
OPERATOR SCHUR CONVEXITY AND SOME INTEGRAL
INEQUALITIES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. A continuous function f : I � I ! R is called operator Schur
convex, if f is symmetric, namely f (x; y) = f (y; x) for all x; y 2 I and

f (tA+ (1� t)B; tB + (1� t)A) � f (A;B)
in the operator order, for all (A;B) 2 SAI (H)�SAI (H) and t 2 [0; 1] ; where
SAI (H) is the convex set of all selfadjoint operators on Hilbert space H with
spectra in I:

In this paper we investigate the main properties of such functions, establish
some integral inequalities of Hermite-Hadamard, µCeby�ev and Grüss�type and
give some general classes of examples of operator Schur convex functions.

1. Introduction

For any x = (x1; :::; xn) 2 Rn, let x[1] � ::: � x[n] denote the components of x in
decreasing order, and let x# =

�
x[1]; :::; x[n]

�
denote the decreasing rearrangement

of x. For x; y 2 Rn, x � y if, by de�nition,8<:
Pk

i=1 x[i] �
Pk

i=1 y[i]; k = 1; :::; n� 1;Pn
i=1 x[i] =

Pn
i=1 y[i]:

When x � y, x is said to be majorized by y (y majorizes x). This notation and
terminology was introduced by Hardy, Littlewood and Pólya in 1934.
Functions that preserve the ordering of majorization are said to be Schur-convex,

[19, p.80]. A real-valued function � de�ned on a set A � Rn is said to be Schur-
convex on A if

(1.1) x � y on A ) � (x) � � (y) :
If, in addition, � (x) < � (y) whenever x � y but x is not a permutation of y, then
� is said to be strictly Schur-convex on A. If A = Rn, then � is simply said to be
Schur-convex or strictly Schur-convex.
For fundamental properties of Schur convexity see the monograph [19] and the

references therein. For some recent results, see [5]-[11], [13], [20] and [22]-[24].
The following result is known in the literature as Schur-Ostrowski theorem [19,

p. 84]:

Theorem 1. Let I � R be an open interval and let � : In ! R be continuously
di¤erentiable. Necessary and su¢ cient conditions for � to be Schur-convex on In
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are

(1.2) � is symmetric on In;

and for all i 6= j, with i; j 2 f1; :::; ng ;

(1.3) (zi � zj)
�
@�(z)

@xi
� @�(z)

@xj

�
� 0 for all z 2 In;

where @�
@xk

denotes the partial derivative of � with respect to its k-th argument.

Let A � Rn be a set with the following properties:
(i) A is symmetric in the sense that x 2 A ) x� 2 A for all permutations � of

the coordinates.
(ii) A is convex and has a nonempty interior.
We have the following result, [19, p. 85].

Theorem 2. If � is continuously di¤erentiable on the interior of A and continuous
on A, then necessary and su¢ cient conditions for � to be Schur-convex on A are

(1.4) � is symmetric on A
and

(1.5) (z1 � z2)
�
@�(z)

@x1
� @�(z)

@x2

�
� 0 for all z 2 A:

Another interesting characterization of Schur convex functions � on A was ob-
tained by C. St¾epniak in [24]:

Theorem 3. Let � be any function de�ned on a symmetric convex set A in Rn.
Then the function � is Schur convex on A if and only if

(1.6) � (x1; :::; xi; :::; xj ; :::; xn) = � (x1; :::; xj ; :::; xi; :::; xn)

for all (x1; :::; xn) 2 A and 1 � i < j � n and
(1.7) � (�x1 + (1� �)x2; �x2 + (1� �)x1; x3; :::; xn) � � (x1; :::; xn)
for all (x1; :::; xn) 2 A and for all � 2 (0; 1) ;

It is well known that any symmetric convex function de�ned on a symmetric
convex set A is Schur convex, [19, p. 97]. If the function � : A ! R is symmetric
and quasi-convex, namely

� (�u+ (1� �) v) � max f� (u) ; � (v)g
for all � 2 [0; 1] and u; v 2 A, a symmetric convex set, then � is Schur convex on
A [19, p. 98].
In order to extend the above concept to continuous functions of selfadjoint op-

erators on complex Hilbert space we need some preparations as follow.
A real valued continuous function f on an interval I is said to be operator convex

(operator concave) on I if

(1.8) f ((1� �)A+ �B) � (�) (1� �) f (A) + �f (B)
in the operator order, for all � 2 [0; 1] and for every selfadjoint operator A and B
on a Hilbert space H whose spectra are contained in I: Notice that a function f is
operator concave if �f is operator convex.
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A real valued continuous function f on an interval I is said to be operator
monotone if it is monotone with respect to the operator order, i.e., A � B with
Sp (A) ;Sp (B) � I imply f (A) � f (B) :
For some fundamental results on operator convex (operator concave) and oper-

ator monotone functions, see [14] and the references therein.
As examples of such functions, we note that f (t) = tr is operator monotone on

[0;1) if and only if 0 � r � 1: The function f (t) = tr is operator convex on (0;1)
if either 1 � r � 2 or �1 � r � 0 and is operator concave on (0;1) if 0 � r � 1:
The logarithmic function f (t) = ln t is operator monotone and operator concave
on (0;1): The entropy function f (t) = �t ln t is operator concave on (0;1): The
exponential function f (t) = et is neither operator convex nor operator monotone.
For recent inequalities for operator convex functions see [1], [3], [6], [7], [8], [10]-[18]
and [25]-[29].
Let I1; :::; Ik be intervals from R and let f : I1 � ::: � Ik ! R be an essentially

bounded real function de�ned on the product of the intervals. Let A = (A1; :::; An)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces H1; :::;Hk such that
the spectrum of Ai is contained in Ii for i = 1; :::; k: We say that such a k-tuple is
in the domain of f . If

Ai =

Z
Ii

�iEi (d�i)

is the spectral resolution of Ai for i = 1; :::; k; by following [2] we de�ne

(1.9) f (A) = f (A1; :::; An) =

Z
I1�:::�Ik

f (�1; :::; �1)E1 (d�1)
 :::
 Ek (d�k)

as a bounded selfadjoint operator on H1 
 :::
Hk:
The above function f : I1 � ::: � Ik ! R is said to be operator convex, if the

operator inequality

(1.10) f ((1� �)A+ �B) � (1� �) f (A) + �f (B)

for all � 2 [0; 1] ; for any Hilbert spaces H1; :::;Hk and any k-tuples of of selfadjoint
operators A = (A1; :::; An) ; B = (B1; :::; Bn) on H1 
 ::: 
 Hk contained in the
domain of f: The de�nition is meaningful since also the spectrum of �Ai +(1��)Bi
is contained in the interval Ii for each i = 1; :::; k:
In the following we restrict ourself to the case k = 1; I1 = I2 = I and H1 =

H1 = H: The operator convexity of f : I � I ! R in this case means, for instance,

(1.11) f ((1� �)A1 + �B1; (1� �)A2 + �B2) � (1� �) f (A1; A2) + �f (B1; B2)

or, equivalently,

(1.12) f ((1� �) (A1; A2) + � (B1; B2)) � (1� �) f (A1; A2) + �f (B1; B2)

for all selfadjoint operators A1; A2; B1; B2 with spectra in I and for all � 2 [0; 1] :
In this paper we introduce the concept of operator Schur convex functions, in-

vestigate their main properties, establish some integral inequalities of Hermite-
Hadamard, µCeby�ev and Grüss�type and give some general classes of examples of
such functions.
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2. Operator Schur Convex Functions

For I an interval, we consider the set SAI (H) of all selfadjoint operators with
spectra in I: SAI (H) is a convex set in B (H) since for A; B selfadjoints with
Sp (A) ; Sp (B) � I; �A+�B is selfadjoint with Sp (�A+ �B) � I; where �; � � 0
and � + � = 1: Motivated by the St¾epniak�s result for functions of real variables,
we can introduce the following concept:

De�nition 1. We say that the function f : I � I ! R is called operator Schur
convex, if f is symmetric, namely f (x; y) = f (y; x) for all x; y 2 I and

f (tA+ (1� t)B; tB + (1� t)A) � f (A;B)

or, equivalently,

f (t (A;B) + (1� t) (B;A)) � f (A;B)

in the operator order, for all (A;B) 2 SAI (H) � SAI (H) and t 2 [0; 1] : The
function f is called operator Schur concave if �f is operator Schur convex.

For (A;B) 2 SAI (H)� SAI (H) ; let us de�ne the following auxiliary function
'(A;B) : [0; 1]! SA (H 
H) ; the set of all selfadjoint operators on H 
H; by

'f;(A;B) (t) = f (t (A;B) + (1� t) (B;A))(2.1)

= f (tA+ (1� t)B; tB + (1� t)A) :

A function f : J ! SA (K) de�ned of an interval of real numbers J with self
adjoint operator values on a Hilbert space K is called operator monotone increasing
on J if

f (t) � f (s) in the operator order

for all s; t 2 J with t < s:
The following characterization of operator Schur convexity holds:

Theorem 4. Let f : I � I ! R be a continuous symmetric function on I � I.
Then f is operator Schur convex on I � I if and only if for all arbitrarily �xed
(A;B) 2 SAI (H)�SAI (H) the function 'f;(A;B) is operator monotone decreasing
on [0; 1=2), operator monotone increasing on (1=2; 1], and 'f;(A;B) has a global
minimum at 1=2 in the operator order.

Proof. Assume that f is operator Schur convex on I � I. Then for all (C;D) 2
SAI (H)� SAI (H) and t 2 [0; 1] we have

(2.2) f (t (C;D) + (1� t) (D;C)) � f (C;D) :

Let (A;B) 2 SAI (H)�SAI (H) and for 0 � r < s < 1
2 and put C = rA+(1� r)B;

D = rB + (1� r)A and t = s�r
1�2r : Then (C;D) = r (A;B) + (1� r) (B;A) 2

SAI (H)� SAI (H), which is a convex set. By (2.2) we have

'f;(A;B) (r) = f (r (A;B) + (1� r) (B;A)) = f (C;D)(2.3)

� f
�
s� r
1� 2r (C;D) +

�
1� s� r

1� 2r

�
(D;C)

�
=: �:
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Observe that

s� r
1� 2r (C;D) +

�
1� s� r

1� 2r

�
(D;C)

=
s� r
1� 2r [r (A;B) + (1� r) (B;A)]

+

�
1� r � s
1� 2r

�
[r (B;A) + (1� r) (A;B)]

=

��
s� r
1� 2r

�
r +

�
1� r � s
1� 2r

�
(1� r)

�
(A;B)

+

�
s� r
1� 2r (1� r) +

�
1� r � s
1� 2r

�
r

�
(B;A)

=

�
1� s� 2r + 2rs

1� 2r

�
(A;B) +

�
s� 2rs
1� 2r

�
(B;A)

= (1� s) (A;B) + s (B;A) :

Then
� = f ((1� s) (A;B) + s (B;A)) = 'f;(A;B) (s)

and by (2.3) we get that 'f;(A;B) (r) � 'f;(A;B) (s) for 0 � r < s < 1
2 ; which shows

that the function 'f;(A;B) is operator monotone decreasing on [0; 1=2):
Observe that, by the symmetry of f on SAI (H)� SAI (H) ; we have

'f;(A;B) (1� t) = f ((1� t) (A;B) + t (B;A))
= f ((1� t)A+ tB; (1� t)B + tA)
= f ((1� t)B + tA; (1� t)A+ tB)
= f (t (A;B) + (1� t) (B;A)) = 'f;(A;B) (t)

for all t 2 [0; 1] :
This shows that the function 'f;(A;B) is also operator monotone increasing on

(1=2; 1].
From (2.2) we get for t = 1

2 that

(2.4) f

�
C +D

2
;
C +D

2

�
� f (C;D)

for all (C;D) 2 SAI (H) � SAI (H) : If (A;B) 2 SAI (H) � SAI (H) and we
take C = tA + (1� t)B; D = tB + (1� t)A; t 2 [0; 1] then (C;D) = t (A;B) +
(1� t) (B;A) 2 SAI (H)�SAI (H) ; C+D2 = A+B

2 and by (2.4) we get 'f;(A;B) (1=2) �
'f;(A;B) (t) for all t 2 [0; 1] ; showing that 'f;(A;B) has a global minimum at 1=2 in
the operator order.
Now, for �xed (A;B) 2 SAI (H)�SAI (H) ; assume that the function 'f;(A;B) is

operator monotone decreasing on [0; 1=2), operator monotone increasing on (1=2; 1],
and has a global minimum at 1=2 in the operator order.
Then for t 2 [0; 1=2) we have

f (t (A;B) + (1� t) (B;A)) = 'f;(A;B) (t) � 'f;(A;B) (0) = f (B;A) = f (A;B)

and for t 2 (1=2; 1] we have

f (t (A;B) + (1� t) (B;A)) = 'f;(A;B) (t) � 'f;(A;B) (1) = f (A;B) :
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Therefore, for all t 2 [0; 1] we have 'f;(A;B) (t) � f (A;B) ; which shows that f is
operator Schur convex on SAI (H)� SAI (H) : �

We have the following integral inequality in the operator order:

Theorem 5. Assume that the function f : I � I ! R is operator Schur convex
on I � I . Then for any Lebesgue integrable function p : [0; 1] ! [0;1) withR 1
0
p (t) dt = 1 we have

f

�
A+B

2
;
A+B

2

�
dt �

Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) p (t) dt(2.5)

� f (A;B)

for all (A;B) 2 SAI (H)� SAI (H) :
In particular, we have

(2.6) f

�
A+B

2
;
A+B

2

�
�
Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) dt � f (A;B)

for all (A;B) 2 SAI (H)� SAI (H) :

Proof. Using Theorem 4 we have

f

�
A+B

2
;
A+B

2

�
� f (t (A;B) + (1� t) (B;A)) � f (A;B)

for all (A;B) 2 SAI (H)� SAI (H) and t 2 [0; 1] :
If we multiply this inequality by p (t) � 0 and integrate on [0; 1] we deduce the

desired result (2.5). �

For scalar inequalities of Hermite-Hadamard type see the monograph online [12]
and the recent survey paper [9].
If some monotonicity information is available for the function p we also have:

Theorem 6. Assume that the function f : I � I ! R is operator Schur convex on
I � I. If p : [0; 1] ! R is symmetric towards 1=2, namely p (1� t) = p (t) for all
t 2 [0; 1] and monotonic decreasing (increasing) on [0; 1=2] ; thenZ 1

0

f (tA+ (1� t)B; tB + (1� t)A) p (t) dt(2.7)

� (�)
Z 1

0

p (t) dt

Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) dt:

Proof. Let (A;B) 2 SAI (H) � SAI (H). Since the functions 'f;(A;B) and p are
symmetric on [0; 1] ; thenZ 1

0

f (t (A;B) + (1� t) (B;A)) p (t) dt = 2
Z 1=2

0

f (t (A;B) + (1� t) (B;A)) p (t) dt:

Let x 2 H: Then the function 'f;(A;B);x (t) : [0; 1]! R de�ned by

'f;(A;B);x (t) =
D
'f;(A;B) (t)x; x

E
where h�; �i is the inner product on H; is monotone decreasing as a real valued
function on [0; 1=2] :
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Assume that p is monotone decreasing on [0; 1=2] ; then by µCeby�ev�s inequality
for synchronous functions h; g : [a; b]! R, namely

1

b� a

Z b

a

h (t) g (t) dt � 1

b� a

Z b

a

h (t) dt
1

b� a

Z b

a

g (t) dt;

we have

2

Z 1=2

0

hf (t (A;B) + (1� t) (B;A))x; xi p (t) dt(2.8)

� 2
Z 1=2

0

hf (t (A;B) + (1� t) (B;A))x; xi dt � 2
Z 1=2

0

p (t) dt

and since, by symmetry,

2

Z 1=2

0

hf (t (A;B) + (1� t) (B;A))x; xi dt

=

Z 1

0

hf (t (A;B) + (1� t) (B;A))x; xi dt

and

2

Z 1=2

0

p (t) dt =

Z 1

0

p (t) dt;

hence by (2.8) we get��Z 1

0

f (t (A;B) + (1� t) (B;A)) p (t) dt
�
x; x

�
�
��Z 1

0

p (t) dt

Z 1

0

f (t (A;B) + (1� t) (B;A)) dt
�
x; x

�
;

which is equivalent to the desired result (2.7). �
We can prove the following re�nement of (2.5):

Corollary 1. Assume that the function f : I � I ! R is operator Schur convex on
I � I and p : [0; 1]! R is symmetric towards 1=2 with

R 1
0
p (t) = 1:

(i) If p is monotone decreasing on [0; 1=2] ; then

f

�
A+B

2
;
A+B

2

�
�
Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) dt(2.9)

�
Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) p (t) dt

� f (A;B)
for all (A;B) 2 SAI (H)� SAI (H) :

(ii) If p is monotone increasing on [0; 1=2] ; then

f

�
A+B

2
;
A+B

2

�
�
Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) p (t) dt(2.10)

�
Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) dt

� f (A;B)
for all (A;B) 2 SAI (H)� SAI (H) :



8 S. S. DRAGOMIR

Proof. (i). From (2.7) we get

1R 1
0
p (t) dt

Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) p (t) dt

�
Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) dt

and by (2.5) and (2.6) we get the desired result (2.9).
(ii). The proof goes in a similar way. �

Remark 1. If we consider the weight p (t) = 4
��t� 1

2

�� ; then R 1
0
p (t) dt = 1 and by

(2.9) we get

f

�
A+B

2
;
A+B

2

�
�
Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) dt(2.11)

� 4
Z 1

0

f (tA+ (1� t)B; tB + (1� t)A)
����t� 12

���� dt
� f (A;B)

for any function f : I � I ! R that is operator Schur convex and for all (A;B) 2
SAI (H)� SAI (H) :
If we consider the weight p (t) = 6t (1� t) ; then

R 1
0
p (t) dt = 1 and by (2.10) we

get

f

�
A+B

2
;
A+B

2

�
�
Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) dt(2.12)

� 6
Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) t (1� t) dt

� f (A;B)

for any function f : I � I ! R that is operator Schur convex and for all (A;B) 2
SAI (H)� SAI (H) :

We also have:

Theorem 7. Assume that the function f : I � I ! R is operator Schur convex on
I � I and p : [0; 1]! R is symmetric towards 1=2.
If p : [0; 1]! R is monotonic decreasing on [0; 1=2] ; then

0 �
Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) p (t) dt(2.13)

�
Z 1

0

p (t) dt

Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) dt

� 1

4

�
p (0)� p

�
1

2

���
f (A;B)� f

�
A+B

2
;
A+B

2

��
for all (A;B) 2 SAI (H)� SAI (H) :



OPERATOR SCHUR CONVEXITY 9

If p is monotonic increasing on [0; 1=2] ; then

0 �
Z 1

0

p (t) dt

Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) dt(2.14)

�
Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) p (t) dt

� 1

4

�
p

�
1

2

�
� p (0)

� �
f (A;B)� f

�
A+B

2
;
A+B

2

��
for all (A;B) 2 SAI (H)� SAI (H) :

Proof. Recall the famous Grüss� inequality that provides an upper bound for the
distance between the integral mean of the product and the product of integral
means, more precisely����� 1

b� a

Z b

a

h (t) k (t) dt� 1

b� a

Z b

a

h (t) dt
1

b� a

Z b

a

k (t) dt

�����(2.15)

� 1

4
(M �m) (N � n)

provided the functions h; k are measurable on [a; b] and �1 < m � h (t) �M <1;
�1 < n � k (t) � N < 1; for almost every t 2 [a; b] : The constant 1

4 is best
possible in (2.15).
Let x 2 H: Then the function 'f;(A;B);x (t) : [0; 1]! R de�ned by

'f;(A;B);x (t) =
D
'f;(A;B) (t)x; x

E
is monotone decreasing as a real valued function on [0; 1=2] and�

f

�
A+B

2
;
A+B

2

�
x; x

�
� 'f;(A;B);x (t) � hf (A;B)x; xi

for all t 2 [0; 1=2] :
Assume that p is monotonic decreasing on [0; 1=2] : Then

p

�
1

2

�
� p (t) � p (0) ; t 2 [0; 1=2] :

Therefore, by (2.15) we have

0 � 2
Z 1=2

0

hf (t (A;B) + (1� t) (B;A))x; xi p (t) dt

� 2
Z 1=2

0

hf (t (A;B) + (1� t) (B;A))x; xi dt � 2
Z 1=2

0

p (t) dt

=

�����2
Z 1=2

0

hf (t (A;B) + (1� t) (B;A))x; xi p (t) dt

�2
Z 1=2

0

hf (t (A;B) + (1� t) (B;A))x; xi dt � 2
Z 1=2

0

p (t) dt

�����
� 1

4

�
p (0)� p

�
1

2

���
hf (A;B)x; xi �

�
f

�
A+B

2
;
A+B

2

�
x; x

��
;
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namely

0 �
��Z 1

0

f (t (A;B) + (1� t) (B;A)) p (t) dt
�
x; x

�
�
��Z 1

0

p (t) dt

Z 1

0

f (t (A;B) + (1� t) (B;A)) dt
�
x; x

�
� 1

4

��
p (0)� p

�
1

2

���
f (A;B)� f

�
A+B

2
;
A+B

2

��
x; x

�
for all x 2 H; which is equivalent to the operator order inequality (2.13). �

Remark 2. Assume that the function f : I � I ! R is operator Schur convex on
I � I: Then we have the inequalities

0 �
Z 1

0

f (tA+ (1� t)B; tB + (1� t)A)
����t� 12

���� dt(2.16)

� 1
4

Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) dt

� 1

8

�
f (A;B)� f

�
A+B

2
;
A+B

2

��
and

0 � 1

6

Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) dt(2.17)

�
Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) t (1� t) dt

� 1

16

�
f (A;B)� f

�
A+B

2
;
A+B

2

��
for all (A;B) 2 SAI (H)� SAI (H) :

In 1970, A. M. Ostrowski proved amongst others the following result����� 1

b� a

Z b

a

h (t) k (t) dt� 1

b� a

Z b

a

h (t) dt
1

b� a

Z b

a

k (t) dt

�����(2.18)

� 1

8
(b� a) (M �m) kk0k1 ;

provided h is Lebesgue integrable on [a; b] and satisfying �1 < m � h (t) � M <
1 while k : [a; b]! R is absolutely continuous and k0 2 L1 [a; b] : The constant 1

8
in (2.18) is also sharp.
We can prove the following similar result as well:

Theorem 8. Assume that the function f : I � I ! R is operator Schur convex on
I � I and p : [0; 1] ! R is symmetric towards 1=2 and absolutely continuous with
p0 2 L1 [0; 1] :
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If p : [0; 1]! R is monotonic decreasing on [0; 1=2] ; then

0 �
Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) p (t) dt(2.19)

�
Z 1

0

p (t) dt

Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) dt

� 1

8
kp0k1 ;

�
f (A;B)� f

�
A+B

2
;
A+B

2

��

for all (A;B) 2 SAI (H)� SAI (H) :
If p is monotonic increasing on [0; 1=2] ; then

0 �
Z 1

0

p (t) dt

Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) dt(2.20)

�
Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) p (t) dt

� 1

8
kp0k1

�
f (A;B)� f

�
A+B

2
;
A+B

2

��

for all (A;B) 2 SAI (H)� SAI (H) :

3. Some Examples

Let f : I ! R be a continuous function on the interval I: For t 2 (0; 1) we de�ne
the auxiliary function ft : I � I ! R by

ft (x; y) :=
1

2
[f ((1� t)x+ ty) + f ((1� t) y + tx)] :

We observe that ft is continuous on I�I and symmetric, namely ft (x; y) = ft (y; x)
for all (x; y) 2 I � I:

Proposition 1. Let f : I ! R be a continuous function on the interval I: If f is
operator convex on I then ft is operator Schur convex on I � I:

Proof. Let (A;B) 2 SAI (H)� SAI (H) ; s 2 [0; 1] and t 2 (0; 1) : By the operator
convexity of f we have

ft (sA+ (1� s)B; sB + (1� s)A)

=
1

2
f ((1� t) [sA+ (1� s)B] + t [sB + (1� s)A])

+
1

2
f ((1� t) [sB + (1� s)A] + t [sA+ (1� s)B])
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=
1

2
f (s [(1� t)A+ tB] + (1� s) [(1� t)B + tA])

+
1

2
f (s [(1� t)B + tA] + (1� s) [(1� t)A+ tB])

� 1

2
sf ((1� t)A+ tB) + 1

2
(1� s) f ((1� t)B + tA)

+
1

2
sf ((1� t)B + tA) + 1

2
(1� s) f ((1� t)A+ tB)

=
1

2
[f ((1� t)A+ tB) + f ((1� t)B + tA)]

= ft (A;B) ;

which shows that ft is operator Schur convex on I � I: �

For a Lebesgue integrable function p : [0; 1]! [0;1) and f : I ! R a continuous
function on the interval I we consider the function Fp : I � I ! R de�ned by

Fp (x; y) :=

Z 1

0

ft (x; y) p (t) dt

=
1

2

Z 1

0

[f ((1� t)x+ ty) + f ((1� t) y + tx)] p (t) dt

=

Z 1

0

f ((1� t)x+ ty) �p (t) dt;

where �p (t) := 1
2 [p (t) + p (1� t)] ; t 2 [0; 1] :

In particular, for p � 1 we put

F (x; y) :=

Z 1

0

f ((1� t)x+ ty) dt

for (x; y) 2 I � I:
We have:

Proposition 2. Let f : I ! R be a continuous function on the interval I and
p : [0; 1] ! [0;1) a Lebesgue integrable function on [0; 1] : If f is operator convex
on I then Fp is operator Schur convex on I � I: In particular, F is operator Schur
convex.

Proof. Let (A;B) 2 SAI (H)�SAI (H) ; s 2 [0; 1] : By the operator Schur convexity
of ft we have

Fp (sA+ (1� s)B; sB + (1� s)A)

=

Z 1

0

ft (sA+ (1� s)B; sB + (1� s)A) p (t) dt

�
Z 1

0

ft (A;B) p (t) dt = Fp (A;B) ;

which proves that Fp is operator Schur convex. �
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By making the change of variable u = (1� t)x+ ty; t 2 [0; 1] for x 6= y we have
du = (y � x) dt; t = u�x

y�x ; 1� t =
y�u
y�x and

Fp (x; y)(3.1)

=

8><>:
1

2(y�x)
R y
x
f (u)

h
p
�
u�x
y�x

�
+ p

�
y�u
y�x

�i
du; (x; y) 2 I � I; x 6= y;

f (x)
R 1
0
p (t) dt; (x; y) 2 I � I; x = y:

In particular

F (x; y)(3.2)

=

8<:
1

y�x
R y
x
f (u) du; (x; y) 2 I � I; x 6= y;

f (x) ; (x; y) 2 I � I; x = y:

If we consider pm (t) :=
��t� 1

2

�� ; t 2 [0; 1] ; then
Fpm (x; y)(3.3)

=

8<:
1

(y�x)2
R y
x
f (u)

��u� x+y
2

�� du; (x; y) 2 I � I; x 6= y;
1
4f (x) ; (x; y) 2 I � I; x = y:

If we consider pg (t) := t (1� t) ; t 2 [0; 1] ; then
Fpg (x; y)(3.4)

=

8<:
1

(y�x)3
R y
x
f (u) (u� x) (y � u) du; (x; y) 2 I � I; x 6= y;

1
6f (x) ; (x; y) 2 I � I; x = y:

Therefore, if f is operator convex on I; then the functions de�ned by (3.1)-(3.4)
are operator Schur convex on I � I:
Since the function f (t) = tr is operator convex on (0;1) if either 1 � r � 2 or

�1 � r � 0 and is operator concave on (0;1) if 0 � r � 1; hence for p : [0; 1] !
[0;1) a Lebesgue integrable function on [0; 1] ;

Fp;r (x; y)(3.5)

:=

8>>><>>>:
1

2(y�x)
R y
x
ur
h
p
�
u�x
y�x

�
+ p

�
y�u
y�x

�i
du;

(x; y) 2 (0;1)� (0;1) ; x 6= y;

xr
R 1
0
p (t) dt; (x; y) 2 (0;1)� (0;1) ; x = y;

is operator Schur convex on (0;1)� (0;1) if either 1 � r � 2 or �1 � r � 0 and
is operator Schur concave on (0;1)� (0;1) if 0 � r � 1:
In particular,

(3.6) Fr (x; y) :=

8><>:
yr+1�yr+1
(r+1)(y�x) ; (x; y) 2 (0;1)� (0;1) ; x 6= y;

xr; (x; y) 2 (0;1)� (0;1) ; x = y:

is operator Schur convex on (0;1)� (0;1) if either 1 � r � 2 or �1 < r � 0 and
is operator Schur concave on (0;1)� (0;1) if 0 � r � 1:
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For r = �1; if we put

(3.7) F�1 (x; y) :=

8<:
ln y�ln x
y�x ; (x; y) 2 (0;1)� (0;1) ; x 6= y;

x�1; (x; y) 2 (0;1)� (0;1) ; x = y;
then we conclude that F�1 is operator Schur convex on (0;1)� (0;1) :
Since f (t) = ln t; t 2 (0;1) is operator concave, then for p : [0; 1] ! [0;1); a

Lebesgue integrable function on [0; 1] ;

Fp;ln (x; y)(3.8)

=

8>>><>>>:
1

2(y�x)
R y
x

h
p
�
u�x
y�x

�
+ p

�
y�u
y�x

�i
lnudu;

(x; y) 2 (0;1)� (0;1) ; x 6= y;

f (x)
R 1
0
p (t) dt; (x; y) 2 (0;1)� (0;1) ; x = y;

is operator Schur concave on (0;1)� (0;1) :
In particular, if we put

(3.9) Fln (x; y) :=

8<:
y ln y�x ln x

y�x � 1; (x; y) 2 (0;1)� (0;1) ; x 6= y;

lnx; (x; y) 2 (0;1)� (0;1) ; x = y;
then we conclude that Fln is operator Schur concave on (0;1)� (0;1) :
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