MULTIPLE INTEGRAL INEQUALITIES FOR SCHUR CONVEX
FUNCTIONS ON SYMMETRIC AND CONVEX BODIES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper, by making use of Divergence theorem for multiple
integrals, we establish some integral inequalities for Schur convex functions
defined on bodies B C R™ that are symmetric, convex and have nonempty
interiors. Examples for three dimensional balls are also provided.

1. INTRODUCTION

For any © = (21, ...,x,) € R", let x;) > ... > x},) denote the components of x in
decreasing order, and let x| = ($[1]7 ...,m[n}) denote the decreasing rearrangement
of z. For x, y € R™, © < y if, by definition,

S g < vy k=10 - 1

2oim1 Tl = 2im1 Yl

When x < y, x is said to be majorized by y (y majorizes x). This notation and
terminology was introduced by Hardy, Littlewood and Pélya in 1934.

Functions that preserve the ordering of majorization are said to be Schur-convex.
Perhaps “Schur-increasing” would be more appropriate, but the term “Schur-convex”
is by now well entrenched in the literature, [5, p.80].

A real-valued function ¢ defined on a set A C R™ is said to be Schur-convex on
A if
(1.1) z<yon A= ¢(z) <o(y).

If, in addition, ¢ (z) < ¢ (y) whenever & < y but z is not a permutation of y, then
¢ is said to be strictly Schur-convex on A. If A = R", then ¢ is simply said to be
Schur-convex or strictly Schur-convex.

For fundamental properties of Schur convexity see the monograph [5] and the
references therein. For some recent results, see [2]-[4] and [6]-[8].

The following result is known in the literature as Schur-Ostrowski theorem [5,
p. 84]:

Theorem 1. Let I C R be an open interval and let ¢ : I — R be continuously
differentiable. Necessary and sufficient conditions for ¢ to be Schur-convexr on I™
are

(1.2) ¢ is symmetric on 1™,
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and for all i # j, with i, j € {1,...,n},

(1.3) (zi — zj) [825) - 3(;%);2)} >0 forall zeI",

where % denotes the partial derivative of ¢ with respect to its k-th argument.

With the aid of (1.2), condition (1.3) can be replaced by the condition

(1.4) (21 — 22) [a(;bilz)éﬁc(j)} >0 forall z € I™.

This simplified condition is sometimes more convenient to verify.

The above condition is not sufficiently general for all applications because the
domain of ¢ may not be a Cartesian product.

Let A C R™ be a set with the following properties:

(i) A is symmetric in the sense that © € A = zII € A for all permutations II;

(ii) A is convex and has a nonempty interior.

We have the following result, [5, p. 85].

Theorem 2. If ¢ is continuously differentiable on the interior of A and continuous
on A, then necessary and sufficient conditions for ¢ to be Schur-convex on A are

(1.5) @ is symmetric on A

and

1.6 z1 —
( ) ( ! 8l‘1 83:2

It is well known that any symmetric convex function defined on a symmetric
convex set A is Schur convex, [5, p. 97]. If the function ¢ : A — R is symmetric
and quasi-convex, namely

¢ (au+ (1 —a)v) <max{¢(u),d(v)}
for all @ € [0,1] and u,v € A, a symmetric convex set, then ¢ is Schur convex on
A [5, p. 98].
In the recent paper [3] we obtained the following result for Schur convex functions
defined on symmetric convex domains of R2.

%) {8(;5(2)_%(2)] >0 for all z € A.

Theorem 3. Let D C R? be symmetric, convex and has a nonempty interior. If
¢ s continuously differentiable on the interior of D, continuous and Schur convex
on D and dD is a simple, closed counterclockwise curve in the xy-plane bounding

D, then

an [ [ o@udy <5 ie—no@ndet @ o).
oD

If ¢ is Schur concave on D, then the sign of inequality reverses in (1.7).

Motivated by the above results, we establish in this paper a generalization of
the inequality (1.7) for the case of symmetric and convex subsets in n-dimensional
space R™. This is done by employing an identity obtained via the well known
Divergence Theorem for volume and surface integrals. An example for balls in
three dimensional space are also provided.
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2. SOME PRELIMINARY FACTS

Let B be a bounded open subset of R™ (n > 2) with smooth (or piecewise
smooth) boundary 0B. Let F = (Fi,..., F,) be a smooth vector field defined in
R™, or at least in BU dB. Let n be the unit outward-pointing normal of 9B. Then
the Divergence Theorem states, see for instance [9]:

(2.1) /dideV:/ F - ndA,
B

OB

where
" JF;

dlvF:V~F=;8zi7

dV is the element of volume in R™ and dA is the element of surface area on 9B.
If n=(ny,..,n,), z = (x1,..,2,) € B and use the notation dz for dV we can
write (2.1) more explicitly as

(2.2) kZ:l /B ag’; E:”) dz = kZ:l /8 Fe (@) () dA

By taking the real and imaginary part, we can extend the above equality for
complex valued functions Fy, k € {1,...,n} defined on B.

If n = 2, the normal is obtained by rotating the tangent vector through 90°
(in the correct direction so that it points out). The quantity ¢ds can be written
(dz1, dzs) along the surface, so that

ndA := nds = (dza, —dx1)

Here ¢t is the tangent vector along the boundary curve and ds is the element of
arc-length.
From (2.2) we get for B C R? that

(23) / 78}71 ($17$2)d$1d$2 +/ 78}72 (x17x2)d$1d$2
5 Ox1 B Oz

=/ F1(2131,$2)d132—/ Fy (z1,22) dxy,
oB OB

which is Green’s theorem in plane.

If n = 3 and if 9B is described as a level-set of a function of 3 variables i.e. 0B =
{xh Z9, T3 € R3 | Gz, 29,23) = 0}, then a vector pointing in the direction of n is
grad G. We shall use the case where G (21,2, 23) = 3 — g(x1,22), (z1,22) € D,
a domain in R? for some differentiable function g on D and B corresponds to the
inequality x3 < g(z1,22), namely

B = {(ml,xg,mg,) eER? | x3 < g(:c1,a:2)}.

Then

~—Yz1H9 Yz ’1
n— ( 9z, 9xo ) dA = (1_1_951 +g§2)1/2d1‘1d$2

1/2°
(1492, +92,)

and
ndA = (7g$1 y TGz, 1) d$1d1'2.
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From (2.2) we get

OF (z1,22,23) OFy (x1,22,23)  OF3(x1,%2,23)
(24) L < 8.1‘1 * 6332 + 8.1‘3

> dl’ldl'zdl'g
—/ Fy (w1, 22,9(21,72)) 9o, (71, 2) dv1dTo
D
—/ Fy (21,72, 9(21,22)) gz, (21, T2)dT1dT2
D

+/ F3 ($1,$2,g($1,$2))d$1d.r2
D

which is the Gauss-Ostrogradsky theorem in space.
Following Apostol [1], we can also consider a surface described by the vector
equation
(2.5) r(u,v) = z1 (u,v) T+ @ (u,v) 7 + x5 (u,v) ¥
where (u,v) € [a,b] X [c,d].
If 1, 9, x5 are differentiable on [a, b] X [c, d] we consider the two vectors

or _Ounp Oz Owsp
du_ Ou ' Ju ou

and

or Or1— Ozvy— (‘3x3 —

—=—F1+—F5J k.

Ov v 81} 5‘
The cross product of these two vectors 2 Fu X a L will be referred to as the fundamental
vector product of the representation r. Its components can be expressed as Jacobian

determinants. In fact, we have [1, p. 420]

Omy dzg Ozg Oz Ozy Ozy

or or ou ou | — Ou u | — ou ou | —

(2.6) — x — = i+ i+ k
ou v dzy dzg dzz Sz dz1 dza
ov v ov ov ov ov

8(3:2,1*3)7 0(x3,x1)—  O(x1,22) >
0 (u,v) 0 (u,v) J 0 (u,v)
Let 0B = r(T) be a parametric surface described by a vector-valued function r

defined on the box T' = [a,b] X [c,d]. The area of 9B denoted Ayp is defined by
the double integral [1 p. 424—425]

8r

(2.7)  Asp = dudv

i N ) () () e

We define surface integrals in terms of a parametric representation for the surface.
One can prove that under certain general conditions the value of the integral is
independent of the representation.

Let 9B = r(T') be a parametric surface described by a vector-valued differentiable
function r defined on the box T' = [a,b] X [¢,d] and let f : 0B — C defined and
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bounded on dB. The surface integral of f over OB is defined by [1, p. 430]

(2.8) // fdA = //f$173327333 or . o
OB

o o
:lLf@mwmﬂwmmwm

v
8(372,.’113) 2 8(:133,5(11) 2 8(%1,372) 2
— — ———=>| dudv.
X¢<amm \oww ) T\ o ) MY
If 0B = r(T) is a parametric surface, the fundamental vector product N =
% X % is normal to OB at each regular point of the surface. At each such point

there are two unit normals, a unit normal n;, which has the same direction as N,
and a unit normal ny which has the opposite direction. Thus

dudv

ny = ——— and ny; = —nj.
V]

Let n be one of the two normals n; or ns. Let also F' be a vector field defined on
OB and assume that the surface integral,

e

called the flux surface integral, exists. Here F' - n is the dot or inner product.
We can write [1, p. 434]

or Or
//aBFndA :t//F <8u 8)duah)

_»

where the sign ” + 7 is used if n = n; and the ” sign is used if n = no.

If
— — —
F($1,1‘2,£L‘3) =F (1‘1,1‘2,1’3) 1+ Fy (1’1,{E2,$3) j + Fs ($1,1‘2,5L‘3) k
and
— — —
r(u,v) =x1 (u,v) i +x2 (u,v) j + 3 (u,v) k where (u,v) € [a,b] X [¢,d]

then the flux surface integral for n = n; can be explicitly calculated as [1, p. 435]

(2.9) //{m (F-n)dA_/b/dFl (@1 (u,v) , 72 (u,v),x?,(u,v))a;(”’x;’)dudv
/ / By (21 (u,0) , 2 (4,0) , 23 (u, v)) 8§f3’x;)dudv

/ / F5(x1 (u,v), 22 (u,v), 23 (u,v)) aa(fl’xi)dudv.

The sum of the double integrals on the right is often written more briefly as [1, p.
435]

/ F1 ($1,1‘2,1‘3)d1‘2/\d1‘3+// F2 1‘1,$2,$3)d$3/\d1’1

// F3 xl,xg,mg)dzl/\d:pg
OB
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Let B C R? be a solid in 3-space bounded by an orientable closed surface 05,
and let n be the unit outer normal to 0B. If F' is a continuously differentiable
vector field defined on B, we have the Gauss-Ostrogradsky identity

(GO) ///B(divF)dV://aB(F n)dA
If we express

— — —
F(z1,29,23) = Fy (21,22, 23) © + Fo (21,22,23) j + F3(21,22,23) k,

then (2.4) can be written as

(2.10) /// OF: (x1,x2,%3) L OF, (x1,%2,23) n OF3 (x1,x2,x3) diydasdas
Oz, Oxo Oz

// Fi( $17$2,€E3)d$2/\d$3+// Fy (w1, 22, 73) drg A day
0B
+// Fg(xl,xg,l'g)dl'l /\d.’ﬂg.

oB

3. MAIN RESULTS

We start with the following identity that is of interest in itself:

Lemma 1. Assume that f : D — C has partial derivatives on the domain D C R™,
n > 2. Define for j # i

Nog.p wis,) = o ,) (2L Eatn) O (ohoa )y

where (x1, ...,xy,) € D. Then we have

1 - 9 1 ¢
1 _— - :
(3 ) T ; ozn Tk n Z:xj f($1; 7$n)
= f(l‘l,...,ftn) Z AafD Ilaxj)
1<z<7<n

Proof. For j # i we have

O (s ) f (1)) = F (0, o) + (a2 — ) O @120

ox; Ox;
and
9 (- - 9 (@)
637]' ((xl m])f(xlw",mn)) - f(mla 75571) + (xz (E]) 833]‘ )

which gives

aii (i — ) f (21, 0y ) — 88% (i — ;) f(x1, ..y )

2 (51, ) + (51— ) <8f (xgx,xn) _of (xgx,cr:n))
i J

for j # i.
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If we take the sum over i,5 € {1,...,n} with j # i we get

B2 3 [ =) o)~ g (s ) o))

i,j=1,j7#1
=2 Y (@1, w)
Q=170
= . L (Of (1, mn)  Of (@1, T0)
* . Z 4(3'31 a $]) ( ox; B (9l’j ’
i,j=1,77#1
We have
Z fx1,enzy)=n(n—1)f(z1,...,2,)
ij=1,j#i
and
- Of (x1,..., Ty of (x1,...,xyp
> (ayay) (2t O]
i.j=1,j#i ' !
- Of (x1,..c,zn) Of (x1,...,2n)
1<i<j<n axl 8.73]‘
Also
- 0 0
Z ] ((xl 7xj)f($17"'7xn)) - ((xl 7xj)f(x17"'axn))
o L~ | Oz O0x;
i,j=1,j#1 E
n a n
= Z s Z (mi _xj)f(xlv"vxn))
i=1 " \j=1,j#i
n a n
~ 29z, Z (zi —x5) [ (21,00, T0)
j=1 "7 \i=1,j#i
B ra [ FERTPR S Y )
= 0z, n xT; 2 ,xj L1y, T
i=1 J=1,j#i
—ii i xi—(n—=1z; | f(z1,...., %)
8.’BJ . . [ 7 PRRERRCZ 1)
j=1 i=1,j#1i
B Dray (USSP SR BT
— axl n Z; 4 .’L‘J L1yeeey LTy
i=1 Jj=1,j#1
n 6 n
+ — (n—1)z; i | [z, ., Tn)
6:vj .
j=1 i=1,7#1
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n

—9 i (n—1)z — Z x; [z, zp)

=15k

+2 Z (@i —xj) <8f (xgxlv n) _ of (.Z‘;);Ej,mn)) ,

which is equivalent to the desired result. O

Remark 1. Forn =2 we get

(3.3) ! [(_f (1 =220 F (1,22 + - (2 = ) <x1,x2>1}
= f(x1,22) + lAaf,D (z1,22),

2

for (z1,z2) € D.
Forn =3 we get

(3.4) % {3(21 <(x1 _ 1‘2-;3?3) f(x17x27$3)>
+6<(x2_$1+$3> (z1,22 x3>

Ozo 2 e
Jri (<x3$1+x2> (x1, 29, x3 )}

0xs 2 e

1
8 [Aoy,p (x1,22) + Noy,p (x2,23) + Aoy, p (x1,23)]

= f (21,72, 73) +
for (z1,x2,23) € D.
We have the following identity of interest:

Theorem 4. Let B be a bounded closed subset of R™ (n > 2) with smooth (or
piecewise smooth) boundary OB and n = (n1,...,n,) be the unit outward-pointing
normal of OB. If f is a continuously differentiable function on an open neighborhood
of B, then we have the representation

n—lz/aB xkfmeJ Yng (z) dA — /f
Z /AafB ml,xjd

1<1<]<n

(3.5)
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Proof. We use the identity (3.1) on B for z = (x1,...,z,) and take the volume
integral to get

(3.6) nll/BZaik wk—%ng‘ f(x)

=1
/f dﬂc+ Z /AafB xj,xj) d
1<z<]<n
Define
Fy (z) = k—*Z% , ke{l,..,n}, z€B

and use the Divergence theorem (2.2) to get
9 1O
3.7 / — Tp— — T
( ) B 2:: 8$k k n ; J
= Tp—— Y x (z) dA.
W NEE wIF

On utilising (3.6) and (3.7) we obtain

/f dz+ /Ade .’Z?z,.’Z?J d

1<7,<j<n
! Z/ li (@) (a) dA
= T — — xX; X kX
n-1i=/on "= ’

that is equivalent to (3.5).

O
Remark 2. For n = 2 we obtain the identity
1
(38) 5 / [(331 —ZL'Q)f(a?l,{L'Q)de'l + (371 —CEg)f(.’lfl,CCQ) d:l?g]
OB

— / f (.’171, 2132) dmldibg
B

1
= 5/ Ao, (x1,22) dzydes,
B

where B is a bounded closed subset of R? with smooth (or piecewise smooth) bound-
ary OB and f is a continuously differentiable function on an open neighborhood of

B.
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For n = 3 we obtain the identity

|:/ ( xz;x3>f(m1,$2,l’3)dl’2/\d£€3

/ To — x1+x3>f($1,$2,.’133)d.’133/\d$1

|
X1 +JZ‘2
(

(3.9)

W =

T3 — ) f <x17$2;$3) dCI?]_ A dZCQ

+,

/ 131,%2,333) dxldﬂfgdﬂjg

=5 / [Aog,B (x1,22) + Nog B (22, 23) + Aoy, (1, 23)] dridrades,
B

where B is a bounded closed subset of R® with smooth (or piecewise smooth) bound-
ary OB and f is a continuously differentiable function on an open meighborhood of
B.

Corollary 1. Let B be a bounded closed and symmetric convez subset of R™ (n > 2)
with smooth (or piecewise smooth) boundary OB and n = (ny,...,n,) be the unit
outward-pointing normal of 0B. If f is a continuously differentiable function on an
open neighborhood of B and Schur convex on B, then we have the integral inequality

(3.10) Z/@B :ck—fo] ) ( dA>/f

j=1

Proof. Since f is Schur convex on B, then by (1.3) we get Agy p (z;, ;) > 0 for all
1 <4< j <mn, and by using (3.5) we get the desired inequality (3.10). O

Corollary 2. With the assumptions of Corollary 1 and if there exists L;; > 0 for
1 <4< j <n such that

(3.11) Aos.p (i, 25) < Lij (x; — :rj)2 for all x = (1, ...,zy,) € B,

then we also have the reverse inequality

(3.12) 0 < ”—12/83 xkflexj Yoy (z) dA — /f
< > u/

1<7,<]<n

The proof follows by the equality (3.5)
Remark 3. Forn =2 in (3.10) we get

(3.13) 0< %/ (21 — 22) f (@1, 02) dos + (21 — 22) f (21, 02) das]
oB
—/ f(:l?l,IQ) d$1d£ﬁ2
B

1
S *L/ (Il — $2)2 d$1d$2,
2 B
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provided that f is Schur convex on the convex and symmetric domain B C R? and
there exists L > 0 such that

(3.14) Ao p (x1,22) = (x1 — x2) (3f %E;; z2) Of (aSE;;mz)>

< L(z1 — ) for all z = (1, 25) € B.

Forn =3 we get

1 .
(315) 0 § |:/ (1'1 - 2 —;xd> f (xl,LCg,iL'g) diL’Q AN di[,’g
0B

T X
(IQ 1; S)f(xl,SCQ,l‘g)dﬂ?g/\dl‘l
B

+

Sl S— T o— I

_|_

<$3 — 1 ;332) f($1,.%‘2,.233) d.l?l A d$2:|
B

(‘rlv X2, :L'S) dl’ldl’gdl’g

S |:L12/ (.’131 — .172)2 d$1d$2d$3
B

+L23/ (LEQ — .’E3)2 dridrodxs + L13/ (1‘1 — x3)2 d$1d$2d$3:|
B B
provided that f is Schur convex on the convex and symmetric domain B C R and

Of (x1,x2,23)  Of (21,72, 23)
(3.16) Not,p (x5, 25) = (x; — ) ( —
J J 8%1 &tj
< Ljj (z; — :cj)Q for all x = (x1, 9, z3) € B,
where Lij >0 for 1 <i < j <3.

4. AN EXAMPLE FOR THREE DIMENSIONAL BALLS

Consider the 3-dimensional ball centered in O = (0,0,0) and having the radius
R >0,

B(O,R) := {($1,$2,$3) € R3| m? —&—x% —l—xg, < R2}
and the sphere

S(O,R) == { (w1, w2,23) € R*| 2] + a3 + 23 = R*}.
Consider the parametrization of B (O, R) and S (O, R) given by:

T1 =T COSY COS Y

B(O,R):{ zy=rcosypsing ; (r,v,¢) € [0,R] x {fg,g] x [0, 27]
r3 =rsiny

and
x1 = Rcosycosp -
S(O,R):{ x9=Rcost¢sing ; (¢¥,p)€ [—7,7} x [0, 27] .
ey 272
r3 = Rsinvy
We have
81‘2 81‘3 aml aﬂcg
% % = —R?cos® 1) cos @, % % = R?cos®> ¢sin g,
Jdp dp %) Jp
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and
Oz, Oxzg
9 9 _ 2 o
3;/’1 3;@ = —R*sinvy cos 1.
op Oy

In Cartesian coordinates, we have the inequality (3.15) written as

1
(41) Oég [/ (xl_$2‘;$3)f(x17$2,$3)d$2/\d$3
S(O,R)

(l‘g — 331—5333) f (5131, o, .Tg) dxg A d.Tl

T+
+/ (363— - 5 2>f(5€17$27$3)d$1/\d$21
S(O,R)

—/ f (21,22, 23) dr1dzodas
B

1

6

L12/ (zl — 1‘2)2 d:z:ld:z:deg
B(O,R)

+Las / (v2 — 23)* doydzadrs + L3 / (21 — x3)* doydzydas
B(O,R) B(O,R)

provided that f is a continuously differentiable function on an open neighborhood
of B (O, R), Schur convex on B (O, R) and the condition (3.16) is fulfilled.
Now, observe that

/ (1‘1 — 1‘2)2 d{EldiEQdCE?,

B(O,R)
R 5 27

= / / / (r cos ) cos p — rcos P sin 90)2 2 cos drdipdp
o J-z.Jo

R k3 27 5
R° (4 8
= / 7°4d7“/2 cos® wdqb/ (cos p — sin @)2 dp=—|-)2r=—=nR®
0 _ 0 5 \3 15

s
2

and, similarly

8
/ (xo — x3)2 dridradrs = / (x1 — a:3)2 dridredrs = —7RP.
B(O,R) B(O,R) 15

In polar coordinates, (4.1) becomes

_/ (Coswcosgo—cosdjSianrsmdj>
S(O,R) 2

x f (Rcoscos @, Rcosvsin o, Rsin ) cos? 1 cos pdibdyp
cos 1 cos @ + sin¢>

+ / (cos PYsing —
5(0,R) 2
x f (Rcos 1 cos @, Rcos v sin o, Rsinp) cos® 1) sin dipdyp

1
(4.2) 0< gR3
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_/ (Sin¢_COS¢COS@+COS¢Sln¢>
S(O,R) 2

x f (Rcoscos p, Rcostpsin g, Rsin ) sin ) cos wdwdap}

R 5 2m
— / / / f (r cos ) cos @, r cos i sin @, 7 sin 1h) 2 cos Ydrdiypde
o J-zJo

4
< gﬂRs (L12 + Loz + L13) ,

provided that f is a continuously differentiable function on an open neighborhood
of B (O, R), Schur convex on B (O, R) and satisfying the condition (3.16).

1]

2

3]

[4]
[5]

6

7

(8]

[9]

REFERENCES

T. M. Apostol, Calculus Volume II, Multi Variable Calculus and Linear Algebra, with Appli-
cations to Differential Equations and Probability, Second Edition, John Wiley & Sons, New
York London Sydney Toronto, 1969..

V. Culjak, A remark on Schur-convexity of the mean of a convex function. .J. Math. Inequal.
9 (2015), no. 4, 1133-1142.

S. S. Dragomir, Inequalities for double integrals of Schur convex functions on symmetric
and convex domains, Preprint RGMIA Res. Rep. Coll. 22 (2019), Art. 69, 12 pp. [Online
http://rgmia.org/papers/v22/v22a69.pdf].

S. S. Dragomir and K. Nikodem, Functions generating (m, M, ¥)-Schur-convex sums. Aequa-
tiones Math. 93 (2019), no. 1, 79-90.

A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and Its
Applications, Second Edition, Springer New York Dordrecht Heidelberg London, 2011.

K. Nikodem, T. Rajba and S. Wasowicz, Functions generating strongly Schur-convex
sums. Inequalities and applications 2010, 175-182, Internat. Ser. Numer. Math., 161,
Birkhéduser/Springer, Basel, 2012.

J. Qi and W. Wang, Schur convex functions and the Bonnesen style isoperimetric inequalities
for planar convex polygons. J. Math. Inequal. 12 (2018), no. 1, 23-29.

H.-N. Shi and J. Zhang, Compositions involving Schur harmonically convex functions. J. Com-
put. Anal. Appl. 22 (2017), no. 5, 907-922.

M. Singer, The divergence theorem, [Online https://www.maths.ed.ac.uk/~jmf/
Teaching/Lectures/divthm.pdf]

IMATHEMATICS, COLLEGE OF ENGINEERING & SCIENCE, VICTORIA UNIVERSITY, PO Box 14428,

MELBOURNE CiTy, MC 8001, AUSTRALIA.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

2DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES,

ScHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-
SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA





