OPERATOR SCHUR CONVEXITY AND SOME INTEGRAL
INEQUALITIES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. A continuous function f : I x I — R is called operator Schur
convez, if f is symmetric, namely f (z,y) = f (y,x) for all z, y € I and
f(EA+ (A —1) B,tB+(1—1) A) < f (A, B)

in the operator order, for all (A, B) € SA; (H)xSA; (H) and t € [0,1], where
SAj (H) is the convex set of all selfadjoint operators on Hilbert space H with
spectra in I.

In this paper we investigate the main properties of such functions, establish
some integral inequalities of Hermite-Hadamard, Cebysev and Griiss’ type and
give some general classes of examples of operator Schur convex functions.

1. INTRODUCTION

For any z = (21, ...,,) € R", let x) > ... > 2},) denote the components of x in
decreasing order, and let | = (aj[l], ...,x[n]) denote the decreasing rearrangement
of z. For x, y € R™, © < y if, by definition,

S g <N vy k=1,n - 1

2oim1 Tl = 2ima Yl
When x < y, x is said to be majorized by y (y majorizes x). This notation and
terminology was introduced by Hardy, Littlewood and Pdlya in 1934.
Functions that preserve the ordering of majorization are said to be Schur-convex,
[19, p.80]. A real-valued function ¢ defined on a set 4 C R™ is said to be Schur-
convex on A if

(L1) z<yon A= 6(x) < o(y).

If, in addition, ¢ () < ¢ (y) whenever & < y but z is not a permutation of y, then
¢ is said to be strictly Schur-conver on A. If A =R"™, then ¢ is simply said to be
Schur-convex or strictly Schur-convex.
For fundamental properties of Schur convexity see the monograph [19] and the
references therein. For some recent results, see [5]-[11], [13], [20] and [22]-[24].
The following result is known in the literature as Schur-Ostrowski theorem [19,
p. 84]:

Theorem 1. Let I C R be an open interval and let ¢ : I™ — R be continuously
differentiable. Necessary and sufficient conditions for ¢ to be Schur-convexr on I™
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are
(1.2) ¢ is symmetric on 1",
and for all i # j, with i, j € {1,...,n},

(1.3) (zi — 25) [8;51(32) - 8;2(32)} >0 forall z € I,
i j

where ;—i denotes the partial derivative of ¢ with respect to its k-th argument.

Let A C R™ be a set with the following properties:

(i) A is symmetric in the sense that x € A = zII € A for all permutations II of
the coordinates.

(ii) A is convex and has a nonempty interior.

We have the following result, [19, p. 85].

Theorem 2. If ¢ is continuously differentiable on the interior of A and continuous
on A, then necessary and sufficient conditions for ¢ to be Schur-convex on A are

(1.4) ¢ is symmetric on A
and
(1.5) (21 — 22) {8;;(?) - aggi)] >0 for all z € A.

Another interesting characterization of Schur convex functions ¢ on A was ob-
tained by C. Stepniak in [24]:

Theorem 3. Let ¢ be any function defined on a symmetric convex set A in R™.
Then the function ¢ is Schur convex on A if and only if

(1.6) O (X1, ey Tiy oy Ty oy T) = G (X1, ooy Ty ey Ty vy Ty
for all (z1,....,xz,) €A and 1 < i< j<n and
(1.7) oAz + (1 =N, Axa+ (1 =N 1,23, ...,20) < P (21, ..., 2n)
for all (z1,...,xz5) € A and for all X € (0,1),
It is well known that any symmetric convex function defined on a symmetric

convex set A is Schur convex, [19, p. 97]. If the function ¢ : A — R is symmetric
and quasi-convex, namely

¢ (au+ (1 — a)v) <max{¢(u),¢(v)}

for all @ € [0,1] and u, v € A, a symmetric convex set, then ¢ is Schur convex on
A [19, p. 98].

In order to extend the above concept to continuous functions of selfadjoint op-
erators on complex Hilbert space we need some preparations as follow.

A real valued continuous function f on an interval [ is said to be operator convex
(operator concave) on I if

(1.8) FA=XNA+AB) < (2)(1-A)f(A)+Af(B)

in the operator order, for all A € [0,1] and for every selfadjoint operator A and B
on a Hilbert space H whose spectra are contained in I. Notice that a function f is
operator concave if — f is operator convex.
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A real valued continuous function f on an interval I is said to be operator
monotone if it is monotone with respect to the operator order, i.e., A < B with
Sp(A),Sp(B) C I imply f(A) < f(B).

For some fundamental results on operator convex (operator concave) and oper-
ator monotone functions, see [14] and the references therein.

As examples of such functions, we note that f (¢) =t" is operator monotone on
[0,00) if and only if 0 < r < 1. The function f (t) = t" is operator convex on (0, c0)
if either 1 < r <2 or —1 < r < 0 and is operator concave on (0,00) if 0 < r < 1.
The logarithmic function f(¢) = Int is operator monotone and operator concave
on (0,00). The entropy function f (t) = —tInt is operator concave on (0,00). The
exponential function f () = e’ is neither operator convex nor operator monotone.
For recent inequalities for operator convex functions see [1], [3], [6], [7], [8], [10]-[18]
and [25]-[29].

Let Iy,..., Ix be intervals from R and let f : I; x ... Xx I, — R be an essentially
bounded real function defined on the product of the intervals. Let A = (A4, ..., A,)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces Hi, ..., Hi such that
the spectrum of A; is contained in I; for ¢ = 1, ..., k. We say that such a k-tuple is
in the domain of f. If

A; :/ MNE; (dN;)
I

i

is the spectral resolution of A; for i = 1,..., k; by following [2] we define
(1.9)  f(A) = [ (A1, An) =/ M) By (dA) @ ... @ B (dAg)
I X... X I

as a bounded selfadjoint operator on Hy ® ... ® Hy.
The above function f : Iy x ... X I, — R is said to be operator convex, if the
operator inequality

(1.10) F((1=a)A+aB) < (1—a) f (A) +af (B)

for all a € [0,1], for any Hilbert spaces Hi, ..., Hy, and any k-tuples of of selfadjoint
operators A = (44,...,A,), B = (By,...,B,) on H; ® ... ® Hy, contained in the
domain of f. The definition is meaningful since also the spectrum of a4; +(1—«)B;
is contained in the interval I; for each i =1, ..., k.

In the following we restrict ourself to the case k = 1, Iy = I = [ and H; =
H; = H. The operator convexity of f: I x I — R in this case means, for instance,

(111) f ((1 - Oé) Al + OzBl7 (1 - a) A2 + C{Bg) S (1 - Oé) f (Al, Ag) + af (Bl, BQ)
or, equivalently,
(112)  f((1—a)(A1,A2) +a (B, B2)) < (1 —a) f (A1, A2) + of (By, B2)

for all selfadjoint operators Ay, As, By, Bs with spectra in I and for all a € [0,1].

In this paper we introduce the concept of operator Schur conver functions, in-
vestigate their main properties, establish some integral inequalities of Hermite-
Hadamard, Cebysev and Griiss’ type and give some general classes of examples of
such functions.
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2. OPERATOR SCHUR CONVEX FUNCTIONS

For I an interval, we consider the set SA; (H) of all selfadjoint operators with
spectra in I. SA; (H) is a convex set in B(H) since for A, B selfadjoints with
Sp(4), Sp(B) C I, «A+ BB is selfadjoint with Sp (A + 8B) C I, where a, 8 > 0
and a + § = 1. Motivated by the Stepniak’s result for functions of real variables,
we can introduce the following concept:

Definition 1. We say that the function f : I x I — R s called operator Schur
convez, if f is symmetric, namely f (x,y) = f (y,x) for all x, y € I and

FUA+ (1 —t)B,tB+(1—1t)A) < f(A,B)

or, equivalently,
f(t(A’B> + (1 - t) (BvA» < f(A’B)

in the operator order, for all (A,B) € SA;(H) x SA;(H) and t € [0,1]. The
function f is called operator Schur concave if —f is operator Schur convex.

For (A,B) € SA; (H) x SA; (H), let us define the following auxiliary function
¢a,p) 1 [0,1] = SA(H @ H), the set of all selfadjoint operators on H ® H, by

(2.1) ¢raB) () =f(t(A B)+(1-1t)(B,A))
= f(tA+ (1 —t)B,tB+ (1 —1t) A).

A function f : J — SA(K) defined of an interval of real numbers J with self
adjoint operator values on a Hilbert space K is called operator monotone increasing
on J if

f () < f(s) in the operator order

for all s, t € J with ¢t < s.
The following characterization of operator Schur convexity holds:

Theorem 4. Let f : I x I — R be a continuous symmetric function on I x I.
Then f is operator Schur conver on I x I if and only if for all arbitrarily fized
(A, B) € SA; (H) xS Ay (H) the function @y 4 py is operator monotone decreasing
on [0,1/2), operator monotone increasing on (1/2,1], and ¢; 4 p) has a global
minimum at 1/2 in the operator order.

Proof. Assume that f is operator Schur convex on I x I. Then for all (C,D) €
SA; (H) x SA; (H) and t € [0, 1] we have

(2.2) fEC,D)+(1-1)(D,C)) < f(C,D).

Let (A, B) € SA; (H)xSA; (H) and for 0 < r < s < £ and put C = rA+(1—r) B,

D =rB+(1-r)Aand t = =-. Then (C,D) = r(A,B) + (1—-7)(B,A) ¢

SA;(H) x SA; (H), which is a convex set. By (2.2) we have

(23)  epap () =f((AB)+1-r)(B A)=/f(CD)

> f (15_2’; (C,D) + (1 - 1“;;) (D,C)) = 5.
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Observe that

e+ (1- 755 ) 0.0
Ty [P(AB) + (1= 7) (B, A)

1—s—2r—+2rs s —2rs
= 1_27,>(A73)+(1 )(3714)

=(1-3)(A4,B)+s(B,A).
Then
B=rf((1=s5)(A B)+s(B,A) =¢fap)(s)
and by (2.3) we get that v, 4 ) (1) > @f ap) (s) for 0 <r <s< 1, which shows

that the function ¢y 4 p) is operator monotone decreasing on [0,1/2).
Observe that, by the symmetry of f on SA; (H) x SA; (H), we have

Prap) (11— )=f((1—t) (A,B) +t(B,A))
F(A—t)A+tB,(1—t)B+tA)
F(A—t)B+1tA,(1—t)A+1tB)
f@(AB)+(1-1)(B,A4) = ¢s ) @)

for all t € [0,1].
This shows that the function ¢4 4 py is also operator monotone increasing on

(1/2,1].
From (2.2) we get for t = 1 that
C+ D C + D
! 2

for all (C,D) € SA;(H) x SA;(H). If (

take C =tA+(1—¢)B, D =tB+ (1—-1) € [0,1] then (C,D) = t(A,B) +
(1—1t)(B,A) € SA; (H)xSA[ (H), 42 = 438 and by (2.4) we get ¢ (a,p) (1/2) <
¢r.a,p) (t) for all ¢ € [0,1], showing that cpf7(A7B) has a global minimum at 1/2 in
the operator order.

Now, for fixed (4, B) € SA; (H) xSA; (H) , assume that the function ¢ 4 p) is
operator monotone decreasing on [0, 1/2), operator monotone increasing on (1/2, 1],
and has a global minimum at 1/2 in the operator order.

Then for ¢ € [0,1/2) we have

(A, B)+ (1 =1)(B,A)) = ¢fan) (1) <¢fap) (0)=f(B A) = f(4 B)
and for t € (1/2,1] we have
f(AB)+ (1 —1t)(B,A) = v ap) ) <¢srap (1)=f(ADB).

(2.4)

f(C,D)

A,B ) € SA;(H) x SA;(H) and we
A
A
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Therefore, for all ¢ € [0,1] we have ¢y (4 p) (t) < f (A, B), which shows that f is
operator Schur convex on SA; (H) x SA; (H). O

We have the following integral inequality in the operator order:

Theorem 5. Assume that the function f : I x I — R is operator Schur convex
on I x I . Then for any Lebesque integrable function p : [0,1] — [0,00) with
fol p(t)dt =1 we have

(2.5) f<A—;B,A;B>dt</Olf(tA+(1—t)B,tB+(1—t)A)p(t)dt

< f(A,B)
for all (A, B) € SA; (H) x SA; (H).

In particular, we have
A+B A+B !
(2.6) f( 3,21 )g/f(tA—i—(l—t)B,tB—l—(l—t)A)dtgf(A,B)
0

for all (A, B) € SA; (H) x SA; (H).

Proof. Using Theorem 4 we have
f <A +B A+ B

2 72
for all (A,B) € SA;(H) x SA;(H) and t € [0,1].

If we multiply this inequality by p (¢) > 0 and integrate on [0, 1] we deduce the
desired result (2.5). O

)< AR+ -0 @A) £ 7(4,5)

For scalar inequalities of Hermite-Hadamard type see the monograph online [12]
and the recent survey paper [9].
If some monotonicity information is available for the function p we also have:

Theorem 6. Assume that the function f: I x I — R is operator Schur convezx on
IxI. Ifp:[0,1] — R is symmetric towards 1/2, namely p (1 —t) = p(t) for all
t € [0,1] and monotonic decreasing (increasing) on [0,1/2], then

(2.7) /Olf(tA—i—(1—t)B,tB+(1—t)A)p(t)dt

> (g)/olp(t)dt/olf(tAJr(lt)B,tB+(1t)A)dt.

Proof. Let (A,B) € SA; (H) x SA; (H). Since the functions ¢y 4 ) and p are
symmetric on [0, 1], then

1/2

/Of(t(A,B)+(1—t)(B,A))p(t)dt:2 Crean sa-nmapna.

Let z € H. Then the function ¢y 4 p) . (t) : [0,1] — R defined by
rap) )= <‘Pf,(A,B) (t) 1"750>

where (-,-) is the inner product on H, is monotone decreasing as a real valued
function on [0,1/2].
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Assume that p is monotone decreasing on [0,1/2], then by Cebysev’s inequality
for synchronous functions h, g : [a,b] — R, namely

b b b
bia/a h(t)g(t)dtzbia/a h(t)dtbia/a g () dt,

we have

1/2
(2.8) 2/0 (F (£(A,B) + (1— 1) (B, A)) 2, 2) p (£) dt

1/2 1/2
22/0 (f(t(A,B)+(17t)(B,A))x,a:>dt-2/0 p(t)dt

and since, by symmetry,

1/2
2/ (f (t(AB) + (1— 1) (B, A) , z) d
0

=/0 (f (A, B) + (1— ) (B, A)) 2, 2) dt

1/2 1
2/ p(t)dt:/ p(t)dt,
0 0
hence by (2.8) we get

<(/ f(t(AB) +(1=1) (B, A)p(t) dt) ”>

> <</01p(t)dt/01f(t(A,B)+(1—t)(B,A))dt) a:a:>

which is equivalent to the desired result (2.7). O

and

We can prove the following refinement of (2.5):
Corollary 1. Assume that the function f: I x I — R is operator Schur convex on
Ix I andp:[0,1] — R is symmetric towards 1/2 with folp (t) =1.
(i) If p is monotone decreasing on [0,1/2], then

f A+B A+B
2 72

(2.9) )g/Olf(tA+(1—t)B,tB+(1—t)A)dt

§/lf(tA-l-(l—t)B,tB-i-(1—t)A)p(t)dt
0
< f(A,B)

for all (A,B) € SA; (H) x SA; (H).
(ii) If p is monotone increasing on [0,1/2], then

(2.10) f(A;B7A;B> </()1f(tA+(1—t)B,tB+(l—t)A)p(t)dt

</1f(tA+(1—t)B,tB+(1—t)A)dt
0

< f(4,B)
for all (A,B) € SA; (H) x SA; (H).
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Proof. (i). From (2.7) we get

/ FUA+(1=t) BB+ (1— 1) A)p(t) dt

fo
2/ f(A+ (1 —t)B,tB+ (1 —t)A)dt
0

and by (2.5) and (2.6) we get the desired result (2.9).

(ii). The proof goes in a similar way. [
Remark 1. If we consider the weight p (t) =4 |t — 7| then fo t)dt =1 and by
(2.9) we get

A+B A+B !
(2.11) f( A ) g/ FUA+ Q=) BB+ (1—1) A)dt
0
! 1
34/ f(tAJr(lt)B,tBJr(lt)A)‘tQ‘dt
0

< f(4,B)

for any function f: I x I — R that is operator Schur convex and for all (A, B) €
SA;(H)x SA; (H).

If we consider the weight p (t) = 6t (1 —t), then fo t)dt =1 and by (2.10) we
get

A+B A+B
2 72

(2.12) f( )g/lf(tAJr(lt)B,tB+(1t)A)dt
0

§6/1f(tA+(1t)B,tB+(1t)A)t(lt)dt
0
< f(A,B)

for any function f : I x I — R that is operator Schur convex and for all (A, B) €
S.A[ (H) X S.A[ (H)

We also have:
Theorem 7. Assume that the function f: I x I — R is operator Schur convezx on

Ix I andp:[0,1] — R is symmetric towards 1/2.
If p:]0,1] — R is monotonic decreasing on [0,1/2], then

(2.13) Og/Olf(tA+(1—t)B,tB+(1—t)A)p(t)dt
1 1
—/O p(t)dt/o FUA+ (1 —t)B,tB+ (1—t)A)dt
() b (252252)

for all (A,B) € SA; (H) x SA; (H).
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If p is monotonic increasing on [0,1/2], then
1 1
(2.14) 0§/ p(t)dt/ FUA+ (1 =) BB+ (1—1) A)dt
0 0
1
—/ FUA+(1—t)BtB+ (1—t)A)p(t)dt
0

< i [p (;) _p(o)] [f(A,B)—f(A;B7A42-B>}

for all (A,B) € SA; (H) x SA; (H).

Proof. Recall the famous Griiss’ inequality that provides an upper bound for the
distance between the integral mean of the product and the product of integral
means, more precisely

bia/abh(t)k(t)dt—b_la/abh(t)dtb_la/abk(t)dt

1
SZ(M—m)(N—n)

(2.15)

provided the functions h, k are measurable on [a, b] and —oco < m < h (t) < M < oo,
—00 < n < k(t) <N < oo, for almost every ¢t € [a,b]. The constant 1 is best
possible in (2.15).

Let x € H. Then the function ¢ 4 gy, (t) : [0,1] — R defined by

CraB) )= <80f,(A,B) (t)$7$>

is monotone decreasing as a real valued function on [0,1/2] and

A A
<f< JQFB’ +B>WC> < ¢raB)a(t) < (f(A B)z,z)

2

for all t € [0,1/2].
Assume that p is monotonic decreasing on [0,1/2]. Then

p(3) <r® <. 1D/,

Therefore, by (2.15) we have
1/2
0§2/ (ft(A,B)+(1—1t)(B,A)z,z)p(t)dt
0

1/2 1/2
—2/0 <f(t(A,B)+(1—t)(B,A))x,x)dt~2/0 p(t)dt

1/2
2/ F(E(AB) + (1— 1) (B, A)) 2, 2) p (t) dt
0

1/2 1/2
—2/0 (f(t(A7B)+(1—t)(B,A))x,m>dt-2/0 p(t)dt

< po-o(3)] [@aBian - (1 (52 557) e,
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namely
1
<</0 A +(1-1) (B7A))p(t)dt> x,x>
1
<</ Pt dt/ JAB)+1-1)(B, A))dt):c w>
0
! A+B A+ B
<y {por-s(5)][ram-r (252 557)] o)
for all € H, which is equivalent to the operator order inequality (2.13). 0

Remark 2. Assume that the function f : I x I — R is operator Schur convexr on
I x I. Then we have the inequalities

(2.16) Og/1f(tA+(1—t)B,tB+(1—t)A)'t—;’dt

—1/1f(tA+(1—t)B,tB+(1—t)A)dt
A+ B A+B>}

<glram s (2524

and
(2.17) é/ftA+(1—t)BtB+(1—t)A)dt
/ftA+(1—t)BtB—i—(l—t)A)t(l—t)dt
A+B A+ B
<ggram-r (50 450)

for all (A,B) € SA; (H) x SA; (H).

o:"—‘

In 1970, A. M. Ostrowski proved amongst others the following result

bla/abh(t)k:(t)dt—b1a/abh(t)dtbla/abk:(t)dt

(2.18)

(b—a) (M —m)[|K']|

oo\H

provided h is Lebesgue integrable on [a, b] and satisfying —co < m < h(t) < M <
oo while k : [a,b] — R is absolutely continuous and k' € L [a,b] . The constant §
in (2.18) is also sharp.

We can prove the following similar result as well:

Theorem 8. Assume that the function f: I x I — R is operator Schur convex on
IxI andp:[0,1] — R is symmetric towards 1/2 and absolutely continuous with

p € Loo[0,1].
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If p: [0,1] — R is monotonic decreasing on [0,1/2], then
1
(2.19) og/ FUA+ (1 —t) BB+ (1— ) A)p () dt
0
1 1
—/ p(t)dt/ FUA+ (1 —) BB+ (1—1) A) dt
0 0

A+B A+ B
2 72

< gl [ram - (

for all (A,B) € SA; (H) x SA; (H).

If p is monotonic increasing on [0,1/2], then

(2.20) Og/Olp(t)dt/olf(tA+(1—t)B,tB+(1—t)A)dt

_/1f(tA+(1_t)B,tB+(1—t)A)p(t)dt
0

A+B A+ B
2 72

<l |7 a8 -7 (

for all (A,B) € SA; (H) x SA; (H).

3. SOME EXAMPLES

Let f : I — R be a continuous function on the interval I. For ¢t € (0,1) we define
the auxiliary function f; : I x I — R by

fi(@,y) =S [ (A=t a+ty) + f (1 -t)y +ta)].

1
2

We observe that f; is continuous on I X I and symmetric, namely f; (z,y) = f; (y, )
for all (z,y) € I x I.

Proposition 1. Let f: I — R be a continuous function on the interval I. If f is
operator convex on I then f; is operator Schur convex on I x I.

Proof. Let (A,B) € SA; (H) x SA; (H), s €[0,1] and ¢ € (0,1). By the operator
convexity of f we have

fi(sA+(1—s)B,sB+(1—s)A)
:%f((l—t)[sA—|—(1—s)B]+t[sB+(1—s)A})

+%f((l—t)[sB+(1—3)A]+t[sA—|—(1—s)B])
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= SF G101 A+ B+ (1= 5)[(1 1) B +14))
ST ([ = ) B+t + (1= 5) [(1 1) A+ 1B)
< %sf((l—t)A—i—tB)—l—%(l—s)f((l—t)B+tA)
+%sf((1—t)B+tA)+%(l—s)f((l—t)A+tB)
:%[f((l—t)A+tB)+f((1—t)B+tA)]
— (4,3,

which shows that f; is operator Schur convex on I x I. O

For a Lebesgue integrable function p : [0,1] — [0,00) and f : I — R a continuous
function on the interval I we consider the function Fj, : I x I — R defined by

1
Fy (a,y) = / fo (o0 p () dt
1 1

— 5/0 [F((1=t)z+ty)+ f((1—t)y+tx)]p(t)dt

/0 P =tz +ty) () de,

where p (t) ;== 2 [p(t) + p(1 —t)], t € [0,1].
In particular, for p = 1 we put

Flz,y) :/0 FU(L—t) 7+ ty) dt

for (z,y) € I x I.
We have:

Proposition 2. Let f : I — R be a continuous function on the interval I and
p:[0,1] — [0,00) a Lebesgue integrable function on [0,1]. If f is operator convex
on I then F, is operator Schur convex on I X I. In particular, F' is operator Schur
convez.

Proof. Let (A,B) € SA; (H)xSA; (H), s € [0, 1] . By the operator Schur convexity
of f; we have

F,(sA+(1—s)B,sB+(1—s)A)
:/1ft(sA—|—(1—s)B,sB+(1—s)A)p(t)dt
0

g/lft(A,B)p(t)dt:Fp(A,B),
0

which proves that F}, is operator Schur convex. (]
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By making the change of variable u = (1 — t) xz + ty, t € [0,1] for x # y we have
du=(y—z)dt,t =22 1—t =22 and

31 Fp(zy) - o
mfff(u) [p(ﬁ)—i—p(y I)}du (x,y) eI x1I, x#vy,

z) [y pt)dt, (z,y)elxI, z=y.

In particular

(32) F(z,y)
yxfff w)du, (z,y) €I XI, z+#vy,
f(%(%@eIXLx=y
If we consider p,, (t) := ‘t — 3|, t€10,1], then
(3.3) Fp.. (xvy)

Gz e f ) Ju— 52 du, (z,y) €I x1, x#y,

if(x)v (Iay) GIXL =Y.
If we consider pg (t) :=t(1 —t), t € [0,1], then
(34)  Fp, (z,y)
(yjz)3 fff(u) (’LL—.’E) (y—u)du, (xay) elx Ia €z #y7

%f(x)a (x,y)GIxI, T =1q.

Therefore, if f is operator convex on I, then the functions defined by (3.1)-(3.4)
are operator Schur convex on I X I.

Since the function f (¢t) = t" is operator convex on (0, 00) if either 1 <r < 2 or
—1 < r <0 and is operator concave on (0,00) if 0 < r < 1, hence for p : [0,1] —
[0,00) a Lebesgue integrable function on [0, 1],

(3.5) Fpr (2,9)

Q(yrfy 7’|: (u

) 0 (32)
(z,y) € (0,00) x (0, )7w7éy,

" [y p () dt, (z,y) € (0,00) x (0,00), z =y,
is operator Schur convex on (0,00) X (0,00) if either 1 <r <2or —1 <r <0 and
is operator Schur concave on (0,00) x (0,00) if 0 <7 < 1.
In particular,

,lr+1_,l r+1
m7 (x,y) € (O?OO) X (0,00), m#y,
(3.6) Fr(z,y) =

2", (x,y) € (0,00) x (0,00), z =y.

is operator Schur convex on (0,00) x (0,00) if either 1 <7 <2 or —1 <7 <0 and
is operator Schur concave on (0,00) x (0,00) if 0 <7 < 1.
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For r = —1, if we put

BURE (2,y) € (0,00) x (0,00), T # y,

(3.7 F_q(z,y):=

then we conclude that F_; is operator Schur convex on (0,00) x (
Since f (t) = Int, t € (0,00) is operator concave, then for p : |

$—17 (m,y) € (0,00) x (0, OO)’ =Y,
,00) .

0
07 1] - [0700)7 a

Lebesgue integrable function on [0, 1],

(38) Fp,ln (xvy)

s [ | (322) +p (22) | nudu,
_ ) (z,y) € (0,00) x (0,00), = # v,

F@) [y p@)dt, (z,y) € (0,00) x (0,00), =y,

is operator Schur concave on (0,00) x (0,00) .
In particular, if we put

uhuzelnz (g y) € (0,00) x (0,00), = #3,

(3.9) By (z,y) =

lnz, (xay) € (0,00) X (0700)7 =Y,

then we conclude that Fy, is operator Schur concave on (0,00) % (0,00).

(1]
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