
APPROXIMATING THE VOLUME INTEGRAL BY A SURFACE
INTEGRAL VIA THE DIVERGENCE THEOREM

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper, by utilising the famous Divergence Theorem for n-
dimensional integral, we provide some error estimates in approximating the
integral on a body B; a bounded closed subset of Rn (n � 2) with smooth (or
piecewise smooth) boundary @B; by an integral on the surface @B and some
other simple terms. Some examples for 3-dimensional case are also given.

1. Introduction

In the following, consider D a closed and bounded convex subset of R2. De�ne

AD :=

Z Z
D

dxdy

the area of D and (xD; yD) the centre of mass for D; where

xD :=
1

AD

Z Z
D

xdxdy; yD :=
1

AD

Z Z
D

ydxdy:

Consider the function of two variables f = f (x; y) and denote by @f
@x the partial

derivative with respect to the variable x and @f
@y the partial derivative with respect

to the variable y:
We assume that the partial derivatives @f

@x ;
@f
@y satisfy the Lipschitz type condi-

tions in the point (u; v) 2 D

(1.1)

����@f@x (x; y)� @f

@x
(u; v)

���� � L1 jx� uj+K1 jy � vj

and

(1.2)

����@f@y (x; y)� @f

@y
(u; v)

���� � L2 jx� uj+K2 jy � vj

for any (x; y) 2 D; where L1; K1; L2 and K2 are given positive constants.
In the recent paper [7] we established the following result in approximating the

double integral by a contour integral:

Theorem 1. Let @D be a simple, closed counterclockwise curve bounding a region D
and f de�ned on an open set containing D and having continuous partial derivatives
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on D: Assume that (u; v) 2 D and @f
@x ,

@f
@y satisfy the Lipschitz type conditions (1.1)

and (1.2). Then for any �; � 2 C we have

(1.3)

���� 1AD
Z Z

D

f (x; y) dxdy

� 1

2AD

I
@D

[(� � y) f (x; y) dx+ (x� �) f (x; y) dy]

�1
2

@f

@x
(u; v) (�� xD)�

1

2

@f

@y
(u; v) (� � yD)

����
� L1
2AD

Z Z
D

j�� xj jx� uj dxdy + K1

2AD

Z Z
D

j�� xj jy � vj dxdy

+
L2
2AD

Z Z
D

j� � yj jx� uj dxdy + K2

2AD

Z Z
D

j� � yj jy � vj dxdy:

In particular,

(1.4)

���� 1AD
Z Z

D

f (x; y) dxdy

� 1

2AD

I
@D

[(yD � y) f (x; y) dx+ (x� xD) f (x; y) dy]

������
� L1
2AD

Z Z
D

jxD � xj jx� uj dxdy +
K1

2AD

Z Z
D

jxD � xj jy � vj dxdy

+
L2
2AD

Z Z
D

jyD � yj jx� uj dxdy +
K2

2AD

Z Z
D

jyD � yj jy � vj dxdy

and

(1.5)

���� 1AD
Z Z

D

f (x; y) dxdy

�1
2

@f

@x
(u; v) (xf;@D � xD)�

1

2

@f

@y
(u; v) (yf;@D � yD)

����
� L1
2AD

Z Z
D

jxf;@D � xj jx� uj dxdy +
K1

2AD

Z Z
D

jxf;@D � xj jy � vj dxdy

+
L2
2AD

Z Z
D

jyf;@D � yj jx� uj dxdy +
K2

2AD

Z Z
D

jyf;@D � yj jy � vj dxdy;

where

xf;@D :=

I
@D

xf (x; y) dy

I
@D

f (x; y) dy

and yf;@D :=

I
@D

yf (x; y) dx

I
@D

f (x; y) dx

provided the denominators are not zero.

For other integral inequalities for multiple integrals see [3]-[15].
In this paper, motivated by the above results and by utilising the famous Di-

vergence Theorem for n-dimensional integral, we provide some error estimates in
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approximating the integral on a body B; a bounded closed subset of Rn (n � 2)
with smooth (or piecewise smooth) boundary @B; by an integral on the surface @B
and some other simple terms. Some examples for 3-dimensional case are also given.

2. Some Preliminary Facts

Let B be a bounded open subset of Rn (n � 2) with smooth (or piecewise
smooth) boundary @B. Let F = (F1; :::; Fn) be a smooth vector �eld de�ned in
Rn, or at least in B[ @B. Let n be the unit outward-pointing normal of @B. Then
the Divergence Theorem states, see for instance [16]:

(2.1)
Z
B

divFdV =

Z
@B

F � ndA;

where

divF = r � F =
nX
k=1

@Fk
@xk

;

dV is the element of volume in Rn and dA is the element of surface area on @B.
If n = (n1; :::;nn), x = (x1; :::; xn) 2 B and use the notation dx for dV we can

write (2.1) more explicitly as

(2.2)
nX
k=1

Z
B

@Fk (x)

@xk
dx =

nX
k=1

Z
@B

Fk (x)nk (x) dA:

By taking the real and imaginary part, we can extend the above equality for
complex valued functions Fk; k 2 f1; :::; ng de�ned on B:
If n = 2, the normal is obtained by rotating the tangent vector through 90�

(in the correct direction so that it points out). The quantity tds can be written
(dx1; dx2) along the surface, so that

ndA := nds = (dx2;�dx1):
Here t is the tangent vector along the boundary curve and ds is the element of

arc-length.
From (2.2) we get for B � R2Z

B

@F1 (x1; x2)

@x1
dx1dx2 +

Z
B

@F2 (x1; x2)

@x2
dx1dx2(2.3)

=

Z
@B

F1 (x1; x2) dx2 �
Z
@B

F2 (x1; x2) dx1;

which is Green�s theorem in plane.
If n = 3 and if @B is described as a level-set of a function of 3 variables i.e. @B =�
x1; x2; x3 2 R3 j G(x1; x2; x3) = 0

	
, then a vector pointing in the direction of n is

gradG. We shall use the case where G (x1; x2; x3) = x3 � g(x1; x2); (x1; x2) 2 D;
a domain in R2 for some di¤erentiable function g on D and B corresponds to the
inequality x3 < g(x1; x2), namely

B =
�
(x1; x2; x3) 2 R3 j x3 < g(x1; x2)

	
:

Then

n =
(�gx1 ;�gx2 ; 1)�
1 + g2x1 + g

2
x2

�1=2 ; dA = �1 + g2x1 + g2x2�1=2 dx1dx2
and

ndA = (�gx1 ;�gx2 ; 1) dx1dx2:
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From (2.2) we getZ
B

�
@F1 (x1; x2; x3)

@x1
+
@F2 (x1; x2; x3)

@x2
+
@F3 (x1; x2; x3)

@x3

�
dx1dx2dx3(2.4)

= �
Z
D

F1 (x1; x2; g(x1; x2)) gx1 (x1; x2) dx1dx2

�
Z
D

F1 (x1; x2; g(x1; x2)) gx2(x1; x2)dx1dx2

+

Z
D

F3 (x1; x2; g(x1; x2)) dx1dx2;

which is the Gauss-Ostrogradsky theorem in space.
Following Apostol [1], consider a surface described by the vector equation

(2.5) r (u; v) = x1 (u; v)
�!
i + x2 (u; v)

�!
j + x3 (u; v)

�!
k

where (u; v) 2 [a; b]� [c; d] :
If x1; x2; x3 are di¤erentiable on [a; b]� [c; d] we consider the two vectors

@r

@u
=
@x1
@u

�!
i +

@x2
@u

�!
j +

@x3
@u

�!
k

and
@r

@v
=
@x1
@v

�!
i +

@x2
@v

�!
j +

@x3
@v

�!
k :

The cross product of these two vectors @r@u�
@r
@v will be referred to as the fundamental

vector product of the representation r: Its components can be expressed as Jacobian
determinants. In fact, we have [1, p. 420]

@r

@u
� @r

@v
=

������
@x2
@u

@x3
@u

@x2
@v

@x3
@v

�������!i +
������
@x3
@u

@x1
@u

@x3
@v

@x1
@v

�������!j +
������
@x1
@u

@x2
@u

@x1
@v

@x2
@v

�������!k(2.6)

=
@ (x2; x3)

@ (u; v)

�!
i +

@ (x3; x1)

@ (u; v)

�!
j +

@ (x1; x2)

@ (u; v)

�!
k :

Let @B = r(T ) be a parametric surface described by a vector-valued function r
de�ned on the box T = [a; b] � [c; d] : The area of @B denoted A@B is de�ned by
the double integral [1, p. 424-425]

A@B =

Z b

a

Z d

c





 @r@u � @r

@v





 dudv(2.7)

=

Z b

a

Z d

c

s�
@ (x2; x3)

@ (u; v)

�2
+

�
@ (x3; x1)

@ (u; v)

�2
+

�
@ (x1; x2)

@ (u; v)

�2
dudv:

We de�ne surface integrals in terms of a parametric representation for the surface.
One can prove that under certain general conditions the value of the integral is
independent of the representation.
Let @B = r(T ) be a parametric surface described by a vector-valued di¤erentiable

function r de�ned on the box T = [a; b] � [c; d] and let f : @B ! C de�ned and
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bounded on @B: The surface integral of f over @B is de�ned by [1, p. 430]Z Z
@B

fdA =

Z b

a

Z d

c

f (x1; x2; x3)





 @r@u � @r

@v





 dudv(2.8)

=

Z b

a

Z d

c

f (x1 (u; v) ; x2 (u; v) ; x3 (u; v))

�

s�
@ (x2; x3)

@ (u; v)

�2
+

�
@ (x3; x1)

@ (u; v)

�2
+

�
@ (x1; x2)

@ (u; v)

�2
dudv:

If @B = r(T ) is a parametric surface, the fundamental vector product N =
@r
@u �

@r
@v is normal to @B at each regular point of the surface. At each such point

there are two unit normals, a unit normal n1, which has the same direction as N ,
and a unit normal n2 which has the opposite direction. Thus

n1 =
N

kNk and n2 = �n1:

Let n be one of the two normals n1 or n2: Let also F be a vector �eld de�ned on
@B and assume that the surface integral,Z Z

@B

(F � n) dA;

called the �ux surface integral, exists. Here F � n is the dot or inner product.
We can write [1, p. 434]Z Z

@B

(F � n) dA = �
Z b

a

Z d

c

F (r (u; v)) �
�
@r

@u
� @r

@v

�
dudv

where the sign " + " is used if n = n1 and the "� " sign is used if n = n2:
If

F (x1; x2; x3) = F1 (x1; x2; x3)
�!
i + F2 (x1; x2; x3)

�!
j + F3 (x1; x2; x3)

�!
k

and

r (u; v) = x1 (u; v)
�!
i + x2 (u; v)

�!
j + x3 (u; v)

�!
k where (u; v) 2 [a; b]� [c; d]

then the �ux surface integral for n = n1 can be explicitly calculated as [1, p. 435]Z Z
@B

(F � n) dA =
Z b

a

Z d

c

F1 (x1 (u; v) ; x2 (u; v) ; x3 (u; v))
@ (x2; x3)

@ (u; v)
dudv(2.9)

+

Z b

a

Z d

c

F2 (x1 (u; v) ; x2 (u; v) ; x3 (u; v))
@ (x3; x1)

@ (u; v)
dudv

+

Z b

a

Z d

c

F3 (x1 (u; v) ; x2 (u; v) ; x3 (u; v))
@ (x1; x2)

@ (u; v)
dudv:

The sum of the double integrals on the right is often written more brie�y as [1, p.
435] Z Z

@B

F1 (x1; x2; x3) dx2 ^ dx3 +
Z Z

@B

F2 (x1; x2; x3) dx3 ^ dx1

+

Z Z
@B

F3 (x1; x2; x3) dx1 ^ dx2:
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Let B � R3 be a solid in 3-space bounded by an orientable closed surface @B,
and let n be the unit outer normal to @B. If F is a continuously di¤erentiable
vector �eld de�ned on B, we have the Gauss-Ostrogradsky identity

(GO)
ZZZ

B

(divF ) dV =

Z Z
@B

(F � n) dA:

If we express

F (x1; x2; x3) = F1 (x1; x2; x3)
�!
i + F2 (x1; x2; x3)

�!
j + F3 (x1; x2; x3)

�!
k ;

then (2.4) can be written asZZZ
B

�
@F1 (x1; x2; x3)

@x1
+
@F2 (x1; x2; x3)

@x2
+
@F3 (x1; x2; x3)

@x3

�
dx1dx2dx3(2.10)

=

Z Z
@B

F1 (x1; x2; x3) dx2 ^ dx3 +
Z Z

@B

F2 (x1; x2; x3) dx3 ^ dx1

+

Z Z
@B

F3 (x1; x2; x3) dx1 ^ dx2:

3. Some Perturbed Identities

For the body B we consider the coordinates for the centre of gravity

G (xB;1; :::; xB;n)

de�ned by

xB;k :=
1

V (B)

Z
B

xkdx; k 2 f1; :::; ng ;

where

V (B) :=

Z
B

dx

is the volume of B:
We have the following identity of interest:

Theorem 2. Let B be a bounded closed subset of Rn (n � 2) with smooth (or
piecewise smooth) boundary @B. Let f be a continuously di¤erentiable function
de�ned in Rn, or at least in on open neighborhood of B and with complex values.
If �k; �k; �k 2 C for k 2 f1; :::; ng with

Pn
k=1 �k = 1; then

1

V (B)

Z
B

f (x) dx(3.1)

=
nX
k=1

1

V (B)

Z
B

(�k � �kxk)
�
@f (x)

@xk
� �k

�
dx

+
nX
k=1

�k (�k � �kxB;k) +
nX
k=1

1

V (B)

Z
@B

(�kxk � �k) f (x)nk (x) dA:
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We also have
1

V (B)

Z
B

f (x) dx(3.2)

=
nX
k=1

�k
1

V (B)

Z
B

(
k � xk)
�
@f (x)

@xk
� �k

�
dx

+
nX
k=1

�k�k (
k � xB;k) +
nX
k=1

�k
1

V (B)

Z
@B

(xk � 
k) f (x)nk (x) dA

for all 
k 2 C, where k 2 f1; :::; ng and, in particular,
1

V (B)

Z
B

f (x) dx(3.3)

=
1

n

nX
k=1

1

V (B)

Z
B

(
k � xk)
�
@f (x)

@xk
� �k

�
dx

+
1

n

nX
k=1

�k�k (
k � xB;k) +
1

n

nX
k=1

1

V (B)

Z
@B

(xk � 
k) f (x)nk (x) dA:

Proof. Let x = (x1; :::; xn) 2 B: We consider
Fk (x) = (�kxk � �k) f (x) ; k 2 f1; :::; ng

and take the partial derivatives @Fk(x)@xk
to get

@Fk (x)

@xk
= �kf (x) + (�kxk � �k)

@f (x)

@xk
; k 2 f1; :::; ng :

If we sum this equality over k from 1 to n we get
nX
k=1

@Fk (x)

@xk
=

nX
k=1

�kf (x) +
nX
k=1

(�kxk � �k)
@f (x)

@xk
(3.4)

= f (x) +
nX
k=1

(�kxk � �k)
@f (x)

@xk

for all x = (x1; :::; xn) 2 B:
Now, if we take the integral in the equality (3.4) over (x1; :::; xn) 2 B we get

(3.5)
Z
B

 
nX
k=1

@Fk (x)

@xk

!
dx =

Z
B

f (x) dx+
nX
k=1

Z
B

�
(�kxk � �k)

@f (x)

@xk

�
dx:

By the Divergence Theorem (2.2) we also have

(3.6)
Z
B

 
nX
k=1

@Fk (x)

@xk

!
dx =

nX
k=1

Z
@B

(�kxk � �k) f (x)nk (x) dA

and by making use of (3.5) and (3.6) we deriveZ
B

f (x) dx+
nX
k=1

Z
B

�
(�kxk � �k)

@f (x)

@xk

�
dx

=
nX
k=1

Z
@B

(�kxk � �k) f (x)nk (x) dA;
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which gives the representationZ
B

f (x) dx =
nX
k=1

Z
B

(�k � �kxk)
@f (x)

@xk
dx(3.7)

+
nX
k=1

Z
@B

(�kxk � �k) f (x)nk (x) dA:

Now, observe thatZ
B

(�k � �kxk)
�
@f (x)

@xk
� �k

�
dx

=

Z
B

(�k � �kxk)
@f (x)

@xk
dx� �k

Z
B

(�k � �kxk) dx

=

Z
B

(�k � �kxk)
@f (x)

@xk
dx� �k (�kV (B)� �kV (B)xB;k)

=

Z
B

(�k � �kxk)
@f (x)

@xk
dx� V (B) �k (�k � �kxB;k) ;

which by summation over k 2 f1; :::; ng provides
nX
k=1

Z
B

(�k � �kxk)
�
@f (x)

@xk
� �k

�
dx

=
nX
k=1

Z
B

(�k � �kxk)
@f (x)

@xk
dx� V (B)

nX
k=1

�k (�k � �kxB;k)

namely
nX
k=1

Z
B

(�k � �kxk)
@f (x)

@xk
dx

=

nX
k=1

Z
B

(�k � �kxk)
�
@f (x)

@xk
� �k

�
dx+ V (B)

nX
k=1

�k (�k � �kxB;k) :

From (3.7) we then getZ
B

f (x) dx =
nX
k=1

Z
B

(�k � �kxk)
�
@f (x)

@xk
� �k

�
dx

+ V (B)

nX
k=1

�k (�k � �kxB;k) +
nX
k=1

Z
@B

(�kxk � �k) f (x)nk (x) dA;

which by division with V (B) produces the desired result (3.1)
The identity (3.2) follows by (3.1) for �k = �k
k; k 2 f1; :::; ng : �
The following particular cases are of interest:

Corollary 1. With the assumptions of Theorem 2 we have

1

V (B)

Z
B

f (x) dx =
nX
k=1

�k
1

V (B)

Z
B

(xB;k � xk)
�
@f (x)

@xk
� �k

�
dx(3.8)

+
nX
k=1

�k
1

V (B)

Z
@B

(xk � xB;k) f (x)nk (x) dA
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and, in particular,

1

V (B)

Z
B

f (x) dx =
1

n

nX
k=1

1

V (B)

Z
B

(xB;k � xk)
�
@f (x)

@xk
� �k

�
dx(3.9)

+
1

n

nX
k=1

1

V (B)

Z
@B

(xk � xB;k) f (x)nk (x) dA:

The proof follows by (3.1) on taking �k = �kxB;k; k 2 f1; :::; ng :
For a function f as in Theorem 2 above, we de�ne the points

x@B;f ;k :=

R
@B

xkf (x)nk (x) dAR
@B

f (x)nk (x) dA
; k 2 f1; :::; ng

provided that all denominators are not zero.

Corollary 2. With the assumptions of Theorem 2 we have

1

V (B)

Z
B

f (x) dx =
nX
k=1

�k
1

V (B)

Z
B

(x@B;f ;k �xk)
�
@f (x)

@xk
� �k

�
dx(3.10)

+
nX
k=1

�k�k (x@B;f ;k �xB;k)

and, in particular

1

V (B)

Z
B

f (x) dx =
1

n

nX
k=1

1

V (B)

Z
B

(x@B;f ;k �xk)
�
@f (x)

@xk
� �k

�
dx(3.11)

+
1

n

nX
k=1

�k (x@B;f ;k �xB;k) :

The proof follows by (3.1) on taking �k = �kx@B;f ;k ; k 2 f1; :::; ng and observing
that

nX
k=1

�k

Z
@B

(xk � x@B;f ;k ) f (x)nk (x) dA = 0:

4. Some Inequalities for Bounded Partial Derivatives

Let B be a bounded closed subset of Rn (n � 2) with smooth (or piecewise
smooth) boundary @B. Now, for �; � 2 C, de�ne the sets of complex-valued
functions

�UB (�;�)

:=
n
f : B ! CjRe

h
(�� f (x))

�
f (x)� �

�i
� 0 for each x 2 B

o
and

��B (�;�) :=

�
f : B ! Cj

����f (x)� �+�

2

���� � 1

2
j�� �j for each x 2 B

�
:

The following representation result may be stated.

Proposition 1. For any �; � 2 C, � 6= �; we have that �UB (�;�) and ��B (�;�)
are nonempty, convex and closed sets and

(4.1) �UB (�;�) = ��B (�;�) :
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Proof. We observe that for any w 2 C we have the equivalence����w � �+�

2

���� � 1

2
j�� �j

if and only if

Re
�
(�� w)

�
w � �

��
� 0:

This follows by the equality

1

4
j�� �j2 �

����w � �+�

2

����2 = Re �(�� w) �w � ���
that holds for any w 2 C.
The equality (4.1) is thus a simple consequence of this fact. �

On making use of the complex numbers �eld properties we can also state that:

Corollary 3. For any �; � 2 C, � 6= �;we have that

�UB (�;�) = ff : B ! C j (Re�� Re f (x)) (Re f (x)� Re�)(4.2)

+(Im�� Im f (x)) (Im f (x)� Im�) � 0 for each x 2 Bg :

Now, if we assume that Re (�) � Re (�) and Im (�) � Im (�) ; then we can de�ne
the following set of functions as well:

(4.3) �SB (�;�) := ff : B ! C j Re (�) � Re f (x) � Re (�)
and Im (�) � Im f (x) � Im (�) for each x 2 Bg :

One can easily observe that �SB (�;�) is closed, convex and

(4.4) ; 6= �SB (�;�) � �UB (�;�) :

Theorem 3. Let B be a bounded closed subset of Rn (n � 2) with smooth (or
piecewise smooth) boundary @B. Let f be a continuously di¤erentiable function
de�ned in Rn, or at least in on open neighborhood of B and with complex values.
Assume that there exist �k; �k 2 C, �k 6= �k for k 2 f1; :::; ng and such that @f

@xk
2

��B (�k;�k) for k 2 f1; :::; ng : If �k; �k 2 C for k 2 f1; :::; ng with
Pn
k=1 �k = 1;

then ����� 1

V (B)

Z
B

f (x) dx�
nX
k=1

�k +�k
2

(�k � �kxB;k)(4.5)

�
nX
k=1

1

V (B)

Z
@B

(�kxk � �k) f (x)nk (x) dA
�����

� 1

2

nX
k=1

j�k � �kj
1

V (B)

Z
B

j�k � �kxkj dx
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We also have ����� 1

V (B)

Z
B

f (x) dx�
nX
k=1

�k +�k
2

�k (
k � xB;k)(4.6)

�
nX
k=1

�k
1

V (B)

Z
@B

(xk � 
k) f (x)nk (x) dA
�����

� 1

2

nX
k=1

j�k � �kj j�kj
1

V (B)

Z
B

j
k � xkj dx

for all 
k 2 C, where k 2 f1; :::; ng and, in particular,����� 1

V (B)

Z
B

f (x) dx� 1

n

nX
k=1

�k +�k
2

(
k � xB;k)(4.7)

� 1
n

nX
k=1

1

V (B)

Z
@B

(xk � 
k) f (x)nk (x) dA
�����

� 1

2n

nX
k=1

j�k � �kj
1

V (B)

Z
B

j
k � xkj dx:

Proof. By using identity (3.1) for �k :=
�k+�k

2 ; k 2 f1; :::; ng ; we get

1

V (B)

Z
B

f (x) dx(4.8)

=
nX
k=1

1

V (B)

Z
B

(�k � �kxk)
�
@f (x)

@xk
� �k +�k

2

�
dx

+

nX
k=1

�k +�k
2

(�k � �kxB;k) +
nX
k=1

1

V (B)

Z
@B

(�kxk � �k) f (x)nk (x) dA:

Since @f
@xk

2 ��B (�k;�k) for k 2 f1; :::; ng ; hence by (4.8)����� 1

V (B)

Z
B

f (x) dx�
nX
k=1

�k +�k
2

(�k � �kxB;k)

�
nX
k=1

1

V (B)

Z
@B

(�kxk � �k) f (x)nk (x) dA
�����

�
nX
k=1

1

V (B)

����Z
B

(�k � �kxk)
�
@f (x)

@xk
� �k +�k

2

�
dx

����
�

nX
k=1

1

V (B)

Z
B

����(�k � �kxk)�@f (x)@xk
� �k +�k

2

����� dx
�

nX
k=1

1

2
j�k � �kj

1

V (B)

Z
B

j�k � �kxkj dx;

which proves (4.5). The rest is obvious. �
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Corollary 4. With the assumptions of Theorem 3 we have����� 1

V (B)

Z
B

f (x) dx�
nX
k=1

�k
1

V (B)

Z
@B

(xk � xB;k) f (x)nk (x) dA
�����(4.9)

� 1

2

nX
k=1

j�kj j�k � �kj
1

V (B)

Z
B

jxB;k � xkj dx

and, in particular,����� 1

V (B)

Z
B

f (x) dx� 1

n

nX
k=1

1

V (B)

Z
@B

(xk � xB;k) f (x)nk (x) dA
�����(4.10)

� 1

2n

nX
k=1

j�k � �kj
1

V (B)

Z
B

jxB;k � xkj dx:

The proof follows from (4.6) by taking 
k = xB;k; k 2 f1; :::; ng :

Corollary 5. With the assumptions of Theorem 3 we have����� 1

V (B)

Z
B

f (x) dx�
nX
k=1

�k +�k
2

�k (x@B;f ;k �xB;k)
�����(4.11)

� 1

2

nX
k=1

j�k � �kj j�kj
1

V (B)

Z
B

jx@B;f ;k �xkj dx

and, in particular,����� 1

V (B)

Z
B

f (x) dx� 1

n

nX
k=1

�k +�k
2

(x@B;f ;k �xB;k)
�����(4.12)

� 1

2n

nX
k=1

j�k � �kj
1

V (B)

Z
B

jx@B;f ;k �xkj dx:

The proof follows from (4.6) by taking 
k = x@B;f ;k ; k 2 f1; :::; ng and observing
that

nX
k=1

�k
1

V (B)

Z
@B

(xk � x@B;f ;k ) f (x)nk (x) dA = 0:

5. Inequalities for Lipschitzian Partial Derivatives

We assume that the partial derivatives @f
@xk

; k 2 f1; :::; ng ; satisfy the Lipschitz
type conditions in the point u = (u1; :::; un) 2 D

(5.1)

����@f (x)@xk
� @f (u)

@xk

���� � nX
j=1

Lk;j jxj � uj j

for any x = (x1; :::; xn) 2 D; where Lk;j ; k; j 2 f1; :::; ng are given positive con-
stants.

Theorem 4. Let B be a bounded closed subset of Rn (n � 2) with smooth (or
piecewise smooth) boundary @B. Let f be a continuously di¤erentiable function
de�ned in Rn, or at least in on open neighborhood of B and with complex values.
Assume that for u 2 B there exist Lk;j ; k; j 2 f1; :::; ng and such that the Lipschitz
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condition (5.1) holds for k 2 f1; :::; ng : If �k; �k 2 C for k 2 f1; :::; ng withPn
k=1 �k = 1; then

����� 1

V (B)

Z
B

f (x) dx�
nX
k=1

@f (u)

@xk
(�k � �kxB;k)(5.2)

�
nX
k=1

1

V (B)

Z
@B

(�kxk � �k) f (x)nk (x) dA
�����

�
nX
k=1

nX
j=1

Lk;j
1

V (B)

Z
B

j�k � �kxkj jxj � uj j dx:

We also have

����� 1

V (B)

Z
B

f (x) dx�
nX
k=1

�k
@f (u)

@xk
(
k � xB;k)(5.3)

�
nX
k=1

1

V (B)

Z
@B

�k (xk � 
k) f (x)nk (x) dA
�����

�
nX
k=1

nX
j=1

Lk;j j�kj
1

V (B)

Z
B

j
k � xkj jxj � uj j dx

for all 
k 2 C, where k 2 f1; :::; ng and, in particular,

����� 1

V (B)

Z
B

f (x) dx� 1

n

nX
k=1

@f (u)

@xk
(
k � xB;k)(5.4)

� 1
n

nX
k=1

1

V (B)

Z
@B

�k (xk � 
k) f (x)nk (x) dA
�����

� 1

n

nX
k=1

nX
j=1

Lk;j
1

V (B)

Z
B

j
k � xkj jxj � uj j dx:

Proof. If we write the equality (3.1) for �k =
@f(u)
@xk

; k 2 f1; :::; ng ; we get

1

V (B)

Z
B

f (x) dx

=
nX
k=1

1

V (B)

Z
B

(�k � �kxk)
�
@f (x)

@xk
� @f (u)

@xk

�
dx

+
nX
k=1

@f (u)

@xk
(�k � �kxB;k) +

nX
k=1

1

V (B)

Z
@B

(�kxk � �k) f (x)nk (x) dA:
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Therefore ����� 1

V (B)

Z
B

f (x) dx�
nX
k=1

@f (u)

@xk
(�k � �kxB;k)

�
nX
k=1

1

V (B)

Z
@B

(�kxk � �k) f (x)nk (x) dA
�����

�
nX
k=1

1

V (B)

����Z
B

(�k � �kxk)
�
@f (x)

@xk
� @f (u)

@xk

�
dx

����
�

nX
k=1

1

V (B)

Z
B

����(�k � �kxk)�@f (x)@xk
� @f (u)

@xk

����� dx
=

nX
k=1

1

V (B)

Z
B

j�k � �kxkj
����@f (x)@xk

� @f (u)

@xk

���� dx
�

nX
k=1

1

V (B)

Z
B

j�k � �kxkj
nX
j=1

Lk;j jxj � uj j dx (by (5.1))

=

nX
k=1

nX
j=1

Lk;j
1

V (B)

Z
B

j�k � �kxkj jxj � uj j dx

and the inequality (5.2) is proved. �

Corollary 6. With the assumptions of Theorem 4 we have����� 1

V (B)

Z
B

f (x) dx�
nX
k=1

1

V (B)

Z
@B

�k (xk � xB;k) f (x)nk (x) dA
�����(5.5)

�
nX
k=1

nX
j=1

Lk;j j�kj
1

V (B)

Z
B

jxB;k � xkj jxj � uj j dx

and, in particular,����� 1

V (B)

Z
B

f (x) dx� 1

n

nX
k=1

1

V (B)

Z
@B

(xk � xB;k) f (x)nk (x) dA
�����(5.6)

� 1

n

nX
k=1

nX
j=1

Lk;j
1

V (B)

Z
B

jxB;k � xkj jxj � uj j dx:

Corollary 7. With the assumptions of Theorem 4 we have����� 1

V (B)

Z
B

f (x) dx�
nX
k=1

�k
@f (u)

@xk
(x@B;f ;k �xB;k)

�����(5.7)

�
nX
k=1

nX
j=1

Lk;j j�kj
1

V (B)

Z
B

jx@B;f ;k �xkj jxj � uj j dx
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and, in particular,����� 1

V (B)

Z
B

f (x) dx� 1

n

nX
k=1

@f (u)

@xk
(x@B;f ;k �xB;k)

�����(5.8)

� 1

n

nX
k=1

nX
j=1

Lk;j
1

V (B)

Z
B

jx@B;f ;k �xkj jxj � uj j dx:

Corollary 8. With the assumptions of Theorem 4 we have����� 1

V (B)

Z
B

f (x) dx�
nX
k=1

�k
@f (u)

@xk
(uk � xB;k)(5.9)

�
nX
k=1

1

V (B)

Z
@B

�k (xk � uk) f (x)nk (x) dA
�����

�
nX
k=1

nX
j=1

Lk;j j�kj
1

V (B)

Z
B

juk � xkj jxj � uj j dx

and, in particular,����� 1

V (B)

Z
B

f (x) dx� 1

n

nX
k=1

@f (u)

@xk
(uk � xB;k)(5.10)

� 1
n

nX
k=1

1

V (B)

Z
@B

(xk � uk) f (x)nk (x) dA
�����

� 1

n

nX
k=1

nX
j=1

Lk;j
1

V (B)

Z
B

juk � xkj jxj � uj j dx:

Remark 1. With the assumptions of Theorem 4 and for G = (xB;1; :::; xB;n) 2 B
there exist Mk;j > 0; k; j 2 f1; :::; ng such that the Lipschitz conditions

(5.11)

����@f (x)@xk
� @f (G)

@xk

���� � nX
j=1

Mk;j jxj � uj j

hold for k 2 f1; :::; ng ; then����� 1

V (B)

Z
B

f (x) dx�
nX
k=1

1

V (B)

Z
@B

�k (xk � xB;k) f (x)nk (x) dA
�����(5.12)

�
nX
k=1

nX
j=1

Lk;j j�kj
1

V (B)

Z
B

jxB;k � xkj jxj � xB;j j dx

and, in particular,����� 1

V (B)

Z
B

f (x) dx� 1

n

nX
k=1

1

V (B)

Z
@B

(xk � xB;k) f (x)nk (x) dA
�����(5.13)

� 1

n

nX
k=1

nX
j=1

Lk;j
1

V (B)

Z
B

jxB;k � xkj jxj � xB;j j dx:
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It is well known that if a function g has bounded partial derivatives on B; which
is assumed also to be convex, then for all x; y 2 B we have the Lipschitz type
condition

jg (x)� g (y)j �
nX
j=1





 @g@xj





B;1

jxj � yj j

where 



 @g@xj





B;1

:= sup
x2B

����@g (x)@xj

���� <1:
We can state the following result that is more convenient to apply:

Corollary 9. Let B be a bounded closed convex subset of Rn (n � 2) with smooth
(or piecewise smooth) boundary @B. Let f be a twice di¤erentiable function de�ned
in Rn, or at least in on open neighborhood of B and with complex values and assume
that 



 @2f

@xk@xj






B;1

:= sup
x2B

���� @2f (x)@xk@xj

���� <1
for all k; j 2 f1; :::; ng : For j = k we denote, as usual @2f

@xk@xk
= @2f

@2xk
; k 2 f1; :::; ng :

Then for all u 2 B we have����� 1

V (B)

Z
B

f (x) dx�
nX
k=1

�k
@f (u)

@xk
(uk � xB;k)(5.14)

�
nX
k=1

1

V (B)

Z
@B

�k (xk � uk) f (x)nk (x) dA
�����

�
nX
k=1

nX
j=1





 @2f

@xk@xj






B;1

j�kj
1

V (B)

Z
B

juk � xkj jxj � uj j dx

and, in particular,����� 1

V (B)

Z
B

f (x) dx� 1

n

nX
k=1

@f (u)

@xk
(uk � xB;k)(5.15)

� 1
n

nX
k=1

1

V (B)

Z
@B

(xk � uk) f (x)nk (x) dA
�����

� 1

n

nX
k=1

nX
j=1





 @2f

@xk@xj






B;1

1

V (B)

Z
B

juk � xkj jxj � uj j dx:

We also have the centre of gravity inequality����� 1

V (B)

Z
B

f (x) dx�
nX
k=1

1

V (B)

Z
@B

�k (xk � xB;k) f (x)nk (x) dA
�����(5.16)

�
nX
k=1

nX
j=1

j�kj




 @2f

@xk@xj






B;1

1

V (B)

Z
B

jxB;k � xkj jxj � xB;kj dx
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and, in particular,

����� 1

V (B)

Z
B

f (x) dx� 1

n

nX
k=1

1

V (B)

Z
@B

(xk � xB;k) f (x)nk (x) dA
�����(5.17)

� 1

n

nX
k=1

nX
j=1





 @2f

@xk@xj






B;1

1

V (B)

Z
B

jxB;k � xkj jxj � xB;kj dx:

6. Example for 3-Dimensional Spaces

Let B be a bounded closed convex subset of R3 with smooth (or piecewise
smooth) boundary @B. Let f be a twice di¤erentiable function de�ned in R3,
or at least in on open neighborhood of B and with complex values and assume that





 @2f

@xk@xj






B;1

:= sup
x2B

���� @2f (x)@xk@xj

���� <1
for all k; j 2 f1; :::; 3g :
Consider a surface described by the vector equation

r (u; v) = x1 (u; v)
�!
i + x2 (u; v)

�!
j + x3 (u; v)

�!
k

where (u; v) 2 [a; b]� [c; d] : Then, by using the notations from the second section,
we have

(6.1)

���� 1

V (B)

Z
B

f (x) dx �
3X
k=1

�k
@f (y1; y2; y3)

@xk
(yk � xB;k)

� 1

V (B)

Z b

a

Z d

c

�1 (x1 (u; v)� y1) f (x1 (u; v) ; x2 (u; v) ; x3 (u; v))
@ (x2; x3)

@ (u; v)
dudv

� 1

V (B)

Z b

a

Z d

c

�2 (x2 (u; v)� y2) f (x1 (u; v) ; x2 (u; v) ; x3 (u; v))
@ (x3; x1)

@ (u; v)
dudv

� 1

V (B)

Z b

a

Z d

c

�3 (x3 (u; v)� y3) f (x1 (u; v) ; x2 (u; v) ; x3 (u; v))
@ (x1; x2)

@ (u; v)
dudv

�����
�

3X
k=1

3X
j=1

j�kj




 @2f

@xk@xj






B;1

1

V (B)

Z
B

jyk � xkj jxj � yj j dx

for all (y1; y2; y3) 2 B and �k 2 C, k 2 f1; :::; 3g ; with �1 + �2 + �3 = 1:
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In particular, we have

(6.2)

���� 1

V (B)

Z
B

f (x) dx � 1
3

3X
k=1

@f (y1; y2; y3)

@xk
(yk � xB;k)

� 1

3V (B)

Z b

a

Z d

c

(x1 (u; v)� y1) f (x1 (u; v) ; x2 (u; v) ; x3 (u; v))
@ (x2; x3)

@ (u; v)
dudv

� 1

3V (B)

Z b

a

Z d

c

(x2 (u; v)� y2) f (x1 (u; v) ; x2 (u; v) ; x3 (u; v))
@ (x3; x1)

@ (u; v)
dudv

� 1

3V (B)

Z b

a

Z d

c

(x3 (u; v)� y3) f (x1 (u; v) ; x2 (u; v) ; x3 (u; v))
@ (x1; x2)

@ (u; v)
dudv

�����
� 1

3

3X
k=1

3X
j=1





 @2f

@xk@xj






B;1

1

V (B)

Z
B

jyk � xkj jxj � yj j dx

for all (y1; y2; y3) 2 B:
We also have the centre of gravity inequalities

(6.3)

���� 1

V (B)

Z
B

f (x) dx

� 1

V (B)

Z b

a

Z d

c

�1 (x1 (u; v)� xB;1) f (x1 (u; v) ; x2 (u; v) ; x3 (u; v))
@ (x2; x3)

@ (u; v)
dudv

� 1

V (B)

Z b

a

Z d

c

�2 (x2 (u; v)� xB;2) f (x1 (u; v) ; x2 (u; v) ; x3 (u; v))
@ (x3; x1)

@ (u; v)
dudv

� 1

V (B)

Z b

a

Z d

c

�3 (x3 (u; v)� xB;3) f (x1 (u; v) ; x2 (u; v) ; x3 (u; v))
@ (x1; x2)

@ (u; v)
dudv

�����
�

3X
k=1

3X
j=1

j�kj




 @2f

@xk@xj






B;1

1

V (B)

Z
B

jxB;k � xkj jxj � xB;j j dx

or all �k 2 C, k 2 f1; :::; 3g with �1 + �2 + �3 = 1:
In particular,

(6.4)

���� 1

V (B)

Z
B

f (x) dx

� 1

3V (B)

Z b

a

Z d

c

(x1 (u; v)� xB;1) f (x1 (u; v) ; x2 (u; v) ; x3 (u; v))
@ (x2; x3)

@ (u; v)
dudv

� 1

3V (B)

Z b

a

Z d

c

(x2 (u; v)� xB;2) f (x1 (u; v) ; x2 (u; v) ; x3 (u; v))
@ (x3; x1)

@ (u; v)
dudv

� 1

3V (B)

Z b

a

Z d

c

(x3 (u; v)� xB;3) f (x1 (u; v) ; x2 (u; v) ; x3 (u; v))
@ (x1; x2)

@ (u; v)
dudv

�����
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� 1

3

1

V (B)

"



 @2f@2x1






B;1

Z
B

(xB;1 � x1)2 dx

+





 @2f@2x2






B;1

Z
B

(xB;2 � x2)2 dx+




 @2f@2x3






B;1

Z
B

(xB;3 � x3)2 dx
#

+
2

3

1

V (B)

"



 @2f

@x1@x2






B;1

Z
B

jxB;1 � x1j jx2 � xB;2j dx

+





 @2f

@x2@x3






B;1

Z
B

jxB;2 � x2j jx3 � xB;3j dx

+





 @2f

@x1@x3






B;1

Z
B

jxB;1 � x1j jx3 � xB;3j dx
#
:

7. Example for 3-Dimensional Balls

Consider the 3-dimensional ball centered in C = (a; b; c) and having the radius
R > 0;

B (C;R) :=
n
(x; y; z) 2 R3

�� (x� a)2 + (y � b)2 + (z � c)2 � R2
o

and the sphere

S (C;R) :=
n
(x; y; z) 2 R3

�� (x� a)2 + (y � b)2 + (z � c)2 = R2
o
:

Consider the parametrization of B (C;R) and S (C;R) given by:

B (C;R) :

8<: x = r cos cos'+ a
y = r cos sin'+ b
z = r sin + c

; (r;  ; ') 2 [0; R]�
h
��
2
;
�

2

i
� [0; 2�]

and

S (C;R) :

8<: x = R cos cos'+ a
y = R cos sin'+ b
z = R sin + c

; ( ;') 2
h
��
2
;
�

2

i
� [0; 2�] :

Observe that ����� @y
@ 

@z
@ 

@y
@'

@z
@'

����� = �R2 cos2  cos';����� @x
@ 

@z
@ 

@x
@'

@z
@'

����� = R2 cos2  sin';

and ����� @x
@ 

@y
@ 

@x
@'

@y
@'

����� = �R2 sin cos :
Let us consider the transformation T2 : R3 ! R3 given by:

T2 (r;  ; ') := (r cos cos'+ a; r cos sin'+ b; r sin + c) :

It is well known that the Jacobian of T2 is

J (T2) = r2 cos 



20 S. S. DRAGOMIR

and T2 is a one-to-one mapping de�ned on the interval of R3; [0; R] �
�
��
2 ;

�
2

�
�

[0; 2�] ; with values in the ball B (C;R) from R3: Thus we have the change of
variable:

(7.1)
ZZZ

B(C;R)

f (x; y; z) dxdydz

=

Z R

0

Z �
2

��
2

Z 2�

0

f (r cos cos'+ a; r cos sin'+ b; r sin + c) r2 cos drd d':

We also have

ZZZ
B(C;R)

��z � zB(C;R)��2 dxdydz
=

Z R

0

Z �
2

��
2

Z 2�

0

r2 sin2  r2 cos drd d'

=

Z R

0

Z �
2

��
2

Z 2�

0

r4 sin2  cos drd d' =
4

15
�R5

and, similarly

ZZZ
B(C;R)

��x� xB(C;R)��2 dxdydz = ZZZ
B(C;R)

��y � yB(C;R)��2 dxdydz = 4

15
�R5:

Also

ZZZ
B(C;R)

��x� xB(C;R)�� ��y � yB(C;R)�� dxdydz
=

Z R

0

Z �
2

��
2

Z 2�

0

jr cos cos'j jr cos sin'j r2 cos drd d'

=

Z R

0

Z �
2

��
2

Z 2�

0

r4 cos3  jsin' cos'j drd d' = 8

15
R5

and, similarly

ZZZ
B(C;R)

��x� xB(C;R)�� ��z � zB(C;R)�� dxdydz
=

ZZZ
B(C;R)

��y � yB(C;R)�� ��z � zB(C;R)�� dxdydz = 8

15
R5:
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Since V (B (C;R)) = 4�R3

3 ; then by (6.4) we get

(7.2)

����� 1
4�R3

3

Z R

0

Z �
2

��
2

Z 2�

0

f (r cos cos'+ a; r cos sin'+ b; r sin + c)

� r2 cos drd d'

+
1

4�

Z �
2

��
2

Z 2�

0

f (R cos cos'+ a;R cos sin'+ b; R sin + c) cos3  cos2 'd d'

� 1

4�

Z �
2

��
2

Z 2�

0

f (R cos cos'+ a;R cos sin'+ b; R sin + c) cos3  sin2 'd d'

+
1

4�

Z �
2

��
2

Z 2�

0

f (R cos cos'+ a;R cos sin'+ b; R sin + c) sin2  cos d d'

�����
� 1

15
R2

"



@2f@2x






B(C;R);1

+





@2f@2y






B(C;R);1

+





@2f@2z






B(C;R);1

#

+
4

15�
R2

"



 @2f@x@y






B(C;R);1

+





 @2f@y@z






B(C;R);1

+





 @2f@z@x






B(C;R);1

#
:
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