n}
and take the partial derivatives dF"(i) to get

aFai;il") = arf (z) + (axzr — By) %(:), ke{l,...,n}.

If we sum this equality over k from 1 to n we get

33) ST =D s 1)+ 2 o ) 1
= £ @)+ Y (e — ) 2
k=1

for all x = (x1,...,x,) € B.
Now, if we take the integral in the equality (3.3) over (zy,...,x,) € B we get

b [ (G o [ s 5 - 20%0]

By the Divergence Theorem (2.2) we also have

OFy ( -
(3.5) / (Z ;@k ) dr = I;/‘?B (arzr — By) f(z) g (z) dA

and by making use of (3.4) and (3.5) we get

/f derZ/ {Oékzk/@k gﬂf(k)}
- g /8 (ona = 8) £ (@) mi (@) dA

which gives the desired representation (3.1).
The identity (3.2) follows by (3.1) for a, = L and 8, = L, k € {1,...,n}.

n

For the body B we consider the coordinates for the centre of gravity
Gp:=G(TB 1, TBn)

defined by
1
TBk = m\/;l'kd$7 ke {1, ...,n},
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where
V(B) ::/ zdx
B
is the volume of B.

Corollary 3. With the assumptions of Lemma 1 we have

5o [ =3 [ otz - L

+ ’;/BB ap (zr —Thx) f(x) ny () dA

and, in particular,

—l Y IR — Lf(m) T
(3.7) /Bf(x)da;—n’;/B( BE — Tk) For d

+ = Z/ rp —Tpx) f(2) e (z) dA.

The proof follows by (3.1) on taking 8, = axTpr, k € {1,...,n}.
For a function f as in Lemma 1 above, we define the points
Jo e
TB.afk = B Bfé()w; , ke {1,...,71},
B Bmk

provided that all denominators are not zero.

Corollary 4. With the assumptions of Lemma 1 we have

(3.8) /Bf (x)dx = ’; /83 ai (zr —zBofk) f(x)ng, (z) dA

and, in particular,

1 n
(3.9) /B f (@) do = — ; /8 N (zk — xBofk) f (@) 1y (2) dA.

The proof follows by (3.1) on taking 5, = axrp.afk, k € {1,...,n} and observing

that
Z/ ozkxk 8£(k)dz—zak/ xBafkfiCk) 8§£z)dx:0

k

For a function f as in Lemma 1 above, we define the points

- . fankf ()dA
P o f @ (@) dA

provided that all denominators are not zero.

ke{l,..,n}

Corollary 5. With the assumptions of Lemma 1 we have

n of (z
(3.10) /Bf(x) dx = ;/Bak (zoB,fk —2k) gx(k)dac




SOME HERMITE-HADAMARD TYPE INEQUALITIES 9

and, in particular,

1 & of (x
(3.11) /Bf(z)dxng/B(zagj,kxk) ax(k)dx.

The proof follows by (3.1) on taking 5, = arzas,f.i, k € {1,...,n} and observing
that

’;/83 (arzp — By) [ () ng () dA
= ;ak /BB (xx —zaB, 5 ) f () g () dA = 0.

4. INEQUALITIES FOR CONVEX FUNCTIONS

We have the following result that generalizes the inequalities from Introduction:

Theorem 3. Let B be a bounded conver and closed subset of R™ (n > 2) with
smooth (or piecewise smooth) boundary OB. Let f be a continuously differentiable
convez function defined on an open neighborhood of B, then for all y € B we have

— f (y) 1
(4.1) f(y)+ ,; oz, (T —yk) < W/Bf(x) dx

1 I« 1
< O T X (g, e @ e

In particular,

1
42) 1(Gr) < 5 /B f (@) do

<
“n+1

1 - 1 -
1@+ g gy L, o~ TR @) a4

where Gg € B is the centre of gravity for B, i.e., Gg := G(TB1,--,TB.n)-

Proof. Since f : B — R is a differentiable convex function on B, then for all
= (21, Tn), Yy = (Y1, .-, Yn) € B we have the gradient inequalities

(4.3) > 65;(,3:) (@p—yr) < f2) = fy) < 9/(z) (Tk — Yr) -

X
k=1 = 9k

Taking the integral mean ﬁ [ in (4.3) over the variable x € B we deduce

~of(y) (1 1
(4.4) g O, (V(B) /Bxkdx—yk> < VD) /Bf(:v) dx — f (y)
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From the equality (3.2) we get for v, = yk, k € {1,...,n} that

z) dx
Tk

RS . af (
/Bf(x)dx_”kz_:l/B(yk k) 3

1
+nk=1/3B($k—yk)f( ) (z) dA
namely
Z/ ri — ) L g _Z/ (=) £ @) @) dA=n [ (@) da
Since
—~df(y) (1 IR A ()
; Oz <V(B)/B$kd$_yk>—k_1 Ozx (xB,k_yk)
and

> V(lB)/ afafx) (T — yn) dz

k

n 1
=k¥(/83 xk—wa(x)nk(x)dA—nV(B)/Bf<x>da:,

hence by (4.4) we get

n

(4.5) Zagx(z) (@Bx — k) < V(lB)/Bf(:c)d

k=1

n 1 1
< W/wm—yk>f<x>nk<x>dA—nm/Bf<x>dx

k=1
Now, from the first inequality in (4.5) we get the first inequality in (4.1).
The second inequality in (4.5) can be written as

W/Bf(x)dx—k /f

y>+;vgmAB<mk—yk>f<x>nk<w>dA,

which is equivalent to the second part of (4.1).
Corollary 6. With the assumptions of Theorem 8 we have

(4.6) V%/ f(:c)dx§%Zﬁ/@B(xk—m)f(x)nk(x)dA.

Proof. From (4.2) we have

(4.7) / f

f(Gg)
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and since
1
£G) < g [ Flo)de

hence

n

(4.8) n—li—lf(GB)+n-1i-1];V(lB)/aB (xr —Tpx) [ (z)ng (x)dA

1 1 I« 1 o
n+1V(B)/Bf(x)daz—|—n+lk_lv(B)/BB(a:k—ka)f(a:)nk(m)dA.

By (4.7) and (4.8) we get

<

1 1 1
W/Bf(w)dxgn—&—lv B)/Bf(x)dx

that is equivalent to (4.6). O

Corollary 7. With the assumptions of Theorem 3 and if the vector (zaB,f,1 ;.., ZoB,fn ) €
B, then

"9
(4.9)  f(zaB,f1,-rToB,fon ) + ’; g;,g:) (TB.k — TaB,f:k )

1 1
< dr < —— o).
7V(B)/Bf(x) 1'7n+1f($83’f717 s TOB, f )
The proof follows by (4.1) observing that

Xn: L/ (zr —@om,f. ) [ (z) 1 () dA = 0.

= V(B) Jos :

We also have the following result:

Corollary 8. With the assumptions of Theorem 8 and if we define

1
(410) SOB,k = m /aB yde, ke {17...777,}7

where A (OB) is the area of the surface OB, then we have the inequality

1 —~ 1 of(y)
1
< g [ @
1

1 1 1 L
S1AED o' W BT 2V | o) £ (@) . ().
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Proof. If we take the integral mean m J55 (+) dS over the variable y € OB, then
we get

1 1 ~Of(y)
(412) m . f (y) ds + m /aB (Z 02k (JTB,k - Z/k) dsS

k=1
1
SV(B)/Bf(x)dw
< 1 1 f (y)ds

1
1 1 "1
+ FTAGE )by < s | (@ =) f(2) g () dA) ds.

Now, observe that

1 ~df (y) | af ()
A((93)/aB ; Gz, Bk Ye) |45 = < A(9B) /SB O, TBE k)49

and

1 1
m /6B z:: m /BB (@ —yx) f(2) ng (2) dA ) dS
=X 57505 o (L (- S @) s

= V;B) /BB (wk — ﬁ /é)B yde> f () ng (x) dA (by Fubini’s theorem)

-y %m /E)B (o — 5557) f () () dA (by 4.10).

By making use of the inequality (4.12) we then obtain the desired result (4.11). O

Remark 1. By taking n = 2 in the above inequalities we recapture some results
from [9] while for n = 3 we obtain results from [10]. The details are omitted.
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