h-CONVEXITY OF THE WEIGHTED INTEGRAL MEAN OF
FUNCTIONS DEFINED ON CONVEX SETS IN LINEAR SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. For a Lebesgue integrable function p : [0,1] — [0,00) we consider
the function F, : C2 — R defined by

1
Fy (2,) :=/0 £ =ty +ty) p(t) dt

where f : C — R is h-convex and hemi-Lebesgue integrable on the convex
subset C of a linear space X. In this paper we investigate the h-global convexity
of the function F, establish some Hermite-Hadamard type inequalities and
provide some applications for some classical examples of h-convex functions
that are available in the literature.

1. INTRODUCTION

The following inequality holds for any convex function f defined on R

(1.1) (b-—a)f (a+b) /f Ydz < ( )f<);_f(), a, beR, a<b.
It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [42]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [5]. In
1974, D. S. Mitrinovi¢ found Hermite’s note in Mathesis [42]. Since (1.1) was
known as Hadamard’s inequality, the inequality is now commonly referred as the
Hermite-Hadamard inequality.

For related results, see [10]-[19], [22]-[25], [32]-[35] and [45].

Let X be a vector space over the real or complex number field K and z, y €
X, z # y. Define the segment

[z,y] :={(1 =)z +ty, t [0, 1]}.
We consider the function f : [z,y] — R and the associated function
9(z,y) : [0,1] = R, g(z,y)(t) :== fI(1 =)z +ty], t € [0,1].
Note that f is convex on [z,y] if and only if g(x,y) is convex on [0, 1].

For any convex function defined on a segment [z,y] C X, we have the Hermite-
Hadamard integral inequality (see [20, p. 2], [21, p. 2])

(12) f<x+y> /f 0ty + g < 1D TIW),
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which can be derived from the classical Hermite-Hadamard inequality (1.1) for the
convex function g(z,y) : [0,1] — R.

Since f(z) = ||z||” (z € X and 1 < p < o0) is a convex function, then for any x,
y € X we have the following norm inequality from (1.2) (see [46, p. 106])

Tty

] + llyl”

(1.3) .

P 1
< / 11— e+ ty|Pdt <
0

For a Lebesgue integrable function p : [0,1] — [0, 00) we consider the function
F, : C? — R defined by

Fy (2,1) =/ F((L =)+ ty) p (1) dt.

where f : C — R is h-convex and hemi-Lebesgue integrable on the convex subset
C of a linear space X.

In this paper we investigate the h-global convexity of the function F},, establish
some Hermite-Hadamard type inequalities and provide some applications for some
classical examples of h-convex functions that are available in the literature.

2. h-CONVEX FUNCTIONS ON LINEAR SPACES

We recall here some concepts of convexity that are well known in the literature.
Let I be an interval in R.

Definition 1 ([37]). We say that f: I — R is a Godunova-Levin function or that
f belongs to the class Q (I) if [ is non-negative and for all x, y € I and t € (0,1)
we have

1 1
(21) Pt (1= 1)) < @)+ ().

Some further properties of this class of functions can be found in [28], [29], [31],
[43], [46] and [47]. Among others, its has been noted that non-negative monotone
and non-negative convex functions belong to this class of functions.

The above concept can be extended for functions f: C C X — [0,00) where C
is a convex subset of the real or complex linear space X and the inequality (2.1) is
satisfied for any vectors x, y € C and ¢ € (0,1). If the function f : C C X — R is
non-negative and convex, then it is of Godunova-Levin type.

Definition 2 ([31]). We say that a function f : I — R belongs to the class P (I)
if it is nonnegative and for all x, y € I and t € [0,1] we have

(2.2) fltz+ A —=t)y) < fz)+f(y).

Obviously @ (I) contains P (I) and for applications it is important to note that
also P (I) contain all nonnegative monotone, convex and quasi convez functions, i.
e. nonnegative functions satisfying

(2.3) [tz 4+ (1—1t)y) <max{f(z),f(y)}

forall z, y € I and ¢ € [0,1].
For some results on P-functions see [31] and [44] while for quasi convex functions,
the reader can consult [30].
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If f:CC X —[0,00), where C' is a convex subset of the real or complex linear
space X, then we say that it is of P-type (or quasi-convex) if the inequality (2.2)
(or (2.3)) holds true for z, y € C and ¢ € [0, 1].

Definition 3 ([7]). Let s be a real number, s € (0,1]. A function f : [0,00) — [0, 00)
is said to be s-convex (in the second sense) or Breckner s-convex if
flte+(1-t)y) <t°f(2) +(1-1)°f(y)

for all z, y € [0,00) and t € [0,1].

For some properties of this class of functions see [1], [2], [7], [8], [26], [27], [38],
[40] and [49].

The concept of Breckner s-convexity can be similarly extended for functions
defined on convex subsets of linear spaces.

It is well known that if (X, |-||) is a normed linear space, then the function
f(z) =|z||”,p>11is convex on X.

Utilising the elementary inequality (a + b)° < a®+ b* that holds for any a, b > 0
and s € (0, 1], we have for the function g (z) = ||z||® that

gtz +(1—-1t)y) [tz + (L= yl” < (¢l + (1= 2) lyl)
@l + (L =)yl
= tg(@)+(1-1)"g(@)

for any x, y € X and ¢ € [0,1], which shows that g is Breckner s-convex on X.

In order to unify the above concepts for functions of real variable, S. Varosanec
introduced the concept of h-convex functions as follows.

Assume that I and J are intervals in R, (0,1) C J and functions h and f are real
non-negative functions defined in J and I, respectively.

Definition 4 ([52]). Let h : J — [0,00) with h not identical to 0. We say that
f:1—10,00) is an h-convex function if for all x, y € I we have

(2.4) fle+A=t)y) <h(@)f(z)+h(1-1)f(y)
for allt € (0,1).

IN

For some results concerning this class of functions see [52], [6], [41], [50], [48] and
[51].

This concept can be extended for functions defined on convex subsets of linear
spaces in the same way as above replacing the interval I be the corresponding
convex subset C of the linear space X.

We can introduce now another class of functions.

Definition 5. We say that the function f : C C X — [0,00) is of s-Godunova-
Levin type, with s € [0,1], if

(25) Fltt (1= 1)y) < 5 () +

for allt € (0,1) and z,y € C.

1

i (),

We observe that for s = 0 we obtain the class of P-functions while for s = 1
we obtain the class of Godunova-Levin. If we denote by @, (C) the class of s-
Godunova-Levin functions defined on C', then we obviously have

P(C)=Qo(C) C Qs (C) Qs (C) CQ1(C)=Q(C)
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fOI‘O§81S52§1.
We have the following generalization of the Hermite-Hadamard inequality for
h-convex functions defined on convex subsets of linear spaces [24].

Theorem 1. Assume that the function f : C C X — [0,00) is an h-convex function
with h € L[0,1]. Let y, x € C with y # x and assume that the mapping [0,1] > ¢ +—
Fl(1 —t)z + ty] is Lebesgue integrable on [0,1]. Then

1
(2.6) th(%)f (“y) / FlO =t a+tyldt < [f(x)+f(y)]/0 h(t) dt.
Remark 1. If f : I — [0,00) is an h-convezx function on an interval I of real

numbers with h € L[0,1] and f € L[a,b] with a, b € I, a < b, then from (2.6) we
get the Hermite-Hadamard type inequality obtained by Sarikaya et al. in [48]

th(;) (a+b) /f Jdu <[ ()+f(b)]/01h(t)dt.

If we write (2.6) for h(t) = ¢, then we get the classical Hermite-Hadamard
inequality for convex functions 1.2.

If we write (2.6) for the case of P-type functions f : C — [0,00), i.e., h(t) =
t €[0,1], then we get the inequality

)

(2.7 () < [ rta-nasnia< s+ ).

that has been obtained for functions of real variable in [31].
If f is Breckner s-convex on C, for s € (0,1), then by taking & () = ¢* in (2.6)
we get

(2.8) 2°" 1f<$+y> /f 1—t)x+ty]dt<w’

that was obtained for functions of a real variable in [26].
Since the function g (z) = ||z||° is Breckner s-convex on on the normed linear

space X, s € (0,1), then for any z, y € X we have

1 [ lzl” + l=]”
2.9 — o< 1-—1 ty||® dt < ——,
(2.9 sl tal < [ 10 Da o a < L

If f:C — [0,00) is of s-Godunova-Levin type, with s € [0,1), then

+1f($+y) S/lf[@t)xﬂy]dtg M.
0

(2.10) T

We notice that for s = 1 the first inequality in (2.10) still holds, i.e.

(2.11) if(“”“’) /f (1—t)a + ty] dt.

The case for functions of real variables was obtained for the first time in [31].

Theorem 2. Assume that the function f : C C X — [0,00) is an h-convex function
with h € L[0,1]. Let y, x € C with y # x and assume that the mapping [0,1] > ¢
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fI(1—1t)x +ty] is Lebesgue integrable on [0,1]. If p : [0,1] — [0,00) is Lebesgue
integrable, then

(2.12) %1(;)]0 (”’é”’) /Olp(t)dt

< [f((l—t)$+ty)}z5(t)dté[f($)+f(y)]/0 h(t)p(t)dt

0
where p(t) :== 3 [p(t) +p (1 —1)], t € [0,1].

Proof. By the h-convexity of f we have

flz+A=t)y) <h@)f(@)+h(1-1)f(y)
for any t € [0,1].
We also have

f((A=t)z+ty) <h(1—=1)f(x)+h()f(y)
for any t € [0,1].
If we add these two inequalities, we get

(2.13) Lt + =y + (1= t)z +ty)

h(t)+h(1=t)][f (@) +f )],

2
<1
2
for any t € [0,1].

If we multiply (2.13) by p (¢) > 0 and integrate on [0, 1] we get

(214) 3] Vs =09+ =no+umlp

<@+l [ ho+na-op@a.

By using the change of variable s =1 — ¢, t € [0, 1] we have

| fa=vermp@i= [ fos1-9npa -
0 0
and ) )

/h(l—t)p(t)dt:/ h(s)p(1—s)dt

0 0
and by (2.14) we get

1 1
/0 [f(tx+(1—t)y)]15(t)dt§[f(x)+f(y)]/0 B (1) 5 (1) dr.

From the h-convexity of f we have

(215 () <n(3)ve s

for any z, w € C.
If we take in (2.15) z =tz + (1 —t)y and w = (1 — t)  + ty, then we get

(2.16) f(”;y)Sh@)[f(m(lt>y>+f<<1t>x+ty>1

for any t € [0,1].
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If we multiply (2.16) by p(¢) > 0 and integrate on [0, 1] we get

(2.17) %f (x;y> /Olp(t)dt

<h<;) /01 [f(tx+(1—t)y);f((l—t)af+ty) p (1) dt,

which proves the first part of (2.12). O

Corollary 1. With the assumptions of Theorem 2 and if p is symmetric, namely
p(1—1t)=p(t) forte|0,1], then

T+y

1
< [ -tz wlp@d <@+ o) [ o0
0 0

Remark 2. If f : I — [0,00) is an h-convezx function on an interval I of real
numbers with h € L[0,1] and f € Lla,b] with a, b € I, a < b. If p is Lebesgue
integrable and symmetric on [0,1], namely p(1 —t) =p(t) for t € [0,1], then

(2.19) %1@]‘ (T)/ﬂ p(t)dt
< [ -tasmlp@d<f@+FO) [ beped.
0 0

If we change the variable x = (1 —t)a +tb, t € [0, 1] then by (2.19) we get

(2.20) %1(1)f (a;b) /Olp(t) dt

2

<t [ () w<u@so) [ nopwa

If we put w : [a,b] — [0,00), w(x) =p (gb”:g) then from (2.20) we recapture the
result from [6]
1 a+b b

2.21 —f <>/ w(x)dx
e gt () [ew

b 1

< [f@u@ds<(f@+ 1) [ hOw-ta+md

a 0

where f: I — [0,00) is an h-convex function on an interval I of real numbers with

he L[0,1], f € Lia,b] and w(z) =w(a+b—2x), x € [a,b], w > 0 and Lebesgue
integrable on [a,b].

In what follows we assume that p is Lebesgue integrable and symmetric on [0, 1].
If we write (2.18) for h(t) = t, then we get the classical Hermite-Hadamard-
Fejér’s inequality for convex functions f : C' — R defined on convex subsets C' of
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linear spaces

(2.22) f(m;y) /Olp(t)dt

s/o [f((l—t)x+ty)]p(t)dtﬁ[f(ar)+f(y)]/0 tp (t) dt,

where x, y € C.
If we write (2.18) for the case of P-type functions f : C — [0,00), i.e., h(t) =
1,t € [0,1], then we get the inequality

(2.23) %f (5”‘2”’) /Olp(t)dt

1 1
S/O [f((lft)erty)]p(t)dtS[f($)+f(y)]/0 p(t)dt

where z, y € C.
If f is Breckner s-convex on C, for s € (0,1), then by taking h () = ¢° in (2.18)
we get

(2.24) 2571 f <x2+y> /Olp(t) dt

< / F (= t)z+ty)]p () de < [f @) +  (4)] / £p (8) dt,
where z, y € C.

Since the function ¢ (z) = ||z||* is Breckner s-convex on the normed linear space
X, s €(0,1), then for any z, y € X we have

1 1
e glerl [ pwe < [ la-tarulp0a

IN

[||3?HS+||:U||S]/O £ () dt.

If f:C — [0,00) is of s-Godunova-Levin type, with s € [0,1), then by taking

220 gt (S30) [ ewars [ sla-nesulpoa

<U@+1] [ g

where z, y € C.
We notice that for s = 1 we get

(2.27) if(x;y>/0 p<t>dts/0 Pl =0+ ty]p(t) de
U@+ | o

where x, y € C, and provided the above integrals exist.
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3. h-CONVEXITY OF INTEGRAL MEANS

Assume that the function f : C € X — [0,00) is an h-convex function with
h e L[0,1]. Let y, z € C. We say that the function is f is hemi-Lebesgue integrable
on Cif [0,1] 5t — f[(1 —¢t)x + ty] is Lebesgue integrable on [0, 1] for all (z,y) €
C?*:=C xC.

If p:[0,1] — [0,00) is Lebesgue integrable, then we can define the function
F,:CxC—Rby

1
(3.1) Fy(z,y) = / FU(L— 1)z +ty)p(t) dr.

For p = 1 we can consider the function

(3.2) Fz,y) :/0 FUO =) a + ty) dt

for all (x,y) € C.

Theorem 3. Assume that the function f : C C X — [0,00) is an h-convex function
with h € L[0,1]. If f is hemi-Lebesgue integrable on C, then the function F,, defined
by (3.1) is h-convexr on C*. Moreover, if p is symmetric on [0,1] then F, (y,x) =
F, (z,y) for all (z,y) € C?, namely F, is symmetric on C*.

Proof. Let (z,y), (u,v) € C? and o € [0,1]. Then

Fp(a(z,y) + (1 - a)(u,v))
=F(ac+(1-a)u,ay+ (1 —a)v)

/f (1= 1) (ax+ (1 — a)u) + ¢ (ay + (1 — a)v)) p () dt
/f (I-te+ty)+(1—a) (1 —t)u+tv))p(t)dt

/ (h(@) F((L =)z +ty)+ b (1—a) £ (1—t)ut to)}p () dt
(by the h-convexity of f)

a)/ f((l—t)x+ty)p(t)dt+h(1—a)/ FU =t utto)p(t) dt
0 0
:h(Oé)Fp(l',y)+h(1*0&)Fp(’UJ,U),

which proves the convexity of F}, on Cc2.
For (z,y) € C?, we have, by changing the variable s = 1 — ¢, t € [0, 1], that

Fywa) = [ p(@=nyrmp@a= [ s 0-sop-sd

:/0 f((l—s)x+sy)p(s)d82Fp($ay)

and the theorem is proved. O
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Corollary 2. Assume that the function f : C C X — [0,00) is an h-convex
function with h € L[0,1] and f is hemi-Lebesgue integrable on C. Then the functions

1
F(z,y) :/ F(( =tz + ty)dt,

! 1
F|.7%| (z,9) ::/ f(A=t)z+ty) 't— 2‘dt
0
and
1
F_y(z,y) = / f(l=t)z+ty)t(1—1t)dt
0
are h-convex and symmetric on C2.
We have:

Theorem 4. Assume that the function f : C C X — [0,00) is an h-convez function
with h € L[0,1] and f is hemi-Lebesgue integrable on C. If p is Lebesgue integrable
and symmetric on [0,1], then

(3.3) th(é)f(x;y> /Olp(t)dt

g/ (/0 f([(l_t)(l_o‘Haﬂ“[(1—t)a+t(1—a)]y)p(t)dt> da

0
§2/O f((l—t)x+ty)p(t)dt/o h (@) do
<207 @+l [ hOp©d [ hio)da
for all (z,y) € C2.
Proof. From the inequality (2.6) for the h-convex F), we have
1 (@,9) + (u,v)
2n (1) ( 2 >
< [ 1B (0 =) @)+ w o)l da < By @) + Fy (w0)] | @) do,

for all (z,v), (u,v) € C2.
If we take (u,v) = (y,) in (3.4), then we get
1 (z,9) + (y,2)
s ()
< [ 1B (-0 @ +a@.a)lda < [F @)+ Fy 0] | he)do,

for all (z,y) € C%.
Observe that

F) ((w,y);r(y,x)) _F, <1'J2ryw;y> _f<:c42ry> /Olp(t)dt,

(3.4)

(3.5)
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[Fp (1 —a) (z,y) + a(y,z))] da

\

1
/ (I-a)x+ay,(1 —a)y+ az)]duo
0

/:(/ (1-1) 1_a)x+ay)+t((1—a)y+04m))p(t)dt>da

/l (/ (@=( 1_a)+0‘t]m+[(1—t)a+t(1—a)]y)p(t)dt>da

0

and

1 1 1
[Fp<x,y>+Fp<y,x>1/0 h(t)dtza/o f((l—t)fc+ty)p(t)dt/0 h (@) do

Then by (3.5) we get the first part of (3.3).
Since

[ fa-nermp@a<ii@+ o) [ nopeod
0 0
hence the last part of (3.3) also holds. O

Remark 3. If the function f : C C X — [0,00) is a convex function, namely
h(t) =1, t€0,1] then from (3.3) we get

(3.6) f<$;y)/01p<t>dt

1 1
S/o (/0 f([“t)“a”atm[(lt)wt(la)}y)p(tm) do

1
s/o F( =)z + ty)p(t)de

provided that p is Lebesque integrable and symmetric on [0,1] and (z,y) € C?.
If we write (3.83) for the case of P-type functions f: C — [0,00), i.e., h(t) =1,
t €10,1], then we get the inequality

(37) f(“y)/o b (t) dt

g/o (/O f([(l—t)(l—a)+at]x+[(1—t)a+t(1—a)]y)p(t)dt)da

g2/0 f((l—t):v+ty)p(t)dt§2[f(rv)+f(y)]/0 p(t)dt,

provided that p is Lebesgue integrable and symmetric on [0,1], where (z,y) € C2.
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If f is Breckner s-convex on C, for s € (0,1), then by taking h (t) =t* in (2.18)
we get

(3.8) 2571 f (T) /Olp(t)dt
g/ol </01f([(1—t)(1—a)—l—at}x—l—[(1—t)a+t(1—a)}y)p(t)dt)da

2
<
T s+1

/Of((l—t):v+ty)p(t)dt< 2 [f(w)+f(y)]/0tsp(t)dt

T s+1

provided that p is Lebesque integrable and symmetric on [0, 1], where (z,y) € C?.
If (X, |I]) s a normed linear space, s € (0,1), then for any x, y € X we have

S/Olp(t)dt

S/0 < 0 Kl_t)(l_a)_'_at]:ZH_[(1_t)a+t(1_a)]y||sp(t)dt> da

(3.9) 291 ||Z1Y

2 ! 92 1
= L-t)z+ty| pt)dt < ——[llz]I° + /t t)dt,
—S+1/0 1A=tz +ty["p @) dt < —— {ll=l” + iyl ; p(t)

provided that p is Lebesgue integrable and symmetric on [0,1].
If f: C — [0,00) is of s-Godunova-Levin type, with s € [0,1), then by taking
h(t)= % in (3.3) we get

ts

(3.10)
it (55) [ rwa

S/o </ f([(l_t)(l_a)+at]x+[(1_t)a+t(1—a)]y)p(t)dt>da

< [ -z mpoa
< U@l [ 2

provided that p is Lebesgue integrable and symmetric on [0, 1], where (z,y) € C?.

4. SOME EXAMPLES FOR FUNCTIONS OF A REAL VARIABLE

Let g : I — R an integrable function on the interval I and p : [0,1] — [0,00) a
symmetric and integrable function on [0, 1] . For (a,b) € I? we consider the function

(4.1) G, (a,b):/o g (1= ) a+th)p(t) dt.
If b = a, then

G, (a,0) = g (a) / p(t) dt.
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If a # b, then by making the change of variable v = (1 —t)a + tb, t € [0,1], we
have du = (b —a) dt, t = =2 and from (4.1) we obtain

ffg (u)p (}j:f;) du, (a,b)€1? a#b

(4.2) G, (a,b) =
g(a) fy p(t)dt, (a,b)€I? a=b
In particular, we can consider the functions G, G|.7%|, G.-y: I? — R defined
by
e JL g (w)du, (a,b) € 1%, a # 0,

G (a,b) :=
g(a)7 (a?b)6127 a#b7
o e 9 |u— = du, (a.b) € I a# b,
G|_y|(ab) =
%g(a‘)v (a7b) € 127 a 7£ ba
and
o o 9 () (w—a) (b—w)du, (a,b) € 1%, a#b,
G.(lf.) (a,b) =

1g9(a), (a,b) €I a#b.

By utilising the general Theorem 3, we can state the following result concerning
the h-convexity of the weighted integral mean (4.2):

Proposition 1. Assume that the function g : I C R — [0,00) is an h-convex
function with h € L[0,1]. If g is Lebesgue integrable on I, then the function
G, defined by (4.2) is h-convex on I*. Moreover, if p is symmetric on [0,1] then
G, (b,a) = Gp (a,b) for all (a,b) € I

We observe that, if g is a convex function on I, then G, is convex on I% In
the particular case when p = 1, we recapture Wulbert’s result from 2003, [53], who
showed that the integral mean of a convex function is globally convex as a function
of two variables.

The above proposition can be used as a simple tool to build h-convex functions
(P-type functions, Breckner s-convex functions, s-Godunova-Levin type functions
etc...) on I? C R? starting with the same kind of function defined on I. The details
are omitted.
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