APPROXIMATING THE VOLUME INTEGRAL BY A SURFACE
INTEGRAL VIA THE DIVERGENCE THEOREM

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper, by utilising the famous Divergence Theorem for n-
dimensional integral, we provide some error estimates in approximating the
integral on a body B, a bounded closed subset of R (n > 2) with smooth (or
piecewise smooth) boundary 0B, by an integral on the surface 0B and some
other simple terms. Some examples for 3-dimensional case are also given.

1. INTRODUCTION

In the following, consider D a closed and bounded convex subset of R2. Define

Ap ::// dzdy
D

the area of D and (xD7yD the centre of mass for D, where

Tp = // xdzdy, Yp : —// ydxdy.
Ap

Consider the function of two variables f = f (z,y) and denote by % the partial
derivative with respect to the variable x and %ch the partial derivative with respect
to the variable y.

We assume that the partial derivatives %, % satisfy the Lipschitz type condi-
tions in the point (u,v) € D

7] 7]
(1) O )~ 2 ()| < Lol + Ky v
and

0 0
(1.2 X ) -S| < a4 Kaly -l

for any (z,y) € D, where Ly, K1, Ly and K5 are given positive constants.
In the recent paper [7] we established the following result in approximating the
double integral by a contour integral:

Theorem 1. Let OD be a simple, closed counterclockwise curve bounding a region D
and f defined on an open set containing D and having continuous partial derivatives
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2 S.S. DRAGOMIR

on D. Assume that (u,v) € D and %, %:5 satisfy the Lipschitz type conditions (1.1)

and (1.2). Then for any «, 8 € C we have

13) | [ [t dody
1

— 55— P lB—y) f(z,y)dr+ (z —a) f(z,y) dy]

24,
oD
0 0

~3 5 (W) (@ =7B) - 5 3 (w) (5~ 7D)

L1 }<1
< — — — —
<24, //D|a x| |z — u| dedy + 2, //D|a x| ly — v| dady

L2 KQ
tam [ [ p=vlle—uldedy+ 25 [ [ 15 —uly = vl daay.

In particular,

14 | [ [t dedy
1

_Ej’{ (WD —y) [ (z,y)de + (x —zp) f (z,y) dy]
oD

L K
<sqo [ [ imm—alle—uldody+ = [ [ 75— ally = ol deay

L2 . K2 PR
- — u| dxd - —v|dzxd
i [ [ m =il —uldedy+ 532 [ [ 5= vlly vl dody
and

(15) |5 [ [ s@ydeay

10f L 10f o
59 (u,v) (xf0p —TD) — 29y (u,v) (yf.00 — UD)
L K
< 2A1D //D |zrop — x| |2 — u| dvdy + 2A; //D |zfop — x| ly — v| dedy
Lo K,
0D — — uldzdy + —— o _ ol ded
+2AD//D|Z/J‘,8D yl |z — u| do y+2AD//D|yf,aD ylly — v| dady,
where
aD 5o
mf,BD _—— (md yf,BD ——
ff(x’y)dy j{f(x,y)dw
aD 5p

provided the demominators are not zero.

For other integral inequalities for multiple integrals see [3]-[15].
In this paper, motivated by the above results and by utilising the famous Di-
vergence Theorem for n-dimensional integral, we provide some error estimates in
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approximating the integral on a body B, a bounded closed subset of R™ (n > 2)
with smooth (or piecewise smooth) boundary 0B, by an integral on the surface 0B
and some other simple terms. Some examples for 3-dimensional case are also given.

2. SOME PRELIMINARY FACTS

Let B be a bounded open subset of R™ (n > 2) with smooth (or piecewise
smooth) boundary dB. Let F = (F1,...,F),) be a smooth vector field defined in
R™, or at least in BU 0B. Let n be the unit outward-pointing normal of 9B. Then
the Divergence Theorem states, see for instance [16]:

(2.1) /dideV:/ F - ndA,
B OB

where

" OF,

divF =V -F = —_—

iv ]; Tor

dV is the element of volume in R™ and dA is the element of surface area on 0B.
If n=(ny,...,10,), z = (21,...,2,) € B and use the notation dx for dV we can

write (2.1) more explicitly as

" OF(2) O
(2.2) ; /B = dm_; /a Fela)me (@) da.

By taking the real and imaginary part, we can extend the above equality for
complex valued functions Fy, k € {1,...,n} defined on B.

If n = 2, the normal is obtained by rotating the tangent vector through 90°
(in the correct direction so that it points out). The quantity ¢ds can be written
(dz1,dzs) along the surface, so that

ndA := nds = (dzq, —dz1).
Here ¢ is the tangent vector along the boundary curve and ds is the element of

arc-length.
From (2.2) we get for B C R?

F F:
(23) / 78 ! ($17$2)d$1d$2 + / 78 2 (x17x2)d$1d$2
B 8:01 B 8.’132
= / Fy (z1,22) dey — Fy (21, %2) da1,
OB OB

which is Green’s theorem in plane.

If n = 3 and if OB is described as a level-set of a function of 3 variables i.e. 0B =
{xl, To, w3 € R® | G(w1,22,23) = O}, then a vector pointing in the direction of n is
grad G. We shall use the case where G (x1,x2,x3) = x3 — g(x1,x2), (x1,22) € D,
a domain in R? for some differentiable function ¢ on D and B corresponds to the
inequality z3 < g(x1,x2), namely

B = {(z1,22,23) € R | 25 < g(x1,22) } .

Then
(7911 y “Y9xas 1)

dA = (1 +¢% 442 )1/2 dridxsy
1/2° T1 T2
(1492, +92.)

n—

and
ndA = (7g$1 y TGz, 1) d$1d1'2.
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From (2.2) we get

OF (x1,22,23) OF (x1,22,23) OF3(x1,22,23)
(24) L < 8.1‘1 * 83:2 + 8.1‘3

> dl’ldl'zdl'g
—/ Fy (w1, 22,9(21,72)) 9o, (71, 2) dz1dTo
D
—/ Fy (21,72, 9(21,22)) o, (21, T2)dT1dT2
D

+/ F3 (w1, 22, g(21,2)) dridos,
D

which is the Gauss-Ostrogradsky theorem in space.
Following Apostol [1], consider a surface described by the vector equation

(2.5) r(u,v) =z (u,v) T+ 2 (u,v) 7 + z3 (u,v) ¥
where (u,v) € [a,b] X [¢,d] .
If 1, 9, x5 are differentiable on [a, b] X [¢, d] we consider the two vectors

or Ori— Oxs— Oxz—
g _ 71 gr2 e N
ou ou + au ’ + ou

and
or Oxi1— Oxa —> 8963 —
— = - k.
v o * 81} 811

The cross product of these two vectors 2 Fu X 81) = will be referred to as the fundamental

vector product of the representation r. Its components can be expressed as Jacobian
determinants. In fact, we have [1, p. 420]

[ek2y Oz [ek2y Oz, Oz [ek2y
(2 6) or or u ou — . ou u — n ou ou ?
. — X — = i J
ou ov [PE Y Oxs Oxzs oxq Oz Oxza
ov ov ov ov ov ov

0 (z2,x3) 7 0 (I3,$1)7 0 (z1,m2) —
0 (u,v) 9 (u,v) 9 (u,v)

Let 0B = r(T) be a parametric surface described by a vector-valued function r
defined on the box T = [a,b] X [¢,d]. The area of 0B denoted Ayp is defined by
the double integral [17 p. 424-425)

8r

(2.7) Asp = dudv

i N ) () () e

We define surface integrals in terms of a parametric representation for the surface.
One can prove that under certain general conditions the value of the integral is
independent of the representation.

Let 9B = r(T') be a parametric surface described by a vector-valued differentiable
function r defined on the box T = [a,b] X [¢,d] and let f : 0B — C defined and
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bounded on dB. The surface integral of f over OB is defined by [1, p. 430]

(2.8) // fdA = //f$17$27333 or . o
OB

o o
:lLf@mwmﬂwmmwm

v
8(372,.’113) 2 8(:133,5(11) 2 8(%1,372) 2
— — ———=>| dudv.
X¢<amm \oww ) T\ o ) MY
If 0B = r(T) is a parametric surface, the fundamental vector product N =
% X % is normal to OB at each regular point of the surface. At each such point

there are two unit normals, a unit normal n;, which has the same direction as N,
and a unit normal ny which has the opposite direction. Thus

dudv

ny = ——— and ny; = —nj.
V]

Let n be one of the two normals n; or ns. Let also F' be a vector field defined on
OB and assume that the surface integral,

e

called the flux surface integral, exists. Here F' - n is the dot or inner product.
We can write [1, p. 434]

or Or
//aBFndA :t//F <3u 8)duah)

_»

where the sign ” + 7 is used if n = n; and the ” sign is used if n = no.

If
— — —
F($1,1‘2,1‘3) =F (1‘1,1‘2,1’3) 1+ Fy (1’1,{E2,$3) j + Fs (xl,l‘g,l‘g) k
and
— — —
r(u,v) =x1 (u,v) i +x2 (u,v) j + 3 (u,v) k where (u,v) € [a,b] X [¢,d]

then the flux surface integral for n = n; can be explicitly calculated as [1, p. 435]

(2.9) //{m (F-n)dA_/b/dFl (@1 (u,v) , 72 (u,v),x?,(u,v))aa(g(”’x;’)dudv
/ / By (21 (u,0) , 2 (4,0) , 23 (u, v)) 8§f3’x;)dudv

/ / F5(x1 (u,v), 22 (u,v), 23 (u,v)) aa(fl’xi)dudv.

The sum of the double integrals on the right is often written more briefly as [1, p.
435]

/ F1 ($1,1‘2,1‘3)d1‘2/\d1‘3+// F2 1‘1,$2,$3)d$3/\d1’1

// F3 xl,xg,mg)dzl/\d:zzg
OB
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Let B C R? be a solid in 3-space bounded by an orientable closed surface 05,
and let n be the unit outer normal to 0B. If F' is a continuously differentiable
vector field defined on B, we have the Gauss-Ostrogradsky identity

(GO) ///B(divF)dV://aB(Fm)dA.

If we express

- - -
F(lfl,fl?2,l'3) :F1 ($17$2,Z‘3) ? +F2 (l’l,ﬂ]‘g,ﬂfg) J +F3 ($1,$27$3) ka

then (2.4) can be written as

(2.10) /// OF (x1,x2,%3) n OF; (21, %2,23) n OF3 (x1,x2,%3) diy dusdis
B 0x1 0xo Oz

:/ Fy (x17$2,$3)d$2/\d1'3+// Fy (Jil,xg,xg)dxg/\d.’tl
0B oB

+// Fg(xl,l'g,xg)dxl A dzs.
oB

3. SOME PERTURBED IDENTITIES

For the body B we consider the coordinates for the centre of gravity

G(xB,l, ---;ZEB,n)
defined by

1
—— dz, ke {1,..,n},
TBk V(B)/Bmk x { n}

where

V(B) := / dz
B
is the volume of B.

We have the following identity of interest:

Theorem 2. Let B be a bounded closed subset of R™ (n > 2) with smooth (or
piecewise smooth) boundary OB. Let f be a continuously differentiable function
defined in R™, or at least in on open neighborhood of B and with complex values.
If ag, By, 0 € C for k € {1,...,n} with Y;_, ax, = 1, then

6 | ey
= i % 1B) /B (B), — cwwy) (8£$(Z) - 5k) du

= 1
k(B — arTr) + kz::l m /88 (arzr — By) f () ni (v) dA.

—+
M=
=9
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We also have

(32) ﬁ/Bf(m) dz
N 1 of ()
_’;a""‘v(B)/B(Vk_mk)< D —5k>da:
n L n 1
+kz_lak§k(’7k—x3,k)+kzlakv(3)/aB (xp —vg) [ (z) ng (z) dA

for all v, € C, where k € {1,...,n} and, in particular,

(3.3) 7/f ) dz
af (z
ﬁzakak (v~ 57 + %Z 5 | @ f @ @) da.
k=1 k=

Proof. Let x = (x1,...,x,) € B. We consider
Fy, () = (agzy — By) f (2), k€ {l,..,n}

and take the partial derivatives aF"(w) to get

OFy (x) _ 5, 0f (@)
T =aif () + (wzr — By) 02y ke{l,..,n}.
If we sum this equality over k from 1 to n we get
OFy (
(3.4) k Z@kf + Z gy — By) g( 2
k=1 k=1 Tk
- of (z)
=f(z)+ ’; (akzr — By,) “orn

for all z = (21, ...,2,) € B.
Now, if we take the integral in the equality (3.4) over (x1,...,z,) € B we get

(3.5) /B< ol )a [ 16 dm+2/{akxkﬁk g

By the Divergence Theorem (2.2) we also have

OFy ( -
(3.6) / (Z 8@% ) dr = ,;/E)B (arzr — By) f(z) ny (z) dA

and by making use of (3.5) and (3.6) we derive
@),
/f d:c—i—Z/{ak;vk Br) ;8

- kZ:l /SB (awzr — By) f(x) nk (z) dA,

k=1
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which gives the representation
(3.7) / f(z)de = Z/ — apzy) gx(:) dz

+ Z/ apry — B) [ (x) ng () dA.

Now, observe that

/B (B, — k) <a£3§:) - 5k.> da

:/B(ﬁk—akx) 5/ § — )

=/B<ﬂk—akxk>a§( e — 58,V (B) ~ anV (B)T57)

— [ 61— v 2 O 1 v (B) 6y (B — s

which by summation over k € {1,...,n} provides
Z/ E— OkTk (af(cc) >dm
8$k
0
= /B (B — azr) g( dz—V (B Z5k — kTR k)

k=1
namely
Y of (
;/B By, — axzy) aTZ)dm
= ];/B (B — anr) (8(19‘;;) - 5k) dz +V (B) ; Sk (By — xTB %) -

From (3.7) we then get

[y PNCERAN
B) ; ok (B, — axTB k) + kzn:_l/zm (axwi — By) f () ny () dA,

which by division with V' (B) produces the desired result (3.1)
The identity (3.2) follows by (3.1) for 8, = arvs, k € {1,...,n}. O

The following particular cases are of interest:

Corollary 1. With the assumptions of Theorem 2 we have

| N T
(3.8) V(B)/Bf(x)dx_;akV(B)L(mB’k_xk)( A —5k> dx

n

+Zakﬁ/88 (zx — TBx) f (x) ng (z) dA

k=1
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and, in particular,

1 / I 1
3.9 —_— x)dr = — —_—
B9 g @ kZ:lV(B)

I~ 1 .
+n;V(B)/dB(xk_xB’k)f(x)nk(x)dA

xB,k — xk) <8£x(:) — 6k> dIL‘

3

The proof follows by (3.1) on taking 8, = axTg .k, k € {1,...,n}.
For a function f as in Theorem 2 above, we define the points

T . fankf ()dA
I o f @ (o) dA

provided that all denominators are not zero.

, ke{l,..,n}

Corollary 2. With the assumptions of Theorem 2 we have
of (z)
(310 / f Zak / IaBJ,k 71‘]6) < a.’lﬁk - 5

Z S (ToB,fok —TB k)

k=1
and, in particular
1 of (z)
(3.11 /f ];V(B)/B(xaB’f’k xk)< 8.23k 5k> dz

+ - 1; Ok (TaB,fok —TBik) -

The proof follows by (3.1) on taking 5, = axzaB,f.kx, k € {1,...,n} and observing
that

’;Ozk /@B (.’L‘k - :E(')B)f,k ) f(:C) ng (.’L‘) dA = 0.

4. SOME INEQUALITIES FOR BOUNDED PARTIAL DERIVATIVES

Let B be a bounded closed subset of R™ (n > 2) with smooth (or piecewise
smooth) boundary dB. Now, for ¢, ® € C, define the sets of complex-valued
functions

Ug (¢, ®)
:{f:BH(C|Re[(<I>ff(m)) (m*$>] >0 for each SCEB}
and
AB(¢,<I>)::{f:B—>C| 'f(x)—(b—;q)‘g;@—qﬂ for each xEB}.

The following representation result may be stated.

Proposition 1. For any ¢, ® € C, ¢ # ®, we have that Ug (¢, ®) and Ap (¢, ®)
are nonempty, convex and closed sets and

(4.1) UB (¢7 (I)) = AB (¢7 (b) .
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Proof. We observe that for any w € C we have the equivalence

1
P —
5| <529l

’ ¢+ @
w— =
if and only if

Re [(® —w) (W—¢)] >0
This follows by the equality

2

1 o+ S—
4@—(;52—’10—2 =Re [(®—w) (W — ¢)]
that holds for any w € C.
The equality (4.1) is thus a simple consequence of this fact. [l

On making use of the complex numbers field properties we can also state that:

Corollary 3. For any ¢, ® € C, ¢ # ®,we have that

(42)  Up(¢,®)={f:B—C| (Re®—Ref(z)) (Ref () - Re¢)
+(Im® —Im f(z)) (Im f (x) —Im¢) > 0 for each x € B}.

Now, if we assume that Re (®) > Re (¢) and Im (®) > Im (¢) , then we can define
the following set of functions as well:

(43) §5(6,®):={f: B—C| Re(®) > Ref(x) > Re(9)
and Im (®) > Im f (z) > Im (¢) for each = € B}.

One can easily observe that Sp (¢, ®) is closed, convex and

(4.4) 0 # Sp(6,®) CUp(6,9).

Theorem 3. Let B be a bounded closed subset of R™ (n > 2) with smooth (or
piecewise smooth) boundary OB. Let f be a continuously differentiable function
defined in R™, or at least in on open neighborhood of B and with complex values.
Assume that there exist ¢, O € C, ¢, # Oy fork € {1,...,n} and such that aank €
Ap (¢, Pr) for k€ {1,...,n}. If ay, B, € C for k € {1,...,n} with > ;_, ap =1,
then

(4.5) 75

n

1 " o
/Bf(ar)dx—;wwk—akm)

5 / (awan — 6, ()i (&) dA

n

1 1
= (I)k / ﬁ — XL dz

=1
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We also have

1 "~ b + Oy .
m/Bf(x) d$_;kTak (Ve —TB k)

n

1
k_ﬁ’“V(m/aB (wh — 74) f () i () dA

n

1
< 5 210 = nl ol g [ el
k=1

for all 7y, € C, where k € {1

(4.6)

, s} and, in particular,

1 1 p + P I
V(B)/Bf(m)dm_n§2(7

K~ TBk)

(4.7)

n

1 1
—n;v(B)/aB(xk—%)f(x)nk(x)dA
1 & 1
an; V(B)/Bhkxkdx'

Proof. By using identity (3.

1) for 6 := 5%, k€ {1,....n}, we get
(4.8) V;B> /B f(z)da
£t w2285
’ kzn:l . 3 % (3 - ) z": / (k= Bi) f () i () dA.

Since 3— € Ap (¢, ®x) for k € {1,...,n}, hence by (4.8)

5 [ f@a > T

k — OKTB k)

n

1
_,;V(B)/BB (nzr — By) f (x) g (z) dA

/B(ﬁk—akxk) <c’)f(w) 3 ¢>k+®k>dx‘

8xk 2

(B — o) (af () _ 9 +(I)k>’dx

oxy 2

1
<305 10— oul iy [ 18k — o
k=1

which proves (4.5). The rest is obvious

11
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Corollary 4. With the assumptions of Theorem 3 we have

V(B )/ ZO"“ /BB (zr —TBx) f(z) ny (x) dA

1 — 1
52 C“kH@k (B)/ |$kaka|d$
B

and, in particular,

(4.9)

(4.10)

/ zn: / (zkx — T k) f(x) g (z) dA
Z ¢k| /|$Bk x| dx.

k

The proof follows from (4.6) by taking v, = T, k € {1,...,n}.
Corollary 5. With the assumptions of Theorem 3 we have

V(lB /f ) da —Z%—i_@ (zoB,fk —TB,k)

1
§5;| - dullonl g [ eom. ol da

and, in particular,

1 1 n @
V (B) /B f(w)dz - n Z % (zoB,fk —TB.K)

1 n
S%;@k ¢k| /|’$an’1~: —zy| dz.

The proof follows from (4.6) by taking v, = zap, .k, k € {1, ...,n} and observing
that

(4.11)

(4.12)

n 1
;akm /aB (l‘k — TOB, frk ) f(a:) ng (l‘) dA =0.

5. INEQUALITIES FOR LIPSCHITZIAN PARTIAL DERIVATIVES

We assume that the partial derivatives 8— ke {1,...,n}, satisfy the Lipschitz

type conditions in the point u = (ul, vy Up) €D
of (x) 9f (u
5.1 E L
( ) ‘ 8:ck &vk — ko lxj

for any = = (x1,...,@,) € D, where Ly ;, k, j € {1,...,n} are given positive con-
stants.

Theorem 4. Let B be a bounded closed subset of R™ (n > 2) with smooth (or
piecewise smooth) boundary OB. Let f be a continuously differentiable function
defined in R™, or at least in on open neighborhood of B and with complex values.
Assume that for u € B there exist Ly, 5, k,j € {1,...,n} and such that the Lipschitz
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condition (5.1) holds for k € {1,...,n}. If ay, B, € C for k € {1,...,
Sohoi ok =1, then

"

(5.2)

v B)/ z) dz _Z 39% — TR k)

kz:: W / (anzr = B) f (@) i () dA

1

ZZ /|Bk oz |z — uj| de.
k=1j=1

—~

3

IN

We also have

(5.3)

<
mH

a.’L’k

)/Bf(g;)dx; L) p—

_Z%/{)Bak(xk_Vk)f(x)nk(m)dA

k=1

n n

ZZ ’W|O"€‘ /h’k x| |o; — uj| de
k=1j=1

for all v, € C, where k € {1,...,n} and, in particular,

(5.4)

B)/f ) do _72 (%Uk ~TBK)

%Zv / k(@ =) [ (@) n () dA

k=1

n n

<nzzl’ /|7k—$k||xj—uj\dm.

k=1j=1

Proof. If we write the equality (3.1) for d; = df(”) ,ke{l,..,n}, we get
/ e
Of (x) _ 0f (u)
— Z @) / aRxy) ( 2, 0, dx

<
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Therefore

1 —_—
V(B)/Bf v)de _Z azk ~ TB k)
—Zv(lB)/aB (i — By) f (@) i () dA

k=1

~ 1 of (x)  Of (u)
S;V(B) /B(ﬂk a’“zk)< A >d$

~ 1 0f (x)  Of (w)
SQWB)/B (ﬂk‘w’“wm‘mﬂ“

0 8
(13 R " o= 2 o

<Z ; /Iﬂ awIZL |z; — uj| dz (by (5.1))
- V (B) k kL kg |Lg g Yy
k= j=1
_ZZ kJV /Wk aprrl|z; —ujlde
k=1j=1

and the inequality (5.2) is proved.

Corollary 6. With the assumptions of Theorem 4 we have

(5.5)

1 "1 L
E/Bﬂz)dxzv(m/%ak(xkxB,wf(z)nk(z)dA

n n
<3N L lonl gy [ =l by il da

k=1j=1

and, in particular,

%/f(x)dx—%zv%/ (2 — T5F) f () nx () dA

,ZZLMV /|:c3k—xk|\z]—u]|d:z:

k=1j=1

(5.6)

Corollary 7. With the assumptions of Theorem 4 we have
1 - af (u

- do —

V (B) /f(x) v ZIO"“ p)

<3O bl s [ ol o — ] do

k=1 j=1

(5.7)

(xaB,fak —xB,k)
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and, in particular,

(5.8)

CYRCLEI Fells

V(B) oz
< IS Sty [ leom gl oy —
n‘k ‘s ’J‘/(fﬂ 5 ToB,frk —Tk||T; Uj|ax.

Corollary 8. With the assumptions of Theorem 4 we have

1 / -
f(z

eI R

vt /m o) {0y )4

k=1
n n

<323 byl )/ukmzjuﬂdx
k=1 j=1 B

and, in particular,

(5.9) —TBk)

(5.10)

Remark 1. With the assumptions of Theorem 4 and for G = (Zg1,...,TB.n) € B
there exist My ; > 0, k, j € {1, ...,n} such that the Lipschitz conditions

(5.11) ’af() o1 (G ‘ Znglwg

8xk a$k

hold for k € {1,...,n}, then

n

1 _
V73/ f(x)dq:—zm/aBak(xk—a?B}k)f(x)nk(x)dA

1 _
<ZZLmlak\ (B)/ TBx — k| lz; — Th;| dx

k=1 j=1

(5.12)

and, in particular,

(5.13)

1
V(B)
<1

) Jo 2
ZZ mh
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It is well known that if a function g has bounded partial derivatives on B, which
is assumed also to be convex, then for all z, y € B we have the Lipschitz type
condition

lg (= Zj:

;= vl
693] B,oco
where
0 0
‘ 99 1= sup (:C) < o0.
aﬂij B z€B al‘j

We can state the following result that is more convenient to apply:

Corollary 9. Let B be a bounded closed convex subset of R™ (n > 2) with smooth
(or piecewise smooth) boundary OB. Let [ be a twice differentiable function defined
i R™, or at least in on open neighborhood of B and with complex values and assume
that

o*f *f (x)
8zk6xj B a weg 8$k8:€j
forallk,j € {1,...,n}. Forj =k we denote, as usual 8w8;c28f:ck d2$k ke {l,..,n}.

Then for all w € B we have

1 - _
VB)/f Z k 83% k*CﬂB,k)

ViB)/@B ag (g — ug) f () ng (x) dA
0% f

(5.14)

1
|ak|7/ lup — zk| |25 — ;| de
i 11 B,co V(B) B ! !

1 of (u) _
V(B)/Bf(x)dxnz 2, (ur —TB.k)

Y g |, @ w f@ @) da

- T
azkaxj 5 B)/B|uk kaxj u]l €z

We also have the centre of gravity inequality

1 n -
V(B)/ f= Zlv / k(2 — TE%) £ (2) ik () dA
9% f

8mk8axj B

(5.16)

|$B,k — .Z‘k| |:Z? — ATB.k| dx
B)/B J >
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and, in particular,

(5.17)

6. EXAMPLE FOR 3-DIMENSIONAL SPACES

Let B be a bounded closed convex subset of R?® with smooth (or piecewise
smooth) boundary dB. Let f be a twice differentiable function defined in R?,
or at least in on open neighborhood of B and with complex values and assume that

[ (2)
D 3£Ckal'j

z€B

< o0

0% f
3£E'ka£8j B

for all k, j € {1,...,3}.
Consider a surface described by the vector equation

—

— —
r(u,v) = x1 (u,v) i + 2 (u,v) j + 3 (u,v) k

where (u,v) € [a,b] X [¢,d]. Then, by using the notations from the second section,
we have

af (ylvaay3)
D T

(o ‘ V(B) / o)da =) o (v~ TB )
%/ / ) F (o (0 0) 2 (0,0) 1) 2 o
V (IB / / y2) f( (u7 U) y L2 (u’ U) » L3 (u’ U)) mdudv
b
v ) / —a) f ( (w,0) 2 (), 23 (u,)) 86(<>)“
3 2
SZZ'QH axakéfzj o B)/Blyk—:ckaj—yﬂdx

for all (y1,y2,y3) € Band o, € C, k € {1,...,3}, with a; + ag + a3 = 1.
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In particular, we have

62 ’/f % ﬂ%’fi&ys)(yk—m)

1 8 (52, 4)
3V(B / / (z1 (u,v) — y1) f (21 (u,v) , 29 (u,v) ,x3 (u,v)) ( 5 dudo
3V1(B / / (@2 (u,v) —y2) f (21 (u,v) , 22 (u,v), 23 (u,v)) 85(,(3 l)d o

0 (1, 22)
_SVB // (@3 (u,v) —y3) f (21 (u,0) , 22 (u,v) , 23 (u,v)) 0 (u, )2ddv

9y s

k=1j=1

1
(’)xk8$] B V(B)/BLU’“ il |z — y;| dz

for all (y17y27y3) € B.
We also have the centre of gravity inequalities

(6.3) ' (1 f (@) do
v%/ / —753) f (@1 (,0) @2 (), 23 (u,v)) 359553 j;uudv
ﬁ / / —753) (@1 (0,0) s (1,0) s () a(fii ﬁi)dudv
i [ wf(wl<u,v>,x2<u,v>,m3<u,v»mdudv
<}i;|ak 35:5% oV B)/Blm—xkl\wj—mmx

orall o € C, k € {1,...,3} with a1 + ag + a3 = 1.
In particular,

(6.4) 'V(lB) [ s
b

d

3V1(B)/ / (z1 (u,v) —=TB1) f (21 (u,v) , 22 (u,v) , 23 (u,v)) 5‘8(( ))d do
b pd o

,3‘/1( //(962(“7”)*m)f(fcl(U,v),xz(u,v),xg(u’v)) (( ))d "

3V1(B // z3 (u,v) —Tg3) f (z1 (w,v), 22 (u,v), 23 (u,v)) 9 (z )

9()
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H;Z B,oo/,g(m_x2)2d“H§22 Bm/}g(m—mg)%x]
" gv(lB) ‘317812822 B,oo/B Tp1 — 21| |z — Tp 2| do
* ‘ aaizgx3 . /B 752 — 2| lvs — TB 3| do
8:?125;3 /B [ZB1 — 21| |v3 — TB 3] dx] )
B,oc0

7. EXAMPLE FOR 3-DIMENSIONAL BALLS

Consider the 3-dimensional ball centered in C' = (a,b, ¢) and having the radius
R >0,

B(C,R) := {(ai,y,z) ERB‘(I—G)2+(y—b)2+(Z—C)2 SRZ}

and the sphere

S(C,R) := {(m,y7z) € R?" (av—(1)2—|—(y—b)2—|—(z—c)2 = RQ}.
Consider the parametrization of B (C, R) and S (C, R) given by:

T =rcospcosy+a o
B(C,R):{ y=rcosypsing+b ; (r,9,p)€[0,R] x [—5,5} x [0, 2]
z=rsiny +c

and
x = Rcosycosp+a

S(C,R):< y=Rcosysing+b ; (¢¥,p)€ [—g,g] x [0, 27] .

z=Rsiny +c
Observe that
9y 0z
B B 2 2
dl/) Biﬁ = —R"cos” ¢ cosy,
Oy Oy
Oz 9z
?ﬁ %iﬁ = R?cos? P sin @,
Jdp Jdp
and
9z Oy
% % = —R?sin cos 1.
Oy Op

Let us consider the transformation T5 : R? — R? given by:
Ts (1,9, ) := (rcosypcosp + a,rcosysing + b, rsiny + ¢) .
It is well known that the Jacobian of T is

J(Ty) = 1% cosp



20 S.S. DRAGOMIR

and T3 is a one-to-one mapping defined on the interval of R?, [0, R] x [-F, 5] X
[0,27], with values in the ball B (C,R) from R3. Thus we have the change of
variable:

(7.1) ///B(C,R) f(z,y,2)dedydz

R z 2m
= / / / f(rcostpcosg+ a,rcosysing + b, rsiny + ¢) 2 cos Ydrdipde.
o J-z.Jo

We also have

/// |z—zB(C)R)}2d:z:dydz
B(C,R)
R %3 2«
= / / / r2 sin? ¢r? cos drdipdy
o J-zJo

R % 2 4
= / / / r*sin® ¢ cos Ydrdipdp = —nR®
o J-zJo 15

and, similarly

2 2 4
/// ‘x —ZB(C,R)| drdydz = /// ‘y —YB(C,R)| drdydz = 1—57TR5.
B(C,R) B(C,R)

Also

/// |an - xB(C,R)| ‘Z/ — YB(C,R) ’ dxdydz
B(C,R)

jus
2

R 27
= / / / |7 cos ¥ cos | |1 cos 1 sin | 72 cos hdrdipdyp
0o J-zJo

™
2

R I jon 8
= / / / 4 cos® 1 |sin ¢ cos | drdipdp = — RS
o J-zJo 15

and, similarly

/// |3C—$B(C,R)| {z—zB(C7R)|dxdydz
B(C,R)

8
/// v —UBe.m| |2 — ZBoR) | dedydz = —R°.
B(C,R) 5
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Since V (B (C,R)) = 4’TR , then by (6.4) we get

1 2
(7.2) W/ / f(rcostpcosp+ a,rcosysing + b, rsiny + c)
=53 Jo J-zJo

_|_

(1]

[9]

[10]

[11]

1
47r
1

4

1
4

x 2 cos Ydrdidp

f(Rcostpcos g+ a, Rcostsin g + b, Rsin + ¢) cos® ¢ cos® pdipdyp

z 2
/ / f (Rcostpcos @+ a, Rcostpsin g + b, Rsinv + ¢) cos® 9 sin pdipdyp
0
/ / f (Rcostpcos @+ a, Rcostsin g + b, Rsinv + ¢) sin® v cos ihdipdyp

82 f

| 7
B(C,R),c0 9y

B(C,R),00 H 9*z

0% f
Y0z

157r H 0z0y

B(C,R),00

B(C,R),00 B(C,R),00 H 0z0x B(C,R),00

REFERENCES

Apostol, T. M. Calculus Volume II, Multi Variable Calculus and Linear Algebra, with Appli-
cations to Differential Equations and Probability, Second Edition, John Wiley & Sons, New
York London Sydney Toronto, 1969.

Barnett, N. S.; Cirstea, F. C. and Dragomir, S. S. Some inequalities for the integral
mean of Holder continuous functions defined on disks in a plane, in Inequality The-
ory and Applications, Vol. 2 (Chinju/Masan, 2001), 7-18, Nova Sci. Publ., Hauppauge,
NY, 2003. Preprint RGMIA Res. Rep. Coll. 5 (2002), Nr. 1, Art. 7, 10 pp. [Online
https://rgmia.org/papers/vbnl/BCD.pdf] .

Barnett, N. S.; Dragomir, S. S. An Ostrowski type inequality for double integrals and appli-
cations for cubature formulae. Soochow J. Math. 27 (2001), no. 1, 1-10.

Barnett, N. S.; Dragomir, S. S.; Pearce, C. E. M. A quasi-trapezoid inequality for double
integrals. ANZIAM J. 44 (2003), no. 3, 355-364.

Budak, Hiiseyin; Sarikaya, Mehmet Zeki An inequality of Ostrowski-Griiss type for double
integrals. Stud. Univ. Babes-Bolyai Math. 62 (2017), no. 2, 163-173.

Dragomir, S. S.; Cerone, P.; Barnett, N. S.; Roumeliotis, J. An inequality of the Ostrowski
type for double integrals and applications for cubature formulae. Tamsui Oxf. J. Math. Sci.
16 (2000), no. 1, 1-16.

S. S. Dragomir, New inequalities for double and path integrals on general domains via
Green’s identity, Preprint RGMIA Res. Rep. Coll. 22 (2019), Art. 57, 18 pp. [Online
https://rgmia.org/papers/v22/v22a57.pdf].

Erden, Samet; Sarikaya, Mehmet Zeki On exponential Pompeiu’s type inequalities for double
integrals with applications to Ostrowski’s inequality. New Trends Math. Sci. 4 (2016), no. 1,
256—267.

Hanna, George Some results for double integrals based on an Ostrowski type inequality.
Ostrowski type inequalities and applications in numerical integration, 331-371, Kluwer Acad.
Publ., Dordrecht, 2002.

Hanna, G.; Dragomir, S. S.; Cerone, P. A general Ostrowski type inequality for double
integrals. Tamkang J. Math. 33 (2002), no. 4, 319-333.

Liu, Zheng A sharp general Ostrowski type inequality for double integrals. Tamsui Oxf. J.
Inf. Math. Sci. 28 (2012), no. 2, 217-226.



22 S.S. DRAGOMIR

[12] Ozdemir, M. Emin; Akdemir, Ahmet Ocak; Set, Erhan A new Ostrowski-type inequality for
double integrals. J. Inequal. Spec. Funct. 2 (2011), no. 1, 27-34.

[13] Pachpatte, B. G. A new Ostrowski type inequality for double integrals. Soochow J. Math. 32
(2006), no. 2, 317-322.

[14] Sarikaya, Mehmet Zeki On the Ostrowski type integral inequality for double integrals. Demon-
stratio Math. 45 (2012), no. 3, 533-540.

[15] Sarikaya, Mehmet Zeki; Ogunmez, Hasan On the weighted Ostrowski-type integral inequality
for double integrals. Arab. J. Sci. Eng. 36 (2011), no. 6, 1153-1160.

[16] M. Singer, The divergence theorem, Online [https://www.maths.ed.ac.uk/”jmf/ Teach-
ing/Lectures/divthm.pdf]

IMATHEMATICS, COLLEGE OF ENGINEERING & SCIENCE, VICTORIA UNIVERSITY, PO Box 14428,
MELBOURNE CiTYy, MC 8001, AUSTRALIA.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

2DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES,
ScHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-
SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA





