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Abstract

In this paper, we provide a method to construct a continued-fraction approx-
imation based upon a given asymptotic expansion. As applications of the method
developed here, we establish several continued-fraction approximations for the gam-
ma and the digamma (or psi) functions. Finally, some closely-related open problems
are also presented.
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1 Introduction

The gamma function Γ(x) given by

Γ(x) =

∫ ∞
0

tx−1 e−t dt (x > 0)
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is one of the most important functions in mathematical analysis and has applications in many
diverse areas. The logarithmic derivative ψ(x) of the gamma function Γ(x) given by

ψ(x) =
Γ′(x)

Γ(x)
or ln Γ(x) =

∫ x

1
ψ(x) dt

is known as the psi (or digamma) function. The psi function ψ(x) is connected to the Euler-
Mascheroni constant γ and the harmonic numbers Hn by means of the following well-known
relation (see [1, p. 258, Eq. (6.3.2)]):

ψ(n+ 1) = −γ +Hn (n ∈ N := {1, 2, 3, · · · }), (1.1)

where

Hn :=

n∑
k=1

1

k
(n ∈ N)

is the nth harmonic number and γ is the Euler-Mascheroni constant defined by

γ = lim
n→∞

Dn = 0.577215664 · · · ,

where

Dn =
n∑
k=1

1

k
− lnn. (1.2)

Various approximations of the psi function ψ(x) are used in the relation (1.1) and interpreted
as approximation for the harmonic number Hn or as approximations of the Euler-Mascheroni
constant γ.

There has been significant interest and research on γ as evidenced by survey papers (see, for
details, [14]) and expository books (see, for example, [19]), which reveal its essential properties
and surprising connections with other areas of the mathematical sciences.

The following two-sided inequality for the difference Dn − γ was established in [28, 33]:

1

2(n+ 1)
< Dn − γ <

1

2n
(n ∈ N).

The convergence of the sequence Dn to γ is very slow. By changing the logarithmic term in
(1.2), DeTemple [15, 16] presented the following inequality:

1

24(n+ 1)2
< Rn − γ <

1

24n2
(n ∈ N), (1.3)

where

Rn = Hn − ln

(
n+

1

2

)
. (1.4)
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On the other hand, Negoi [26] proved that the sequence {Tn}n∈N given by

Tn =

n∑
k=1

1

k
− ln

(
n+

1

2
+

1

24n

)
(1.5)

is strictly increasing and convergent to γ. Moreover, Negoi [26] proved that

1

48(n+ 1)3
< γ − Tn <

1

48n3
(n ∈ N). (1.6)

The following faster approximation formulas can be found in [10, 12]:

Xn := Hn − ln

(
n+

1

2
+

1

24n
− 1

48n2

)
= γ +O

(
n−4

)
(n→∞) (1.7)

and

Yn := Hn − ln

(
n+

1

2
+

1

24n
− 1

48n2
+

23

5760n3

)
= γ +O

(
n−5

)
(n→∞). (1.8)

In view of (1.3), (1.6), (1.7) and (1.8), Chen and Mortici [10] posed the following open prob-
lem:

Open Problem 1. For a given m ∈ N, find the constants pj (j = 1, 2, 3, · · · ,m) such that

Hn − ln

(
n

(
1 +

m∑
j=1

pj
nj

))
(1.9)

is the fastest sequence which would converge to γ.
Yang [31] first presented the solution of Open Problem 1 by using the Bell polynomials of a

logarithmic type. Subsequently, other proofs of Open Problem 1 (1.9) were published by Gavrea
and Ivan [17, 18], Lin [20], Chen et al. [8], and Chen and Choi [6].

The following familiar Stirling’s formula:

n! ∼
√

2πn
(n
e

)n
(n→∞) (1.10)

has many applications in statistical physics, probability theory and number theory. Actually, it
was first discovered in 1733 by the French mathematician, Abraham de Moivre (1667–1754), in
the form given by

n! ∼ constant ·
√
n
(n
e

)n
(n→∞)
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when he was studying the Gaussian distribution and the central limit theorem. Afterwards, the
Scottish mathematician, James Stirling (1692–1770), found the missing constant

√
2π when he

was attempting to give the normal approximation of the binomial distribution.
Recently, Sándor and Debnath [29, Theorem 5] proved the following inequality for all posi-

tive integers n = 2:

√
2πn

(n
e

)n
< Γ(n+ 1) <

√
2πn

(n
e

)n ( n

n− 1

) 1
2

(1.11)

and proposed the approximation formula given below:

Γ(n+ 1) ∼
√

2πn
(n
e

)n ( n

n− 1

) 1
2

(n→∞). (1.12)

Motivated by the above-mentioned work by Sándor and Debnath (1.12), Mortici and Srivas-
tava [25] introduced the following class of approximations for all real numbers a and b:

Γ(n+ 1) ∼ µn(a, b)

(
n→∞; µn(a, b) :=

√
2πn

(
n

e

)n (
1 +

1

n+ a

)−b)
. (1.13)

We note that Stirling’s formula (1.10) is obtained from the Mortici-Srivastava result (1.13)
in its special case when b = 0. Furthermore, the approximation formula (1.12) can be written as
follows:

Γ(n+ 1) ∼ µn
(
−1,−1

2

)
(n→∞).

Indeed, in the aforecited work, Mortici and Srivastava [25] proved that

Γ(n+ 1) ∼ µn
(
−1

2
,− 1

12

)
(n→∞)

is the best approximation among all approximations given by (1.13). We choose to write this
best approximation as follows:

Γ(n+ 1) ∼
√

2πn
(n
e

)n (
1 +

1

n− 1
2

) 1
12

(n→∞). (1.14)

Mortici and Srivastava [25] also developed the approximation formula (1.14) in order to produce
a complete asymptotic expansion (see [25, Theorem 2]).

In this paper, we provide a method to construct a continued-fraction approximation which
is based upon a given asymptotic expansion (see Remarks 1 and 2). As applications of our



A Method to Construct Continued-Fraction Approximations and Its Applications 5

continued-fraction approximation, we develop the approximation formula (1.14) to produce sev-
eral further continued-fraction approximations (see Theorems 3, 4 and 5). We also establish
continued-fraction approximation for the psi function (see Theorem 6). Finally, we present the
higher-order estimate for the Euler-Mascheroni constant γ (see Theorem 7).

The following lemmas will be useful in our present investigation.

Lemma 1 (see [8]). Let

g(x) ∼
∞∑
n=1

bnx
−n (x→∞)

be a given asymptotic expansion. Then the composition exp
(
g(x)

)
has asymptotic expansion of

the following form:

exp
(
g(x)

)
∼
∞∑
n=0

anx
−n (x→∞),

where

a0 = 1 and an =
1

n

n∑
k=1

kbkan−k (n ∈ N). (1.15)

Lemma 2 (see [5, Theorem 9]). Let k = 1 and n = 0 be integers. Then, for all real numbers
x > 0:

Sk(2n;x) < (−1)k+1ψ(k)(x) < Sk(2n+ 1;x), (1.16)

where

Sk(p;x) =
(k − 1)!

xk
+

k!

2xk+1
+

p∑
i=1

[
B2i

k−1∏
j=1

(2i+ j)

]
1

x2i+k
,

{Bn}n∈N0 (N0 = N ∪ {0}) are the Bernoulli numbers defined by

t

et − 1
=

∞∑
n=0

Bn
tn

n!
.

It follows from (1.16) that

1

x
+

1

2x2
+

1

6x3
− 1

30x5
+

1

42x7
− 1

30x9
< ψ′(x)

<
1

x
+

1

2x2
+

1

6x3
− 1

30x5
+

1

42x7
− 1

30x9
+

5

66x11
(x > 0). (1.17)

By using the recurrence formula:

ψ′(x+ 1) = ψ′(x)− 1

x2
,
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we deduce from (1.17) that, for x > 0,

1

x
− 1

2x2
+

1

6x3
− 1

30x5
+

1

42x7
− 1

30x9
< ψ′(x+ 1)

<
1

x
− 1

2x2
+

1

6x3
− 1

30x5
+

1

42x7
− 1

30x9
+

5

66x11
. (1.18)

The numerical calculations presented in this work were performed by using the Maple soft-
ware for symbolic computations.

2 A Method for the Construction of Continued-Fraction Approxi-
mations

In this section, we present a method to construct a continued-fraction approximation based upon
a given asymptotic expansion (see Remark 1 and Remark 2 below).

Theorem 1 generalizes an earlier result [13, Lemma 1.1].

Theorem 1. Let a` 6= 0 (` ∈ N) and

A(x) ∼
∞∑
j=`

aj
xj

(x→∞) (2.1)

be a given asymptotic expansion. Define the function B(x) by

A(x) =
a`
B(x)

.

Then the function B(x) = a`
A(x) has the following asymptotic expansion:

B(x) ∼ x` + b−(`−1)x
`−1 + b−(`−2)x

`−2 + · · ·+ b−1x+ b0 +

∞∑
j=1

bj
xj

(x→∞),
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where

b−(`−1) = −a`+1

a`

b−(`−2) = −
a`+2 + a`+1b−(`−1)

a`

...

b−1 = −
a2`−1 + a2`−2b−(`−1) + a2`−3b−(`−2) + · · ·+ a`+1b−2

a`

b0 = −
a2` + aj+2`−1b−(`−1) + a2`−2b−(`−2) + · · ·+ a`+1b−1

a`

bj = − 1

a`

(
aj+2` + aj+2`−1b−(`−1) + aj+2`−2b−(`−2) + · · ·+ aj+`+1b−1

+
j∑

k=1

ak+`bj−k

)
(j ∈ N).

(2.2)

Proof. We begin by considering

a`
A(x)

∼ x` +

∞∑
j=−(`−1)

bj
xj

= x` + b−(`−1)x
`−1 + b−(`−2)x

`−2 + · · ·+ b−1x+
∞∑
j=0

bj
xj

(x→∞), (2.3)

where bj (j ∈ {−(`− 1),−(`− 2),−1, 0} ∪ N) are real numbers to be determined.
Upon writing (2.3) as follows:

∞∑
j=`

aj
xj

(
x` + b−(`−1)x

`−1 + b−(`−2)x
`−2 + · · ·+ b−1x+

∞∑
k=0

bk
xk

)
∼ a`,

∞∑
j=`+1

aj
xj−`

+

∞∑
j=`

ajb−(`−1)

xj−`+1
+

∞∑
j=`

ajb−(`−2)

xj−`+2
+ · · ·+

∞∑
j=`

ajb−1
xj−1

∼ −
∞∑
j=0

aj+`
xj+`

∞∑
k=0

bk
xk
,

∞∑
j=0

aj+`+1

xj+1
+

∞∑
j=0

aj+`b−(`−1)

xj+1
+

∞∑
j=0

aj+`b−(`−2)

xj+2
+ · · ·+

∞∑
j=0

aj+`b−1
xj+`−1

∼ −
∞∑
j=0

j∑
k=0

ak+`bj−k
xj+`

. (2.4)
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It is easy to see that

∞∑
j=0

aj+`+1

xj+1
=
a`+1

x
+
a`+2

x2
+ · · ·+ a2`−1

x`−1
+
∞∑
j=0

aj+2`

xj+`
,

∞∑
j=0

aj+`b−(`−1)

xj+1
=
a`b−(`−1)

x
+
a`+1b−(`−1)

x2
+ · · ·+

a2`−2b−(`−1)

x`−1
+

∞∑
j=0

aj+2`−1b−(`−1)

xj+`
,

∞∑
j=0

aj+`b−(`−2)

xj+2
=
a`b−(`−2)

x2
+ · · ·+

a2`−3b−(`−2)

x`−1
+

∞∑
j=0

aj+2`−2b−(`−2)

xj+`
,

...

∞∑
j=0

aj+`b−1
xj+`−1

=
a`b−1
x`−1

+
∞∑
j=0

aj+`+1b−1
xj+`

.

Adding these equations, we see that the left-hand side of (2.4) can be written as follows:

∞∑
j=0

aj+`+1

xj+1
+

∞∑
j=0

aj+`b−(`−1)

xj+1
+

∞∑
j=0

aj+`b−(`−2)

xj+2
+ · · ·+

∞∑
j=0

aj+`b−1
xj+`−1

=
a`+1 + a`b−(`−1)

x
+
a`+2 + a`+1b−(`−1) + a`b−(`−2)

x2

+ · · ·+
a2`−1 + a2`−2b−(`−1) + a2`−3b−(`−2) + · · ·+ a`b−1

x`−1

+

∞∑
j=0

aj+2` + aj+2`−1b−(`−1) + aj+2`−2b−(`−2) + · · ·+ aj+`+1b−1

xj+`
. (2.5)

Equating the coefficients of equal powers of x on the right-hand sides of (2.4) and (2.5), we
get

a`+1 + a`b−(`−1) = 0,

a`+2 + a`+1b−(`−1) + a`b−(`−2) = 0,

...

a2`−1 + a2`−2b−(`−1) + a2`−3b−(`−2) + · · ·+ a`b−1 = 0

(2.6)
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and

aj+2` + aj+2`−1b−(`−1) + aj+2`−2b−(`−2) + · · ·+ aj+`+1b−1 = −
j∑

k=0

ak+`bj−k. (2.7)

We now find from (2.6) that

b−(`−1) = −a`+1

a`
,

b−(`−2) = −
a`+2 + a`+1b−(`−1)

a`
,

...

b−1 = −
a2`−1 + a2`−2b−(`−1) + a2`−3b−(`−2) + · · ·+ a`+1b−2

a`
.

By setting j = 0, we deduce from (2.7) that

b0 = −
a2` + aj+2`−1b−(`−1) + a2`−2b−(`−2) + · · ·+ a`+1b−1

a`
.

Moreover, for j ∈ N, we have

aj+2` + aj+2`−1b−(`−1) + aj+2`−2b−(`−2) + · · ·+ aj+`+1b−1 = −a`bj −
j∑

k=1

ak+`bj−k,

which yields

bj = − 1

a`

(
aj+2` + aj+2`−1b−(`−1) + aj+2`−2b−(`−2) + · · ·+ aj+`+1b−1 +

j∑
k=1

ak+`bj−k

)

(j ∈ N).

The proof of Theorem 1 is thus completed.

The choice ` = 1, 2, 3 in Theorem 1 yields Corollaries 1, 2 and 3, respectively.

Corollary 1. Let a1 6= 0 and

A1(x) ∼
∞∑
j=1

aj
xj

(x→∞)
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be a given asymptotic expansion. Define the function B(x) by

A1(x) =
a1
B(x)

.

Then the function B(x) = a1
A1(x)

has asymptotic expansion of the following form:

B(x) ∼ x+

∞∑
j=0

bj
xj

(x→∞),

where

b0 = −a2
a1

and bj = − 1

a1

(
aj+2 +

j∑
k=1

ak+1bj−k

)
(j ∈ N). (2.8)

Remark 1. Corollary 1 provides a method to construct a continued-fraction approximation
based upon a given asymptotic expansion. The details of this method are given below.

Let a1 6= 0 and

A(x) ∼
∞∑
j=1

aj
xj

(x→∞) (2.9)

be a given asymptotic expansion. Then the asymptotic expansion (2.9) can be transformed into
the continued-fraction approximation of the form:

A(x) ≈ a1

x+ b0 +
b1

x+ c0 +
c1

x+ d0 +
. . .

(x→∞), (2.10)

wherein the constants are given by the following recurrence relations:

b0 = −a2
a1

and bj = − 1
a1

(
aj+2 +

j∑
k=1

ak+1bj−k

)
;

c0 = − b2
b1

and cj = − 1
b1

(
bj+2 +

j∑
k=1

bk+1cj−k

)

d0 = − c2
c1

and dj = − 1
c1

(
cj+2 +

j∑
k=1

ck+1dj−k

)
· · · · · ·

(2.11)

Clearly, since aj =⇒ bj =⇒ cj =⇒ dj =⇒ · · · , the asymptotic expansion (2.9) is transformed
into the continued-fraction approximation (2.10), and the constants in the right-hand side of
(2.10) are determined by the system (2.11).
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Corollary 2. Let a2 6= 0 and

A2(x) ∼
∞∑
j=2

aj
xj

(x→∞) (2.12)

be a given asymptotic expansion. Define the function B(x) by

A2(x) =
a2
B(x)

.

Then the function B(x) = a2
A2(x)

has asymptotic expansion of the following form:

B(x) ∼ x2 + b−1x+ b0 +

∞∑
j=1

bj
xj

(x→∞),

where

b−1 = −a3
a2
, b0 =

−a52a4 + a42a
2
3

a62

and bj = − 1

a2

(
aj+4 + aj+3b−1 +

j∑
k=1

ak+2aj−k

)
(j ∈ N). (2.13)

Corollary 3. Let µ3 6= 0 and

F (x) ∼
∞∑
j=3

µj
xj

(x→∞) (2.14)

be a given asymptotic expansion. Define the function G(x) by

F (x) =
µ3
G(x)

.

Then the function G(x) = µ3
F (x) has asymptotic expansion of the following form:

G(x) ∼ x3 + a−2x
2 + a−1x+ a0 +

∞∑
j=1

aj
xj

(x→∞),

where

a−2 = −µ4
µ3
, a−1 = −µ3µ5 − µ

2
4

µ23
, a0 = −µ

2
3µ6 − 2µ3µ4µ5 + µ34

µ33

and aj = − 1

µ3

(
µj+6 + µj+5a−2 + µj+4a−1 +

j∑
k=1

µk+3aj−k

)
(j ∈ N).

(2.15)



A Method to Construct Continued-Fraction Approximations and Its Applications 12

We next prove the following result.

Theorem 2. Let a` 6= 0 (` ∈ N) and

A(x) ∼
∞∑
j=`

aj
x2j−1

(x→∞) (2.16)

be a given asymptotic expansion. Define the function B(x) by

A(x) =
a`
B(x)

.

Then the function B(x) = a`
A(x) has asymptotic expansion of the following form:

B(x) ∼ x2`−1 + b−(`−2)x
2`−3 + b−(`−3)x

2`−5 + · · ·+ b−1x
3 + b0x+

∞∑
j=1

bj
x2j−1

(x→∞),

where

b−(`−2) = −a`+1

a`

b−(`−3) = −
a`+2 + a`+1b−(`−2)

a`

...

b−1 = −
a2`−1 + a2`−2b−(`−1) + a2`−3b−(`−2) + · · ·+ a`+1b−2

a`

b0 = −
a2`−2 + a2`−3b−(`−2) + a2`−4b−(`−3) + · · ·+ a`+1b−2

a`

bj = − 1

a`

(
aj+2`−1 + aj+2`−2b−(`−2) + aj+2`−3b−(`−3) + · · ·+ aj+`+1b−1

+
j∑

k=1

ak+`bj−k

)
(j ∈ N).

(2.17)

Proof. We first let

a`
A(x)

∼ x2`−1 +

∞∑
j=−(`−2)

bj
x2j−1

= x2`−1 + b−(`−2)x
2`−3 + b−(`−3)x

2`−5 + · · ·+ b−1x
3 + b0x+

∞∑
j=1

bj
x2j−1

(x→∞),

(2.18)
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where bj (j ∈ {−(` − 2),−(` − 3),−1, 0} ∪ N) are real numbers to be determined. Then, by
writing (2.18) as follows:

∞∑
j=`

aj
x2j−1

(
x2`−1 + b−(`−2)x

2`−3 + b−(`−3)x
2`−5 + · · ·+ b−1x

3 +
∞∑
k=0

bk
x2k−1

)
∼ a`,

∞∑
j=`+1

aj
x2j−2`

+
∞∑
j=`

ajb−(`−2)

x2j−2`+2
+
∞∑
j=`

ajb−(`−3)

x2j−2`+4
+· · ·+

∞∑
j=`

ajb−1
x2j−4

∼ −
∞∑
j=0

aj+`

x2(j+`)−1

∞∑
k=0

bk
x2k−1

,

and

∞∑
j=0

aj+`+1

x2j+2
+
∞∑
j=0

aj+`b−(`−2)

x2j+2
+
∞∑
j=0

aj+`b−(`−3)

x2j+4
+ · · ·+

∞∑
j=0

aj+`b−1
x2j+2`−4

∼ −
∞∑
j=0

j∑
k=0

ak+`bj−k
x2j+2`−2 . (2.19)

It is easy to see that

∞∑
j=0

aj+`+1

x2j+2
=
a`+1

x2
+
a`+2

x4
+ · · ·+ a2`−2

x2`−4
+
∞∑
j=0

aj+2`−1
x2j+2`−2 ,

∞∑
j=0

aj+`b−(`−2)

x2j+2
=
a`b−(`−2)

x2
+
a`+1b−(`−2)

x4
+ · · ·+

a2`−3b−(`−2)

x2`−4
+

∞∑
j=0

aj+2`−2b−(`−2)

x2j+2`−2 ,

∞∑
j=0

aj+`b−(`−3)

x2j+4
=
a`b−(`−3)

x4
+ · · ·+

a2`−4b−(`−3)

x2`−4
+

∞∑
j=0

aj+2`−3b−(`−3)

x2j+2`−2 ,

...

∞∑
j=0

aj+`b−1
x2j+2`−4 =

a`b−1
x2`−4

+

∞∑
j=0

aj+`+1b−1
x2j+2`−2 .
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Adding these equations, we see the left-hand side of (2.19) can be written as follows:

∞∑
j=0

aj+`+1

x2j+2
+

∞∑
j=0

aj+`b−(`−2)

x2j+2
+

∞∑
j=0

aj+`b−(`−3)

x2j+4
+ · · ·+

∞∑
j=0

aj+`b−1
x2j+2`−4

=
a`+1 + a`b−(`−2)

x2
+
a`+2 + a`+1b−(`−2) + a`b−(`−3)

x4

+ · · ·+
a2`−2 + a2`−3b−(`−2) + a2`−4b−(`−3) + · · ·+ a`b−1

x2`−4

+

∞∑
j=0

aj+2`−1 + aj+2`−2b−(`−2) + aj+2`−3b−(`−3) + · · ·+ aj+`+1b−1

x2j+2`−2 . (2.20)

Equating the coefficients of equal powers of x on the right-hand sides of (2.19) and (2.20),
we get

a`+1 + a`b−(`−2) = 0,

a`+2 + a`+1b−(`−2) + a`b−(`−3) = 0,

...

a2`−2 + a2`−3b−(`−2) + a2`−4b−(`−3) + · · ·+ a`+1b−2 + a`b−1 = 0

(2.21)

and

aj+2`−1 + aj+2`−2b−(`−2) + aj+2`−3b−(`−3) + · · ·+ aj+`+1b−1 = −
j∑

k=0

ak+`bj−k (j ∈ N0).

(2.22)

We now find from (2.21) that

b−(`−2) = −a`+1

a`
,

b−(`−3) = −
a`+2 + a`+1b−(`−2)

a`
,

...

b−1 = −
a2`−2 + a2`−3b−(`−2) + a2`−4b−(`−3) + · · ·+ a`+1b−2

a`
.
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For j = 0, we obtain from (2.22) that

b0 = −
a2`−1 + a2`−2b−(`−2) + a2`−3b−(`−3) + · · ·+ a`+1b−1

a`

and, for j ∈ N, we have

aj+2`−1 + aj+2`−2b−(`−2) + aj+2`−3b−(`−3) + · · ·+ aj+`+1b−1 = −a`bj −
j∑

k=1

ak+`bj−k,

which yields

bj = − 1

a`

(
aj+2`−1 + aj+2`−2b−(`−2) + aj+2`−3b−(`−3) + · · ·+ aj+`+1b−1 +

j∑
k=1

ak+`bj−k

)

for j ∈ N. The proof of Theorem 2 is thus completed.

Theorem 2 implies Corollaries 4 and 5 below.

Corollary 4. Let a1 6= 0 and

A1(x) ∼
∞∑
j=1

aj
x2j−1

(x→∞) (2.23)

be a given asymptotic expansion. Define the function B(x) by

A1(x) =
a1
B(x)

.

Then the function B(x) = a1
A1(x)

has asymptotic expansion of the following form:

B(x) ∼ x+
∞∑
j=1

bj
x2j−1

(x→∞),

where

b1 = −a2
a1

and bj = − 1

a1

(
aj+1 +

j−1∑
k=1

ak+1bj−k

)
(j ∈ N \ {1}). (2.24)
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Proof. We write the last line in (2.17) as follows:

bj = − 1

a`

(
aj+2`−1 + aj+2`−2b−(`−2) + aj+2`−3b−(`−3)

+ · · ·+ aj+`+1b−1 + aj+`b0 +

j−1∑
k=1

ak+`bj−k

)
for j ∈ N, where an empty sum is understood to be zero. Choosing ` = 1 and noticing that

b−(`−2) = b−(`−3) = · · · = b−1 = b0 = 0,

we get

bj = − 1

a1

(
aj+1 +

j−1∑
k=1

ak+`bj−k

)
(j ∈ N),

which gives the desired formula (2.24) asserted by Corollary 4.

Remark 2. Corollary 4 provides a method to convert the asymptotic expansion (2.23) into a
continued fraction of the form:

A1(x) ≈ a1

x+
b1

x+
c1

x+
d1

x+
. . .

(x→∞), (2.25)

where the constants in the right-hand side of (2.25) are given by the following recurrence relations:

b1 = −a2
a1

and bj = − 1
a1

(
aj+1 +

j−1∑
k=1

ak+1bj−k

)

c1 = − b2
b1

and cj = − 1
b1

(
bj+1 +

j−1∑
k=1

bk+1cj−k

)

d1 = − c2
c1

and dj = − 1
c1

(
cj+1 +

j−1∑
k=1

ck+1dj−k

)
· · · · · ·

(2.26)

Clearly, since
aj =⇒ bj =⇒ cj =⇒ dj =⇒ · · · ,

the asymptotic expansion (2.23) is transformed into the continued-fraction approximation (2.25),
and the constants in the right-hand side of (2.25) are determined by the system (2.26).
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Corollary 5. Let λ2 6= 0 and

F (x) ∼
∞∑
j=2

λj
x2j−1

(x→∞) (2.27)

be a given asymptotic expansion. Define the function G(x) by

F (x) =
λ2
G(x)

.

Then the function G(x) = λ2
F (x) has asymptotic expansion of the following form:

G(x) ∼ x3 + a0x+

∞∑
j=1

aj
x2j−1

(x→∞),

where

a0 = −λ3
λ2

and aj = − 1

λ2

(
λj+3 +

j∑
k=1

λk+2aj−k

)
(j ∈ N). (2.28)

3 Continued-Fraction Approximations for the Gamma Function

In this section, we develop the approximation formula (1.14) in order to derive various other
continued-fraction approximations associate with the gamma function Γ(x).

Let r 6= 0 be a given real number and ` = 0 be a given integer. Chen and Lin [9] proved that
the gamma function Γ(x) has the following asymptotic expansion:

Γ(x+ 1) ∼
√

2πx
(x
e

)x1 +
∞∑
j=1

bj(`, r)

xj

x`/r

(x→∞), (3.1)

with the coefficients bj(`, r) (j ∈ N) given by

bj(`, r) =
∑ rk1+k2+···+kj

k1!k2! · · · kj !

(
B2

1 · 2

)k1 ( B3

2 · 3

)k2
· · ·
(

Bj+1

j(j + 1)

)kj
, (3.2)

where {Bn}n∈N0 are the Bernoulli numbers, summed over all nonnegative integers kj satisfying
the following equation:

(1 + `)k1 + (2 + `)k2 + · · ·+ (j + `)kj = j.
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The choice (`, r) = (0, 12) in (3.1) yields

A(x) :=

(
Γ(x+ 1)√
2πx

(
x
e

)x
)12

− 1 ∼
∞∑
j=1

aj
xj

=
1

x
+

1

2x2
+

2

15x3
+

1

120x4
+

1

840x5
+

149

25200x6
− 19

6300x7
− 131

22400x8

+
663799

99792000x9
+

12748781

1397088000x10
− 81764339

4540536000x11

− 23598827489

1089728640000x12
+ · · · (x→∞), (3.3)

where the coefficients aj ≡ bj(0, 12) (j ∈ N) are given by

aj =
∑ 12k1+k2+···+kj

k1!k2! · · · kj !

(
B2

1 · 2

)k1 ( B3

2 · 3

)k2
· · ·
(

Bj+1

j(j + 1)

)kj
, (3.4)

summed over all nonnegative integers kj satisfying the following equation:

k1 + 2k2 + · · ·+ jkj = j.

Based upon the asymptotic expansion (3.3) and by using the system (2.11), we develop the
approximation formula (1.14) with a view to deriving a continued-fraction approximation given
by Theorem 3.

Theorem 3. It is asserted that

Γ(x+ 1) ∼
√

2πx
(x
e

)x


1 +
1

x− 1
2 +

7
60

x+
317
2940

x+
. . .



1
12

(x→∞). (3.5)

Proof. By Remark 1, we can convert the asymptotic expansion (3.3) into a continued-fraction
approximation of the form:

A(x) ≈ a1

x+ b0 +
b1

x+ c0 +
c1

x+ d0 +
. . .

(x→∞), (3.6)
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where the constants in the right-hand side can be determined by using the system (2.11). More-
over, by noting that

a1 = 1, a2 =
1

2
, a3 =

2

15
, a4 =

1

120
, a5 =

1

840
, a6 =

149

25200
, · · · ,

we find from the first recurrence relation in (2.11) that

b0 = −a2
a1

= −1

2
,

b1 = −a3 + a2b0
a1

=
7

60
,

b2 = −a4 + a2b1 + a3b0
a1

= 0,

b3 = −a5 + a2b2 + a3b1 + a4b0
a1

= − 317

25200
,

b4 = −a6 + a2b3 + a3b2 + a4b1 + a5b0
a1

= 0, · · · .

From the second recurrence relation in (2.11), we have

c0 = −b2
b1

= 0,

c1 = −b3 + b2c0
b1

=
317

2940
,

c2 = −b4 + b2c1 + b3c0
b1

= 0, · · · .

Continuing the above process, we get

d0 = −c2
c1

= 0, · · · .

We see that (3.6) can be written as (3.5). The proof of Theorem 3 is thus completed.

Remark 3. Based upon the asymptotic expansion (3.3), following the same method as was used
in the proof of Theorem 3, we find that(

Γ(x+ 1)√
2πx

(
x
e

)x
)12

≈ 1 +
1

x− 1
2 +

7
60

x+
317
2940

x+
30397
62132

x+
17752261513
19078981020

x+
2864122300479077017
1984243256463202020

x+
. . .

(3.7)
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as x → ∞. Moreover, based upon the continued-fraction approximation (3.7), we can find new
inequalities for the gamma function Γ(x). For example, we find for n = 1 that

1 +
1

n− 1
2 +

7
60

n+
317
2940

n+
30397
62132

n

<

(
Γ(n+ 1)√
2πn

(
n
e

)n
)12

< 1 +
1

n− 1
2 +

7
60

n+
317
2940

n

. (3.8)

As n→∞, the following approximation formulas hold true:

Γ(n+ 1) ∼ ρn :=
√
π
(n
e

)n(
8n3 + 4n2 + n+

1

30

)1/6

(Ramanujan’s formula), (3.9)

Γ(n+ 1) ∼ κn :=
√

2πn
(n
e

)n(
1 +

1

n− 1
2

) 1
12
(

1 +
1(

n− 1
2

)3
)− 7

720

·

(
1 +

1(
n− 1

2

)4
) 7

480

(Mortici-Srivastava formula [25]) (3.10)

and

Γ(n+ 1) ∼ νn :=
√

2πn
(n
e

)n


1 +
1

n− 1
2 +

7
60

n+
317
2940

n



1
12

(New formula). (3.11)

It is observed from the following Table that, among the approximation formulas (3.9), (3.10) and
(3.11), for n ∈ N, the formula (3.11) is believe to be the best one.

Table. Comparison among approximation formulas (3.9), (3.10) and (3.11)

n ρn−n!
n!

κn−n!
n!

νn−n!
n!

1 2.833× 10−4 3.091× 10−2 2.160× 10−4

10 8.587× 10−8 1.822× 10−7 5.047× 10−11

100 9.451× 10−12 1.512× 10−12 5.127× 10−18

1000 9.538× 10−16 1.486× 10−17 5.128× 10−25

10000 9.547× 10−20 1.483× 10−22 5.128× 10−32
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Recently, Mortici and Srivastava [25, Theorem 2] proved, as x→∞, that

Γ(x+ 1) ∼
√

2πx
(x
e

)x(
1 +

1

x− 1
2

) 1
12

exp

( ∞∑
i=1

λi
x2i−1

)

=
√

2πx
(x
e

)x(
1 +

1

x− 1
2

) 1
12

exp

(
− 7

720x3
− 1

4032x5
− 1

1280x7

+
245

304128x9
− 32287

16773120x11
+

105

16384x13
− 7407701

250675200x15

+
169109795

941359104x17
− 401519531

288358400x19
+ · · ·

)
, (3.12)

where

λi =
B2i

2i(2i− 1)
− 1

12(2i− 1)
− 1

12

2i−2∑
j=1

1

j22i−j−1

(
−j

2i− j − 1

)
(i ∈ N). (3.13)

We convert the asymptotic expansion (3.12) into a continued fraction given by Theorem 4
below.

Theorem 4. For x→∞, it is asserted that

Γ(x+ 1) ≈
√

2πx
(x
e

)x(
1 +

1

x− 1
2

) 1
12

· exp



− 7
720

x3 − 5
196x+

− 1531
19208

x+
2700395
2475627

x+
16496398810339
14188933884840

x+
4087914301362953523
1929557042068438120

x+
. . .



. (3.14)
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Proof. Let us put

F (x) = ln

 Γ(x+ 1)

√
2πx

(
x
e

)x (
1 + 1

x− 1
2

) 1
12

 . (3.15)

Then, by noting that λ1 = 0, we have

F (x) ∼
∞∑
i=2

λi
x2i−1

(x→∞), (3.16)

where λi are given in (3.13).
We now define the function G(x) by

F (x) =
λ2
G(x)

(
λ2 = − 7

720

)
. (3.17)

By Corollary 5, we find for x→∞ that

G(x) =
λ2
F (x)

∼ x3 − 5

196
x+A1(x), (3.18)

where

A1(x) =
∞∑
j=1

aj
x2j−1

= − 1531

19208x
+

2700395

31059336x3
− 31009745857

158278376256x5
+

6779851492025

10340853915392x7

− 51752493558906075839

17055583996812641280x9
+

78309631785485666443399

4234332986942018408448x11

− 7742687957195958707976251459

53945402253641314523627520x13
+ · · · , (3.19)

and the coefficients aj in (3.19) can be calculated by the following recurrence relation:

a0 = −λ3
λ2
, aj = − 1

λ2

(
λj+3 +

j∑
k=1

λk+2aj−k

)
(j ∈ N).

By Remark 2, the asymptotic expansion (3.19) can be transformed into the following continued-
fraction approximation:

A1(x) ≈ a1

x+
b1

x+
c1

x+
d1

x+
. . .

(x→∞), (3.20)
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where the constants in the right-hand side can be determined by using the system (2.26).
We see from (3.19) that

a1 = − 1531

19208
, a2 =

2700395

31059336
, a3 = − 31009745857

158278376256
,

a4 =
6779851492025

10340853915392
, a5 = −51752493558906075839

17055583996812641280
, · · · .

From the first recurrence relation in (2.26), we have

b1 = −a2
a1

=
2700395

2475627
,

b2 = −a3 + a2b1
a1

= −336661200211

265467647016
,

b3 = −a4 + a2b2 + a3b1
a1

=
223241534903487835

53648887720757472
,

b4 = −a5 + a2b3 + a3b2 + a4b1
a1

= −256864633480533312861196423

11980422174075967529723520
, · · · .

Also, from the second recurrence relation in (2.26), we get

c1 = −b2
b1

=
16496398810339

14188933884840
,

c2 = −b3 + b2c1
b1

= −194269584893463401

78871712215566400
, · · · .

Continuing the above process, it is seen that

d1 = −c2
c1

=
4087914301362953523

1929557042068438120
, · · · .

We thus find for x→∞ that

A1(x) ≈
− 1531

19208

x+
2700395
2475627

x+
16496398810339
14188933884840

x+
4087914301362953523
1929557042068438120

x+
. . .

. (3.21)

From (3.17), (3.18) and (3.21), we obtain the desired result (3.14). The proof of Theorem 4 is
thus completed.
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Remark 4. By applying a lemma of Mortici [23, 24], You [32, Theorem 1] proved for n → ∞
that

Γ(n+ 1) ≈
√

2πn
(n
e

)n(
1 +

1

n− 1
2

) 1
12

· exp


1

n

− 7
720

n2 − 5
196 +

− 1531
19208

n2 + 2700395
2475627 +

−336661200211
265467647016

n+ 4555949691907915
1388500719857988 +

. . .


. (3.22)

We find that

− 7
720

n3 − 5
196n+

− 1531
19208

n+
2700395
2475627

n+
16496398810339
14188933884840

n+
4087914301362953523
1929557042068438120

n

=
1

n

− 7
720

n2 − 5
196 +

− 1531
19208

n2 + 2700395
2475627 +

−336661200211
265467647016

n+ 4555949691907915
1388500719857988

. (3.23)

This development seems to indicate that the formula (3.14) is equivalent to the formula (3.22).

By Lemma 1, we obtain from (3.12) for x→∞ that

F (x) : =
Γ(x+ 1)

√
2πx

(
x
e

)x (
1 + 1

x− 1
2

) 1
12

− 1

∼ − 7

720x3
− 1

4032x5
+

49

1036800x6
− 1

1280x7
+

1

414720x8
+

19841227

24634368000x9

+
6199

812851200x10
− 104610517

54344908800x11
− 3793207123

496628858880000x12
+ · · · . (3.24)

Let us now define the function G(x) by

F (x) =
− 7

720

G(x)
. (3.25)
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Then, by Corollary 3, we find for x→∞ that

G(x) =
− 7

720

F (x)
∼ x3 − 5

196
x+

7

1440
+A2(x), (3.26)

where

A2(x) = − 1531

19208x
+

700005796811

8050579891200x3
− 803771788246897

4102575512555520x5

+
292889867213204249

446724889144934400x7
− 217310837296831874706659910341

71617079425976153240371200000x9
+ · · · .

(3.27)

The asymptotic expansion (3.27) can be transformed into the continued-fraction approxima-
tion of the form:

A2(x) ≈
− 1531

19208

x+
700005796811
641682518400

x+
138514249066626639988523
119170597422441942748800

x+
. . .

(x→∞), (3.28)

where the constants in the right-hand side are determined by using the system (2.26).
From (3.25), (3.26) and (3.28), we obtain Theorem 5 below, which converts the asymptotic

expansion (3.24) into a continued fraction.

Theorem 5. For x→∞, the following asymptotic formula holds true:

Γ(x+ 1) ∼
√

2πx
(x
e

)x(
1 +

1

x− 1
2

) 1
12

·


1 +

− 7
720

x3 − 5
196x+ 7

1440 +
− 1531

19208

x+
700005796811
641682518400

x+
138514249066626639988523
119170597422441942748800

x+
. . .


. (3.29)
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4 Psi (or Digamma) Function and the Euler-Mascheroni Constant

In this section, we first establish a continued-fraction approximation for the psi (or digamma)
function ψ(x). Based upon the obtained result, we the present the higher-order estimates for the
Euler-Mascheroni constant γ.

The function ψ
(
x+ 1

2

)
is known to have the following asymptotic formula (see [21, p. 33]):

ψ

(
x+

1

2

)
∼ lnx−

∞∑
k=0

B2k+2

(
1
2

)
(2k + 2)x2k+2

(x→∞), (4.1)

where {Bn(x)}n∈N0 denotes the Bernoulli polynomials defined by the following generating
function:

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
(|t| < 2π). (4.2)

In terms of the Bernoulli numbers {Bn}n∈N0 , that is, {Bn(0)}n∈N0 , it is known that (see, for
example, [1, p. 805])

Bn

(
1

2

)
= −

(
1− 1

2n−1

)
Bn (n ∈ N0), (4.3)

the expansion formula (4.1) can be written as follows:

ψ

(
x+

1

2

)
∼ lnx+

∞∑
k=1

(
1− 1

22k−1

)(
B2k

2k

)
x2k (x→∞). (4.4)

By Lemma 1, we have

eψ(x+ 1
2) ∼ x exp

[ ∞∑
k=1

(
1− 1

22k−1

) (
B2k

2k

)
x2k

]

∼ x
∞∑
n=0

an
x2n

= x+
∞∑
n=1

an
x2n−1

(x→∞), (4.5)

where

a0 = 1 and an =
1

n

n∑
k=1

k

(
1− 1

22k−1

) (
B2k

2k

)
an−k (n ∈ N). (4.6)
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We are thus led to the following asymptotic formula:

eψ(x+ 1
2) − x ∼

∞∑
n=1

an
x2n−1

=
1

24x
− 37

5760x3
+

10313

2903040x5
− 5509121

1393459200x7

+
2709398569

367873228800x9
− 499769010050743

24103053950976000x11
+ · · · (4.7)

as x→∞.
Theorem 6 transforms the asymptotic expansion (4.7) into a continued fraction of the form

(4.8).

Theorem 6. For x→∞, it is asserted that

eψ(x+ 1
2) − x ≈ a1

x+
b1

x+
c1

x+
d1

x+
. . .

, (4.8)

where

a1 =
1

24
, b1 =

37

240
, c1 =

74381

186480
, d1 =

2153427637

2774113776
, · · · .

Proof. Let the function A(x) be given by

A(x) = eψ(x+ 1
2) − x.

It follows from (4.4) that

A(x) ∼
∞∑
j=1

aj
x2j−1

(x→∞), (4.9)

where the coefficients aj (j ∈ N) are given in (4.6). By Remark 2, the asymptotic expansion
(4.9) can be transformed into the continued-fraction approximation of the form

A(x) ≈ a1

x+
b1

x+
c1

x+
d1

x+
. . .

x→∞, (4.10)
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where the constants in the right-hand side can be determined using the system (2.26).
We see from (4.7) that

a1 =
1

24
, a2 = − 37

5760x
, a3 =

10313

2903040
, a4 = − 5509121

1393459200
, a5 =

2709398569

367873228800
, · · · .

We obtain from the first recurrence relation in (2.26) that

b1 = −a2
a1

=
37

240
,

b2 = −a3 + a2b1
a1

= − 74381

1209600
,

b3 = −a4 + a2b2 + a3b1
a1

=
499469

6912000
,

b4 = −a5 + a2b3 + a3b2 + a4b1
a1

= − 2345759788879

16094453760000
, · · · .

Moreover, from the second recurrence relation in (2.26), we get

c1 = −b2
b1

=
74381

186480
,

c2 = −b3 + b2c1
b1

= −2153427637

6954958080
, · · · .

Continuing the above process, we have

d1 = −c2
c1

=
2153427637

2774113776
, · · · .

We thus have completed the proof of Theorem 6.

As x→∞, the equation (4.8) can be written as follows:

ψ

(
x+

1

2

)
≈ ln


x+

1
24

x+
37
240

x+
74381
186480

x+
2153427637
2774113776

x+
. . .


. (4.11)
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Now, upon setting x = n+ 1
2 in (4.11), we find for n→∞ that

γ ≈ Hn − ln


n+

1

2
+

1
24

n+ 1
2 +

37
240

n+ 1
2 +

74381
186480

n+ 1
2 +

2153427637
2774113776

n+ 1
2 +

. . .


. (4.12)

By changing the logarithmic term in (1.2), we are going now to derive a higher-order estimate
for the Euler-Mascheroni constant γ. Indeed, if we let

Un = Hn − ln

n+
1

2
+

1
24

n+ 1
2 +

37
240

n+ 1
2

 , (4.13)

by using the Maple software, we obtain

Un − γ =
74381

29030400n6
+O

(
1

n7

)
(n→∞). (4.14)

Motivated by (4.14), we establish Theorem 7 below, which provides the higher-order esti-
mate for the Euler-Mascheroni constant γ. Remarkably, the convergence of the sequence Un to
γ is faster than that of the sequence Yn defined by (1.8).

Theorem 7. For n = 1, we have

74381

29030400(n+ 63
100)6

< Un − γ <
74381

29030400(n+ 1
2)6

. (4.15)

Proof. In order to prove (4.15), it suffices to show that

f(n) > 0 and g(n) < 0 (n ∈ N),

where

f(x) = ψ(x+ 1)− ln

x+
1

2
+

1
24

x+ 1
2 +

37
240

x+ 1
2

− 74381

29030400(n+ 63
100)6
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and

g(x) = ψ(x+ 1)− ln

x+
1

2
+

1
24

x+ 1
2 +

37
240

x+ 1
2

− 74381

29030400(n+ 1
2)6

.

Differentiating f(x) and using the right-hand side of (1.18), we have

f ′(x) = ψ′(x+ 1)− 2(57600x4 + 115200x3 + 101760x2 + 44160x+ 9179)

(240x2 + 240x+ 97)(480x3 + 720x2 + 454x+ 107)
+

74381

4838400(x+ 63
100)7

<
1

x
− 1

2x2
+

1

6x3
− 1

30x5
+

1

42x7
− 1

30x9
+

5

66x11

− 2(57600x4 + 115200x3 + 101760x2 + 44160x+ 9179)

(240x2 + 240x+ 97)(480x3 + 720x2 + 454x+ 107)
+

74381

4838400(x+ 63
100)7

= − f1(x− 3)

2970x11(100x+ 63)7(240x2 + 240x+ 97)(480x3 + 720x2 + 454x+ 107)
,

where

f1(x) = 2595290749847364886436366082 + 20099909043227097376167706083x

+ 57640582879801692383134513530x2 + 93299887267720070931978816744x3

+ 99888564914785863082055344320x4 + 76518511193633369306361441372x5

+ 43795552166475427284343650801x6 + 19181471436764520289478294094x7

+ 6501543576796264038230012670x8 + 1708061605083425665456126695x9

+ 345203867549102161486735500x10 + 52716866090761185950050000x11

+ 5888228135878079600000000x12 + 454068335914132500000000x13

+ 21613250671650000000000x14 + 478641735000000000000x15.

Hence, clearly, f ′(x) < 0 for x = 3, and we have

f(x) > lim
t→∞

f(t) = 0 (x = 3).

Direct computations yield

f(1) = 0.00000006339 · · · and f(2) = 0.0000007538 · · · .

Consequently, the inequality f(n) > 0 holds true for all n ∈ N.
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Next, upon differentiating g(x) and using the left-hand side of (1.18), we have

g′(x) = ψ′(x+ 1)− 2(57600x4 + 115200x3 + 101760x2 + 44160x+ 9179)

(240x2 + 240x+ 97)(480x3 + 720x2 + 454x+ 107)
+

74381

4838400(x+ 1
2)7

>
1

x
− 1

2x2
+

1

6x3
− 1

30x5
+

1

42x7
− 1

30x9

− 2(57600x4 + 115200x3 + 101760x2 + 44160x+ 9179)

(240x2 + 240x+ 97)(480x3 + 720x2 + 454x+ 107)
+

74381

4838400(x+ 1
2)7

=
g1(x− 3)

37800x9(2x+ 1)6(480x3 + 720x2 + 454x+ 107)(240x2 + 240x+ 97)
,

where

g1(x) = 83188275652737 + 2081335933362051x+ 5696424067987728x2

+ 7331238869573304x3 + 5659377310564002x4 + 2882512211350014x5

+ 1009870638085332x6 + 246216780083736x7 + 41230462609413x8

+ 4537072471519x9 + 296215637760x10 + 8712224640x11.

Hence, the inequality g′(x) > 0 for x = 3, and we have

g(x) < lim
t→∞

g(t) = 0 (x = 3).

Direct computations would yield

g(1) = −0.0000882 · · · and g(2) = −0.000001998 · · · .

Hence, clearly, the inequality g(n) < 0 holds true for all n ∈ N. The proof of Theorem 7 is thus
completed.

Remark 5. For n ∈ N, the following higher-order approximation holds true:

2913008718640511

1149236702517657600(n+ 4
5)10

< In − γ <
2913008718640511

1149236702517657600(n+ 1
2)10

, (4.16)

where

In = Hn − ln


n+

1

2
+

1
24

n+ 1
2 +

37
240

n+ 1
2 +

74381
186480

n+ 1
2 +

2153427637
2774113776

n+ 1
2


. (4.17)
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Following the same method as was used in the proof of Theorem 7, we can prove (4.16). Here
we omit the proof.

5 Concluding Remarks and Open Problems

In our present investigation, we have provided a potentially useful method in order to construct
a continued-fraction approximation based upon a given asymptotic expansion. As applications
of the method which we have developed here, we have successfully established a number of
continued-fraction approximations for the gamma and the digamma (or psi) functions.

We choose to conclude our paper by presenting some closely-related open problems.

I. The Alzer-Martins Inequalities. It is known, for r > 0 and n ∈ N, that

n

n+ 1
<


1
n

n∑
i=1

ir

1
n+1

n+1∑
i=1

ir


1/r

<
n
√
n!

n+1
√

(n+ 1)!
. (5.1)

(I.1) In the year 1988, while investigating a problem on Lorentz sequence spaces, Martins [22]
published the right-hand inequality in (5.1), namely,

1
n

n∑
i=1

ir

1
n+1

n+1∑
i=1

ir


1
r

<
n
√
n!

n+1
√

(n+ 1)!
(r > 0) (Martins inequality).

(I.2) The left-hand inequality in (5.1) was proved in 1993 by Alzer [3], namely,

n

n+ 1
<


1
n

n∑
i=1

ir

1
n+1

n+1∑
i=1

ir


1
r

(r > 0) (Alzer inequality).

(I.3) In the year 1994, Alzer [4] showed that, if r < 0, the Martins inequality is reversed, that is,
1
n

n∑
i=1

ir

1
n+1

n+1∑
i=1

ir


1
r

>
n
√
n!

n+1
√

(n+ 1)!
(r < 0) (Reversed Martins inequality).
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(I.4) In the year 2005, Chen and Qi [11] proved that the Alzer inequality is valid for all real
numbers r, that is,

n

n+ 1
<


1
n

n∑
i=1

ir

1
n+1

n+1∑
i=1

ir


1
r

(r ∈ R \ {0}) (Extended Alzer inequality).

We note here that

lim
r→0


1
n

n∑
i=1

ir

1
n+1

n+1∑
i=1

ir


1
r

=
n
√
n!

n+1
√

(n+ 1)!
.

The inequality (5.1) has indeed attracted much interest of from many mathematicians and
has motivated a large number of research papers concerning its new proofs as well as its various
extensions, generalizations and improvements. See also [2] for some historical notes.

The Chen-Qi Conjecture. Chen and Qi [11] posed the following conjecture:

For any given natural number n, the function f(r) given by

f(r) =



 1
n

n∑
i=1

ir

1
n+1

n+1∑
i=1

ir


1
r

(r 6= 0)

n√
n!

n+1
√

(n+1)!
(r = 0)

is strictly decreasing on (−∞,∞).

Remark 6. If the Chen-Qi conjecture can be proved, then we obtain a unified treatment of the
results (I.1) to (I.4).

Upon differentiation, we get

r2
f ′(r)

f(r)
= xn+1 − xn,

where

xn = ln

 1

n

n∑
j=1

jr

−
n∑
j=1

jr ln(jr)

n∑
j=1

jr
. (5.2)
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Thus, in order to prove the Chen-Qi conjecture (that is, f ′(r) < 0), it suffices to show the fol-
lowing Open Problem.

Open Problem 2. Prove that, for any given r ∈ R, the sequence (xn), defined by (5.2), is strictly
decreasing.

II. Infinite Product Formulas. We begin by recalling, among several useful equivalent forms
(see [30, Section 1.1]), the following familiar Weierstrass canonical product form of the Gamma
function Γ(z) (see, for example, [1, p. 255, Entry (6.1.3)]; see also [30, p. 1, Eq. (2)]):

1

Γ(z)
= zeγz

∞∏
n=1

{
e−

z
n

(
1 +

z

n

)}
, (5.3)

where γ denotes the Euler-Mascheroni constant.
In the year 2013, Chen and Choi [7] proved the following theorem.

Theorem 8 (see [7]). Let

A(p, q) =
∞∏
j=1

{
e
− p

j

(
1 +

p

j
+

q

j2

)}
(p, q ∈ C; <(p) > 0) . (5.4)

Then

A(p, q) =
e−pγ

Γ
(

1 + 1
2p−

1
2

√
p2 − 4q

)
Γ
(

1 + 1
2p+ 1

2

√
p2 − 4q

) (p, q ∈ C) . (5.5)

Remark 7. Upon setting q = 0 and replacing p by z in (5.5), we get

A(z, 0) =

∞∏
j=1

{
e
− z

j

(
1 +

z

j

)}
=

e−zγ

Γ(z + 1)
. (5.6)

which, in view of the following recurrence relation:

Γ(z + 1) = zΓ(z),

is seen to be equivalent to the Weierstrass canonical product form (5.3) of the Gamma func-
tion. Obviously, therefore, the Choi-Srivastava product formula (5.5) can be looked upon as a
generalization of the Weierstrass canonical product form (5.3) of the Gamma function.

In light of the well-known Γ-function integral given by

Γ(z) =

∫ ∞
0

tz−1 e−t dt
(
<(z) > 0

)
,

we propose the following Open Problem.

Open Problem 3. Find an explicit integral expression for A(p, q) or 1
A(p,q) , where A(p, q) is

given by (5.4).
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