GLOBAL CONVEXITY OF THE WEIGHTED INTEGRAL MEAN
OF FUNCTIONS DEFINED ON CONVEX SETS IN LINEAR
SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. For a Lebesgue integrable function p : [0,1] — [0, 00) we consider
the function F, : C2 — R defined by

1
Fy (2,) ::/0 P =ty +ty) p () dt,

where f: C — R is convex on the convex subset C of a linear space X. In this
paper we investigate the global convexity and Schur convexity of the function
F, on C? and provide some applications for norms and convex functions of a
real variable defined on an interval.

1. INTRODUCTION

For any = = (21, ...,,) € R", let x;) > ... > 2},) denote the components of x in
decreasing order, and let z| = (a:m, ...,x[n]) denote the decreasing rearrangement
of z. For x, y € R™, x < y if, by definition,

Zle xp) < Z;ll yap, k=1,...,n—1;

21 Tl = 2ima Yl
When x < y, x is said to be majorized by y (y majorizes x). This notation and
terminology was introduced by Hardy, Littlewood and Pdlya in 1934.
A real-valued function ¢ defined on a set A C R™ is said to be Schur-conver on
A if
(1.1) z<yon A= ¢(x) <o(y).

If, in addition, ¢ () < ¢ (y) whenever x < y but z is not a permutation of y, then
¢ is said to be strictly Schur-conver on A. If A =R", then ¢ is simply said to be
Schur-convex or strictly Schur-convex.

For fundamental properties of Schur convexity see the monograph [9] and the
references therein. For some recent results, see [3]-[6] and [10]-[12].

The following result is known in the literature as Schur-Ostrowski theorem [9, p.
84]:

Theorem 1. Let I C R be an open interval and let ¢ : I™ — R be continuously
differentiable. Necessary and sufficient conditions for ¢ to be Schur-convex on I™
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are
(1.2) ¢ is symmetric on 1™,
and for all i # j, with i, j € {1,...,n},

(1.3) (zi — 2j) [855) - 3;;2)} >0 forall ze I,

where a‘% denotes the partial derivative of ¢ with respect to its k-th argument.

The above condition is not sufficiently general for all applications because the
domain of ¢ may not be a Cartesian product.

Let A C R™ be a set with the following properties:

(i) A is symmetric in the sense that € A = «II € A for all permutations II of
the coordinates.

(ii) A is convex and has a nonempty interior.

We have the following result, [9, p. 85].

Theorem 2. If ¢ is continuously differentiable on the interior of A and continuous
on A, then necessary and sufficient conditions for ¢ to be Schur-convex on A are

(1.4) ¢ is symmetric on A
and
(1.5) (z1 — 22) {agagf) — aggz)] >0 for all z € A.

Another interesting characterization of Schur convex functions ¢ on A was ob-
tained by C. Stepniak in [13]:

Theorem 3. Let ¢ be any function defined on a symmetric convex set A in R™.
Then the function ¢ is Schur conver on A if and only if
(1.6) G(T1y ooy Ty oy Ty ooy T) = D (T4, ey Ty o, Ty o, )
for all (z1,....,xz,) €A and 1 < i< j<n and
(1.7) dAr1+ (1 =Nz, Ao+ (1 — N a1, 23, ..., @n) < P (21, ..., Tn)
for all (z1,...,z,) € A and for all X € (0,1),
It is well known that any symmetric convex function defined on a symmetric

convex set A is Schur convex, [9, p. 97]. If the function ¢ : A — R is symmetric
and quasi-convex, namely

¢ (au+ (1 —a)v) <max{¢(u),¢(v)}
for all @ € [0,1] and u, v € A, a symmetric convex set, then ¢ is Schur convex on
A9, p. 98].
The following result concerning the Schur convexity of the integral mean was
obtained by Elezovi¢ and Pecari¢ in [8]:

Theorem 4. Let h be a continuous function on I. Then
L fjh(t)dt, forx#y, xz, yel;

y—

(1.8) H(z,y) =
h(z), fory==x, x €1,

is Schur convex (concave) on I? if and only if h is convex (concave) on I.
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Three year later, in 2003, Wulbert, [14], improved the above result by showing
that the integral mean H defined in (1.8) is in fact conver on I? if f is convex on
1.

We consider the function f : C' — R defined on the convex subset C' of the linear
space X and for each (x,y) € C? := C x C we introduce the auxiliary function
Pz * [0,1] — R defined by

It is well known that the function f is convex on C' if and only if for each (x,y) € C?
the auxiliary function ¢, ,) is convex on [0,1].

By utilising the classical Hermite-Hadamard inequality for the convex function
P(a,y) OB [0, 1] we then have

(19) P < [ ra-ger e < LW

for all (x,y) € C2.
For a non-negative Lebesgue integrable function p : [0,1] — [0,00) we consider
the function F, : C? — R defined by

&ww:Afm—mwwmwﬁ

where f : C — R is convex on the convex subset C' of a linear space X.
We observe that

1
Fp(z,z):=f (:c)/o p(t)dt for all z € C.

Motivated by the above results, in this paper we investigate the global convexity
and Schur convexity of the function F), and provide some applications for convex
functions of a real variable defined on an interval.

2. MAIN RESULTS
We start with the following simple fact:

Proposition 1. Ifp is symmetric and Lebesgue integrable in [0,1], namely p (1 —t) =
p(t) for all t € [0,1], then F, (z,y) = F, (y,z) for all (x,y) € C?, i.e. F, is sym-
metric on C2.

Proof. Observe that

1
Fya)= [ Ha=0y+wpa,

By changing the variable s =1 —¢, ¢t € [0,1], then
1 1
| ra-oyrwpma= [ fov+a-92p0-9ds
0 0

which proves the claim. ([
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For p =1, if we put

F(a,y) ;:/0 FL =tz +ty) dt,

then, obviously, F is also symmetric on C?.

Theorem 5. Let f : C — R be a convex function on C and p : [0,1] — [0,00) a
Lebesgue integrable function on [0,1], then F), is convex on C2. If p is symmetric
on [0,1], then F, is convex and symmetric on C?. In particular, F is convex and
symmetric on C2.

Proof. Let (z,y), (u,v) € C? and o € [0,1]. Then

Fp(a(z,y) + (1 - a)(u,v))
=F(acc+(1-a)u,ay+ (1 —a)v)

/f I-t)(az+(1—-—a)u)+t(ay+ (1 —a)v))p(t)dt
/f (I=tzr+ty)+(1—a) (1 —t)u+1tv))p(t)dt

< [Haf (@ -0+ + -0 £ ut w))pO)a
0
(by the convexity of f)
1 1
:a/ f((l—t):c+ty)p(t)dt+(1—a)/ S0 = t)u+ to)p(t)dt
0 0
:OéFp(CC,y)+(1705)Fp(U,U),
which proves the convexity of Fj, on C?. O

Since F), is convex on C? we have

Fp(a(e,y) + (1 —a)(y,2) <abp(z,y)+ (1 -a)F,(y,7)

for a € [0,1], namely
/f (I-t)x+ty)+(1—a) (1 —t)y+tx))p(t)dt

Sa/ f((l—t)x+ty)p(t)dt+(1—a)/ F((1=t)y+tz)p(t)dt.
0 0

Since
/ Flal(l=Bz+ty)+ (1 —a) (1 — )y +t) p(t) dt

:/0 Flla(l—t)+ (1 —a)t)z+ (at+(1—a)(1—1)ylp(t)dt
and

/jﬂL%M+mp@ﬁ=/f®wHLwMMG—$%
0 0
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hence by (2.1) we get
(2.2) /o flla@-t)+1-a)t)z+(at+(1—a)(1—1t)ylp(t)dt

g/o F(( =tz +1y) [ap(t) + (1 —a)p(1 - t)] dt

for all « € [0,1].
1

In particular, if we take o = 5 in (2.2), then we get

(2.3) f(x;—y>/()1p(t)dt§/01f((1—t)m+ty) [W]dt.

We can improve the inequality (2.3) as follows:

Corollary 1. Let f : C — R be a convex function on C and p : [0,1] — [0,00) a
Lebesgue integrable function on [0,1], then

(2.4 f(x;y)/olmodt

< [([ et -0+ -ans+ @+ (-0 0 -0p@)

S/O (1=t +ty) [p(tHg(l_t)}dtg f(x);f(y)/o p(t)dt.

If p is symmetric on [0,1], then we have the following refinement of Fejér’s
inequality

(25 f(l’;y)/olpam

S/0 < 0 f[(a(l_t)+(1_a)t)x+(at+(1_a)(1_t))y]P(t)dt> da

< [ =ttty p ey di < W/lp(t)dt.

Proof. If we use the Hermite-Hadamard inequality for the convex function F}, and
the points (x,y) and (y, ) we also get

R (000 < /F o (2,5) + (1 - ) (y,2)) da

B (2,y) + Fy (y, 2)
- 2

that is equivalent to

f (x;ry> /Olp(t)dt

< [([ flat-0+0-ae+ @+ -2 -0upo)

)[psa-0),

< [ ra-natu .
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By the convexity of f we also have

0 Ittt 1 0= 0y) S840
for all t € [0,1] and (x,y) € C2.

If we multiply (2.6) by W and integrate on [0, 1] we get

2.7) /01 f((l’t)x“y);f(tfﬁ(lft)y) ,P(t)+127(1—t)dt
f@)+f) [fp®)+p(1—1)
< 5 /0 5 dt.

Since

/fthr (1—1)y) ()Jrg(l*tdt /f 17t)z+ty)—()+g(17t)dt

1 1
1-1¢
[P0t
0 2 0
hence by (2.7) we get the last part of (2.4). O

Some simple nonnegative symmetric weights are p(t) = [t — 1| and p(¢)
t(l—1t),tel0,1]. So, for convex functions f : C — R, the mappings

Fl_y () = /Olf((l—t)x—l—ty)'t— ;‘dt
and

Fa_y(z,y):= /0 f(A=t)z+ty)t(1—1t)dt

are convex and symmetric on C?.
! 1
t— ’dt: — and / t(l—t)dt ==,
0 6

Since
1
/0 2 4

hence from the inequality (2.5) we have
T4y
o 1(25)

g4/01 (/Olf[(a(l—t)+(1—a)t)x+(at+(1—a)(l—t))y]‘t—;'dt)da
flx)+f(y)
2

1 1

1
S4/ f((l—t)a:+ty)’t—;‘dtdtg
0

1 1
SG/O (/0 f[(a(lt)+(la)t)$+(at+(1a)ﬂt))y}t(lt)dt)da

S6/1f((1t)erty)t(lt)dtdtg f@)+ )
’ 2
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for any convex function f: C' — R and (x,y) € C2.
Let (X, ||-]]) be a normed space. The function f (x) = ||z||", r > 1 is convex on

X. Assume that p: [0,1] — [0,00) is a Lebesgue integrable symmetric function on
[0,1]. If we define

1

(2.10) Nyp (2,9) = / (1= t) e + by p (£) dt
0

then we can state the following results:

Proposition 2. The function N, (-,-) defined by (2.10) is convex and symmetric
on X?2. We also have the norm inequalities

a ACE

1 1
<[ ([ 1ea-n+0-anetorsa-a0-nurpod)d

(2.11)

1 r T 1
r z| +lly
< [1a-nerulpwa < L 66
0 0

for all (z,y) € X2

From (2.11) we can derive the following norm inequalities

o [
< [ ([t -0+ -anes @000 a) o
s/01||<1—t>x+ty’”dtsw,

e 2]

§4/0 (/O (=8 +(1—-a)t)z+ (at+(1—a)(1—1)y|"

1
Il + llyll”

1
<t a-o+ul .
0

1
t— =|dt <

5 <
and

(2.14)

=

S6/0 (/O ||(0‘(1—t)+(1—Ol)t)x+(at+(1—a)(1—t))y||rt(1—t)dt) do

" + llyl”

1
§6/ 1=tz +ty]|"t(1—t)dt < 5
0

for all (z,y) € X2
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3. SCHUR CONVEXITY ON LINEAR SPACES

Let X be a linear space and G C X? := X x X a convex set. We say that G is
symmetric if (z,y) € G implies that (y,x) € G. If D C X is a convex subset of X,
then the Cartesian product G := D? := D x D is convex and symmetric in X?2.

Motivated by the characterization result of Stepniak above, we say that a func-
tion ¢ : G — R will be called Schur conver on the convex and symmetric set

Gc X2if
(3.1) ¢ (s(z,y)+(1—3)(y,2)) < ¢ (2,y)

for all (z,y) € G and for all s € [0,1].

If G = D2, then we recapture the general concept of Schur convexity introduced
by Burai and Maké in 2016, [1].

We say that the function ¢ : G — R is symmetric on G if ¢ (x,y) = ¢ (y, z) for
all (z,y) € G.

The following fact follows from the definition of Schur convex functions:

Proposition 3. If ¢ : G — R is Schur convexr on the convexr and symmetric set
G C X2, then ¢ is symmetric on G.

Proof. If (xz,y) € G, then by (3.1) we get for s = 0 that ¢ (y,z) < ¢ (z,y). If we
replace x with y then we also get ¢ (z,y) < ¢ (y,x) which shows that ¢ (z,y) =
¢ (y,z) for all (z,y) € G. O

The following result provides many examples of Schur convex functions on Carte-
sian products of convex subsets in linear spaces.

Theorem 6. Let f: C — R be a convex function on C and p : [0,1] — [0,00) a
Lebesgue integrable and symmetric function on [0,1], then F, is Schur convex on

C?.
Proof. From Theorem 5 we have that F}, is convex and symmetric, then for all
(z,y) € C? and s € [0, 1]
Fy(s(@y)+(1=s)(y,z) < sFp(x,y)+(1—s)F(yz)
= SFP(:va)—’_(]'_S)FP(:Evy):Fp(xay)a

which shows that F), is Schur convex on CZ. O

For (z,y) € G, as in [1], let us define the following auxiliary function ¢, . :
0,1] — R by

Q0¢7,(m,y) (S) = QS (S (.’E, y) + (1 - S) (y)x)) = ¢ (S‘r + (1 - 5) Y, sy + (1 - 'S) LL’) )

where ¢ : G — R.

The properties of this function are as follows:

Lemma 1. Let G C X2 be a convex and symmetric set and ¢ : G — R a symmet-
ric function on G. Then ¢ is Schur convexr on G if and only if for all arbitrarily
fized (x,y) € G the function py (, ,y is monotone decreasing on [0,1/2), monotone
increasing on (1/2,1], and ¢y (, ) has a global minimum at 1/2 .

For the proof in the case when G = D2, see [1]. The proof in the slightly more
general case of symmetric subsets GG in X? is given in [5].
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Corollary 2. Let f : C — R be a convex function on C and p : [0,1] — [0,00)
a Lebesgue integrable and symmetric function on [0,1], and consider the function
PF, () * 10:1] = R defined by

PE,, (o) (8) = Fp (st + (1 = 8)y, sy + (1 — 5) x)
1
:/O flls(@=t)+ @ —s)t)a+ (st+ (1 —s)(1-1)ylp(t)dt,

where (x,y) € D2. Then the function PR, (0,y) 18 monotone decreasing on [0,1/2),
monotone increasing on (1/2,1], and ¢p (. ) has a global minimum at 1/2 . We
also have the inequality

32 1(55Y) [ r00<on @ < [ 10-Datuipoa

for all s € [0,1] and for (x,y) € D?.

If we consider another function g : C' — R, then, as above, G, : C* — R will
stand for

1
Gy ()= [ g(( =)+ t)ple)dr
0
We also have the following result:

Theorem 7. Let f, g : C — R be two convex functions on C and p : [0,1] — [0, 00)
a Lebesgue integrable and symmetric function on [0,1]. Then we have

(3.3) OS/O Fy(st+(1—s)y,sy+ (1 —s)z)

xGp(sz+(1—s)y,sy+ (1 —s)x)ds
1
Fy(st+(1—s)y,sy+ (1 —s)z)ds

1
Gy (sz+ (1 - 5)y,sy+ (1 — s)z)ds

(/ [(1—t)z+ty]p(t)dt — f<x;y>/01p(t)dt>
/1 [(1—t) @+ ty] p () dt — (x;—y)/olp(t)dt>

€ D?. Since the functions ©F, (zy) a0d ©g, (o) are symmetric

IN

b/\ﬂk\b—l\h

for all (z,y) €

Proof. Let (x,y
on [0, 1], then

~—

1 1/2
/0 PF, () (8) PG, (2 () dE =2 /0 PFy ) (8) PG, (2 (8) i,

1 1/2
/(; QOFP,(:D?y) (S) dt = 2/0 @Fp,(w,y) (8) dt

and

1 1/2
/O (PGP,(Q:,y) (S) dt = 2‘/0 wGp,(x,y) (8) dt.
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By Cebysev’s inequality for synchronous functions h, g : [a,b] — R, we recall that

! /bhu)g(t)dtz —

b—a —a

b 1 b
h(t)dt—— t)dt
| o= [awa

we have

1/2
2/0 PFy () (s) PGy, (z,y) (s)dt > 2/0

which proves the first inequality in (3.3).

Now, recall Griiss’ inequality that provides an upper bound for the distance
between the integral mean of the product and the product of integral means, more
precisely

1/2 1/2
PF,,(z.y) (8)dt-2 /0 PG, (xy) (8) dt,

b

! /bh()k()dtl bh()dtb_la k(1) dt

(3.4) — — a

1
<y (M —m)(N-n)

provided the functions h, k are measurable on [a,b] and —oo < m < h(t) < M < oo,
—00 < n < k(t) <N < oo, for almost every ¢t € [a,b]. The constant 1 is best
possible in (3.4).

Since we have

r(552) [ rtrte < or, )< [ s10-02+ulp@ a

and

g(x;y)/o POt <@g, (2y) () S/O gl(1—t)z+ty]p(t)dt,

then by Griiss” inequality for b (s) = g (4, (8) and k (s) = g, (2,4 (8), s € [0,1]
we get the second part of (3.3).

Corollary 3. Let f, g : C — R be two convex functions on C. Then we have

1

(3.5) 0< /OF(sx+(1fs)y,ser(1fs)x)G(str(lfs)y,ser(lfs)x)ds
—/OlF(sx—i-(1—S)ya5y+(1—s)x)ds
/1G(sx+(1—s)y,sy+(1—s) x) ds
gi(/ 1—tx+ty]dt—f<:'3“;3/)>

1
[(1—t) @+ ty] dt — ( ;y»

Qﬁ A~
\

for all (z,
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4. APPLICATIONS FOR FUNCTIONS OF A REAL VARIABLE

Assume that f is a continuous function on the interval I and z, y € I. Also, let
p:[0,1] — [0,00) be a Lebesgue integrable function on [0,1]. If we consider

Ry = [ f(1=0s+m)pod
then X
F,(z,x) = f(x)/o p(t)dt for xz € I

and if x # y, then by the change of the variable v = (1 —t)x + ty, we have

du=(y —x)dt, t = ;=7 and

F, (5,y) i= — /jf(wp (“‘”“’> du.

y—T y—z

Therefore, we can consider the function of two variables F), : I? — R defined by

y%mfff(U)p(ZZ;') du, (z,y) € I*, = #y,

(4.1) F,(z,y) ==
F@) fip@)dt, (z,y)el® x#y.
In particular, we can consider the functions F, F|'_%|’ Fa_y: I? — R defined
by
S f ) du, () € 12w A,

F(z,y) =
fx), (zy)el? x#y,
L [V F ) fu— E5 du, () € 12, @ A,
F‘7%| (Ivy) =
1f (@), (z,y) €l? z#y,
and
e W) (u—2) (y —w) du, (z,9) € I°, z#y,
F(]_,.) ($7y) =

(@), (zy)el? x#y.
By utilising Theorem 5 we can state the following two-variables convexity result:

Proposition 4. Assume that f is a continuous function on the interval I and let
p:[0,1] — [0,00) be a Lebesgue integrable function on [0,1]. If f is convex on I,
then the function F, defined in (4.1) is globally convex on I*. Moreover, if p is
symmetric on [0,1], then F,, is convex and symmetric on I? and, a fortiori, F, is
Schur convex on I2.

From this proposition we obtain for p = 1 Wulbert’s result from [14] concerning
the convexity of the integral mean F. We also obtain the result of Elezovi¢ and
Pecari¢ concerning the Schur convexity of F' obtained in [8]. In addition, we also
observe that the functions F|_7%| and F.(;_.y are globally convex and symmetric on

I? and therefore Schur convex on I2, providing a new and reach source of Schur
convex functions related to the integral mean.
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