OPERATOR SCHUR CONVEXITY OF SOME FUNCTIONS
ASSOCIATED TO HERMITE-HADAMARD INEQUALITY

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. A continuous function f : I x I — R is called operator Schur
convez, if f is symmetric, namely f (z,y) = f (y,x) for all z, y € I and
f(EA+ (A —1) B,tB+(1—1) A) < f (A, B)

in the operator order, for all (A, B) € SA; (H)xSA; (H) and t € [0,1], where
SAj (H) is the convex set of all selfadjoint operators on Hilbert space H with
spectra in I.

In this paper we investigate the operator Schur convexity of some functions
associated to the Hermite-Hadamard inequality for operator convex functions.
Some particular examples of interest are also given.

1. INTRODUCTION

For any z = (21, ...,,) € R", let x;) > ... > x},) denote the components of x in
decreasing order, and let | = (aj[l], ...,x[n]) denote the decreasing rearrangement
of z. For x, y € R™, x < y if, by definition,

S g <N vy k=10 1

21 Tl = 2ima Yl
When x < y, x is said to be majorized by y (y majorizes x). This notation and
terminology was introduced by Hardy, Littlewood and Pdlya in 1934.
Functions that preserve the ordering of majorization are said to be Schur-convex,
[21, p.80]. A real-valued function ¢ defined on a set 4 C R™ is said to be Schur-
convex on A if

(L1) z<yon A= 6(x) < o(y).

If, in addition, ¢ () < ¢ (y) whenever & < y but z is not a permutation of y, then
¢ is said to be strictly Schur-conver on A. If A =R"™, then ¢ is simply said to be
Schur-convex or strictly Schur-convex.
For fundamental properties of Schur convexity see the monograph [21] and the
references therein. For some recent results, see [5]-[13], [15], [22] and [24]-[26].
The following result is known in the literature as Schur-Ostrowski theorem [21,
p. 84]:

Theorem 1. Let I C R be an open interval and let ¢ : I™ — R be continuously
differentiable. Necessary and sufficient conditions for ¢ to be Schur-convexr on I™
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are
(1.2) ¢ is symmetric on 1",
and for all i # j, with i, j € {1,...,n},

(1.3) (zi — 25) [8;51(32) - 8;2(32)} >0 forall z € I,
i j

where ;—i denotes the partial derivative of ¢ with respect to its k-th argument.

Let A C R™ be a set with the following properties:

(i) A is symmetric in the sense that x € A = zII € A for all permutations II of
the coordinates.

(ii) A is convex and has a nonempty interior.

We have the following result, [21, p. 85].

Theorem 2. If ¢ is continuously differentiable on the interior of A and continuous
on A, then necessary and sufficient conditions for ¢ to be Schur-convex on A are

(1.4) ¢ is symmetric on A
and
(1.5) (21 — 22) {8;;(?) - aggi)] >0 for all z € A.

Another interesting characterization of Schur convex functions ¢ on A was ob-
tained by C. Stepniak in [26]:

Theorem 3. Let ¢ be any function defined on a symmetric convex set A in R™.
Then the function ¢ is Schur convex on A if and only if

(1.6) O (X1, ey Tiy oy Ty oy T) = G (X1, ooy Ty ey Ty vy Ty
for all (z1,....,xz,) €A and 1 < i< j<n and
(1.7) oAz + (1 =N, Axa+ (1 =N 1,23, ...,20) < P (21, ..., 2n)
for all (z1,...,xz5) € A and for all X € (0,1),
It is well known that any symmetric convex function defined on a symmetric

convex set A is Schur convex, [21, p. 97]. If the function ¢ : A — R is symmetric
and quasi-convex, namely

¢ (au+ (1 — a)v) <max{¢(u),¢(v)}

for all @ € [0,1] and u, v € A, a symmetric convex set, then ¢ is Schur convex on
A [21, p. 98].

In order to extend the above concept to continuous functions of selfadjoint op-
erators on complex Hilbert space we need some preparations as follow.

A real valued continuous function f on an interval [ is said to be operator convex
(operator concave) on I if

(1.8) FA=XNA+AB) < (2)(1-A)f(A)+Af(B)

in the operator order, for all A € [0,1] and for every selfadjoint operator A and B
on a Hilbert space H whose spectra are contained in I. Notice that a function f is
operator concave if — f is operator convex.



OPERATOR SCHUR CONVEXITY 3

A real valued continuous function f on an interval I is said to be operator
monotone if it is monotone with respect to the operator order, i.e., A < B with
Sp(A),Sp(B) C I imply f(A) < f(B).

For some fundamental results on operator convex (operator concave) and oper-
ator monotone functions, see [16] and the references therein.

As examples of such functions, we note that f (¢) =t" is operator monotone on
[0,00) if and only if 0 < r < 1. The function f (t) = t" is operator convex on (0, c0)
if either 1 < r <2 or —1 < r < 0 and is operator concave on (0,00) if 0 < r < 1.
The logarithmic function f(¢) = Int is operator monotone and operator concave
on (0,00). The entropy function f (t) = —tInt is operator concave on (0,00). The
exponential function f (t) = e’ is neither operator convex nor operator monotone.

In [7] we obtained among others the following Hermite-Hadamard type inequal-
ities for operator convex functions f: I — R

(1.9) f(A;B)gﬂgﬂu—spHﬂBmsng“;f“?

where A, B are selfadjoint operators with spectra included in 1.

If p:[0,1] — [0,00) is symmetric in the sense that p(1 —1¢) = p(¢) for all
t € [0,1], p is Lebesgue integrable with folp (s)ds > 0 and f : I — R is operator
convex function, then we also have the weighted operator inequality (see for instance
[12])

1
(1.10) f(A+B>§ [ F-9atsp)ds
2 Jo p(s)ds Jo
I
< B )
where A, B are selfadjoint operators with spectra included in I.

For recent inequalities for operator convex functions see [1], [3], [6], [7], [8], [10]-
[20] and [27]-[31].

Let Iy,...,Ix be intervals from R and let f : I; x ... X I; — R be an essentially
bounded real function defined on the product of the intervals. Let A = (Aq, ..., Ay)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces Hi, ..., Hi such that
the spectrum of A; is contained in I; for i = 1, ..., k. We say that such a k-tuple is
in the domain of f. If

&:/MEMM
I.

i

is the spectral resolution of A; for i =1, ..., k; by following [2] we define
(ML) FA) = A = [ Fe ) B (d0) @ 8 B ()
11><... Ik

as a bounded selfadjoint operator on Hy ® ... ® Hy.
The above function f : I} x ... X I, — R is said to be operator convex, if the
operator inequality

(1.12) F((1—a)A+aB)<(1—a)f(A)+af (B)
holds for all a € [0,1], for any Hilbert spaces Hj, ..., H; and any k-tuples of of
selfadjoint operators A = (Ay, ..., A,), B = (Bi,..., By) on H; ® ... ® Hy, contained

in the domain of f. The definition is meaningful since also the spectrum of «A4;
+(1 — @) B; is contained in the interval I; for each ¢ = 1,..., k.
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In the following we restrict ourself to the case k = 1, I = I = [ and H; =
Hy, = H. The operator convexity of f : I x I — R in this case means, for instance,

(1.13) f((l — a) Ar+aB1, (1 —a)As + OzBQ) <(l—-a)f (Al,AQ) + af (Bl,Bg)
or, equivalently,
(1.14) F((1—a) (A1, A2) + (B, B)) < (1 —a) f (A1, A2) + af (B, Ba)

for all selfadjoint operators Ay, As, By, Bs with spectra in I and for all a € [0,1].

In this paper we investigate the operator Schur convexity of some functions as-
sociated to the Hermite-Hadamard inequality for operator convex functions. Some
particular examples of interest are also given.

2. OPERATOR SCHUR CONVEXITY OF SOME FUNCTIONS

For I an interval, we consider the set S.A; (H) of all selfadjoint operators with
spectra in I. SA; (H) is a convex set in B(H) since for A, B selfadjoints with
Sp(A), Sp(B) C I, «A+ BB is selfadjoint with Sp (ad 4+ 8B) C I, where o, § >0
and a 4+ f = 1. Motivated by the Stepniak’s result for functions of real variables,
we can introduce the following concept:

Definition 1. We say that the function f : I x I — R s called operator Schur
convez, if f is symmetric, namely [ (x,y) = f (y,x) for all x, y € I and

f(tA+ (1 —t)B,tB+ (1—1)A) < f(A,B)

or, equivalently,
f(t (A?B> + (1 - t) (BvA» < f(A’B)

in the operator order, for all (A,B) € SA;(H) x SA;(H) and t € [0,1]. The
function f is called operator Schur concave if —f is operator Schur convex.

For (A,B) € SA; (H) x SA; (H), let us define the following auxiliary function
Pa,B) " [0,1] = SA(H ® H), the set of all selfadjoint operators on H ® H, by

(2.1) er.a.p) (1) = f(t(A B) + (1 -1) (B, A))
= f(tA+(1—t)B,tB+ (1—1)A).

A function f : J — SA(K) defined of an interval of real numbers J with self
adjoint operator values on a Hilbert space K is called operator monotone increasing
on J if

f () < f(s) in the operator order

for all s, t € J with ¢t < s.
The following characterization of operator Schur convexity holds, see the recent
paper [11]:

Theorem 4. Let f : I x I — R be a continuous symmetric function on I x I.
Then f is operator Schur convexr on I x I if and only if for all arbitrarily fized
(A, B) € SA; (H) xSA[ (H) the function ¢ 4 gy is operator monotone decreasing
on [0,1/2), operator monotone increasing on (1/2,1], and ¢; 4 ) has a global
minimum at 1/2 in the operator order.
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Now, for an operator convex function f : I — R and a ¢t € [0,1] define the
functions M, Ty : I2 = R

Moo = § U (@ =z )+ 5 (- 0y ) - () 20

and

w—%[f((l—t)x+ty)+f((1—t)y+m)]20-

The positivity of these functions follows by the fact that f is convex on I.
We have the following result concerning the Schur convexity of M.

T (z,y) =

Theorem 5. Let f: I — R be an operator convex function on the interval 1. For
allt € [0,1], t # % the function M, is operator Schur convex on I2.

Proof. Let (A, B) € SA; (H) x SA; (H) and s € [0,1]. Then
M; (s(A,B)+(1—35)(B,A))
— My (sA+(1—s)B,sB+(1—s) A)
:%f((l—t)(sA—i—(1—3)B)+t(sB+(1—s)A))
+ (=0 (B+ (1~ ) A) +H(sA+ (1-5)B))
_f(sA+(1—s)B+sB+(l—s)A>

2

:%f(s((l—t)A+tB)+(1—s)((l—t)B+tA))

+;f(s((1t)B+tA)+(1s)((lt)A+tB))f<

A+ B
3 .

By the operator convexity of f we have
fs((l=t)A+tB)+(1—s5)((1—t)B+tA))
<sf(1—-t)A+tB)+(1—s)f((1 —t)B+tA)

and
fs(I=t)B+tA)+(1—-3s)((1—-t)A+1tB))
<sf(Q—-t)B+tA)+(1—9)f((1—t)A+1tB).

for all (A,B) € SA; (H) x SA; (H) and s € [0,1].
If we add these two inequalities and divide by 2 we get

%f(s((lft)A+tB)+(1fs)((lft)BthA))
F(s(I=t)B+tA) +(1—s)((1—t) A+tB))
[f((1—t)B+tA) + f((1—t)A+1tB)]

for all (A, B) € SA; (H) x SA; (H) and s € [0,1].
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Therefore
My (s(A,B) + (1 - s) (B, A))

[F(1=t)B+tA) + f((1—1t) A+tB)] —f<

= M, (A, B)

A+ B
2

for all (A,B) € SA;(H) x SA; (H) and s € [0,1], which shows that M; is Schur
convex on 2. ]

For a convex function f : I — R and ¢ : [0,1] — [0,00) a Lebesgue integrable
function we consider the function M; : I? — [0, 00) defined by

M (z,y) ::/0 My (z,y)q(t)dt
1

:5/0 [F(( =)o +ty)+ F (1= t)y+1ta)] q (1) dt

1 (5 [awa

:/01f<(1_t)x+ty)q(t)dt—f(“"‘2”’) /Olq(t)dt,

where

0= 5 la(®) +a(L—1)], € [0,1].

Corollary 1. Let f: I — R be an operator convex function on I and q : [0,1] —
[0,00) a Lebesgue integrable function on [0,1], then My is operator Schur convex
on I2.

Proof. Let (A,B) € SA;(H) x SA;(H) and s € [0,1]. By the operator Schur
convexity of M; for all t € [0,1], we have

M (s (A, B)+ (1 -5)(B,A) = /0 M (s (A, B) + (1= 5) (B, A)) ¢ (t) dt

1
< [ A B) (0 de = My (A ).
0
which proves the Schur convexity of M;. (]

Corollary 2. Let f: I — R be an operator convex function on I and p : [0,1] —
[0,00) a Lebesgue integrable symmetric function on [0,1], then M, is operator Schur
convex on I2.

We denote by [A, B] the closed segment defined by {(1 —s) A+ sB, s € [0,1]}.
We also define the functional

Use(AB):=(1—t)f(A)+tf(B)—f((1-t)A+1iB) >0,

where A, B € I and ¢ € [0,1].
In [7] we obtained among others the following result :



OPERATOR SCHUR CONVEXITY 7

Lemma 1. Let f: I — R be an operator convex function on the interval I. Then
for each A, B € SA; (H) and C € [A, B] we have

(2.2) (0<) Wy (A,C) +¥p (C,B) < Uy, (A, B)

for each t € [0,1], i.e., the functional Wy, (-,-) is superadditive as a function of
interval.
IfC, D € [A, B], then

(2.3) (0<)¥,,(C,D) < Ty, (A, B)

for each t € [0,1], i.e., the functional Uy (-,-) is nondecreasing as a function of
interval.

By utilising this lemma we can prove the following result as well:

Theorem 6. Let f: I — R be an operator convex function on the interval I in R.
For all t € (0,1), the function Ty is Schur convex on I°.

Proof. Let (A,B) € SA; (H) x SA; (H) with A # B and s € [0,1]. Then
T, (s (4, B) + (1 - 5) (B, 4))
=T, (sA+(1-3)B,sB+(1—3s)A)
_ f(8A+(1—=s)B)+ f(sB+ (1 —s)A)

2
—%f((l—t)(sA—|—(1—3)B)+t(sB+(1—s)A))
—%f((l—t)(sB+(1—s)A)+t(sA+(1—s)B)).

From (2.3) we have for C, D € [A, B]
\Pf,t (C,D) S lef,t (147 B) and \Ijﬁl_t (C,D) S ‘I'f,l—t (A, B) 5
which, by addition gives that

Vst (C,D)+ Vs (C,D) < Wy (A B)+ Y14 (A, B)

namely
1=t f(CY+tf(D)—f((1—-t)C+1tD)
+tf(C)+(1—t) (D)—f@C+(1—t)D)
<A-0)f(A)+tf(B)—-f((1—-t)A+1tB)
+tf(A)+(1—-¢t)f(B)—f(tA+(1—-1t)B),

which is equivalent to

(2.4) fCOY+f(D)—f((1-t)C+tD)— f(tC+ (1 —t)uD)
<fA)+fB)-f(A-t)A+tB)— f(tA+(1-1)B)

for all C, D € [A, B].
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If we take C' = sA+ (1 —s)B and D = sB+ (1 — s) A, with s € [0, 1] then C,
D € [A, B] and by (2.4) we get
f(sA+(1—-98)B)+ f(sB+(1—9s)A)
—f((1-=t)(sA+(1—s)B)+t(sB+(1—35)A))
—f((1=t)(sB+(1—3s)A)+t(sA+(1—3s)B))
<fA)+f(B) - f(L-t)A+tB) - f(tA+(1-1)B).
This inequality is equivalent to
Ti(s(A,B)+ (1 —s)(B,A)) < Ty (A, B)
for all (A,B) € SA; (H) x SA; (H) and s € [0,1]. This proves the operator Schur

convexity of Tj. O

Remark 1. Since both M; and T; are operator Schur convexr when f is operator
convex on I it follows that the sum, namely the Jensen’s functional
f(A)+[(B) _f(A+B)

J(A,B) = 5 5

is also operator Schur convex on I2.

For a convex function f : I — R and ¢ : [0,1] — [0,00) a Lebesgue integrable
function we consider the function Ty : I? — [0, 00) defined by

Td($,y) 1:/0 T; (xvy)Q(t)dt
:f(x);rf(y)/o q(t) dt
1

_5/0 1=tz +ty) + f((1—t)y+tx)q(t)dt

:W/O a@dt— [ F(@=Dawi

Corollary 3. Let f: I — R be an operator convex function on I and q : [0,1] —
[0,00) a Lebesgue integrable function on [0,1], then Ty is operator Schur convexr on
I2. In particular, if p : [0,1] — [0,00) is a Lebesque integrable symmetric function
on [0,1], then T, is operator Schur convex on I°.

If we take p = 1 and consider the functions

M (z,y) ::/Olf«l—t)wty)dt—f(m;y)

and
7o) = T [ oy v mar

then we conclude that M and T are operator Schur conver functions on I? if f is
operator convex on I.

Also, if we consider the symmetric weights py (t) = ’t — %’ and po (t) =t (1 —1t),
t €[0,1], then

1
o - Yo (55
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and

M-y (z,y) : /f (1—t)z+ty)t (1_t)dt_f<A-l2-B>

are Schur convex on I? if f is convex on 1.
The trapezoid functions

Ty @y) = f(x);rf(y)—/o f((l—t)a:—&—ty)’t—;‘dt

and )
)+
Ty )= HEELD - [ p s myea—ga
0
are also operator Schur convex on I? if f is operator convex on I.

3. SOME EXAMPLES

Assume that f is a continuous function on the interval I and z, y € I. Also,
let p: [0,1] — [0,00) be a Lebesgue integrable symmetric function on [0,1]. If we
consider the functions

My = [ 1@ -terwp@a-s (55 [

1, (a)i= LD [y ae- [ - 0a s mppa

and

then

M, (z,z) =T, (z,z) =0 for z € I.
If © # y, then by the change of the variable u = (1 —t)x + ty, we have du =
(y—=x)dt, t = Z:;’, and we can consider the functions of two variables My, T}, :

I? — R defined by
7 LS o (32

(3.1) M, (z,y)={ @ )612,3:#1/,

0, (zy)el? z#y

£) du— f(=52) fy p ()t

z 1
S 1 ()

dt— 5 [ f (w)p (22 du,

(32)  T,(z,y):={ @y el z#y,

0, (z,y) € I*, x #y.
In particular, we have the functions M, T : I? — R introduced in [4] and defined
by
yxfy du_f(%)a (.’13,:(/)6[2,.733&3/,
M (z,y) =
0, (z,y) €% z #y,

and
HEEIW) — o [V f(w) du, (2,y) € %, x4y,

T (z,y) :=
0, (z,y)el? z#y.



10 S.S. DRAGOMIR

We can also consider the weighted functions defined on I?

e Ja S () = 5t du = 3 F (5),
M)y (@,y) = (z,y) € I?, x #y,

0, (m,y) €%, z#y,

f(w);rf(y) _ (yjz)Q f;j £ () ‘u _ zT-s-y du,
Ty (@y) = (z,y) €I, = #y,

0, (z,y)€l? z+#y,
Gy o f () (u—2) (y —w)du = 5 f (55*),
M.y (z,y) = (w,y) € I?, © #y,
07 (m,y) 612, x#y,

f(w)lzf(y) N (ij)S [2f () (u— ) (y — u) du,
2
Ta-y(z,y) = (z,y) € I, © # v,

0, (z,y) €I, 2 #y.
By utilising Corollary 2 and Corollary 3 we can state the following Schur convexity
result:

and

Proposition 1. Assume that f is an operator convex function on the interval I
and let p : [0,1] — [0,00) be a Lebesgue integrable symmetric function on [0,1].
Then the functions M, and T, are operator Schur convex on I*.

Since the function f (¢) = t" is operator convex on (0, 00) if either 1 <r < 2 or

—1 < r <0 and is operator concave on (0,00) if 0 < r < 1, hence for p : [0,1] —
[0,00) a Lebesgue integrable symmetric function on [0, 1],

T [y (222) du— (52) [y p () dt,
X

(3.3) M, (z,y) =4 (@y)€(0,00)x(0,00), & #y,
0, (z,y) € (0,00) x (0,00), z#y
and
S L p @ g [P (42 du
(34) pr (Cli,y) = (.’17, y) € (07 OO) X (07 OO), T 7é Y,

0, (z,y) € (0,00) x (0,00), = #y
are operator Schur convex on (0,00) x (0,00) if either 1 <r <2or —1 <r <0 and
are operator Schur concave on (0,00) x (0,00) if 0 <7 < 1.
In particular,

(3.5) M, (z,y)
r+1_r+l =
o= — (52)", (2,y) € (0,00) x (0,00), = #y,

0, (z,9) € (0,00) x (0,00), z #y
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" ty" gyt

2 (1 Dy—2)’ (z,y) € (0, OO) X (0,00), T # vy,

0, (z,y) € (0,00) x (0,00), = #y.

are operator Schur convex on (0,00) x (0,00) if either 1 <r <2 or —1 < r < 0 and
are operator Schur concave on (0,00) x (0,00) if 0 <r < 1.
For r = —1, if we put

37 Mo ()
mutlhe (o) () € (0,00) % (0,00), x £,
0. (2.9) € (0,00) x (0,00), = = y.

and

(3-8) Ty (z,y)

z—lgy—l _ lnziivnx7 (SL‘,y) c (0,00) % (0’ 00)7 x #y,

0, (z,9) € (0,00) x (0,00), = #y,

then we conclude that M_y and T_; are operator Schur convezr on (0,00) x (0,00) .
The logarithmic function f(¢) = Int is operator concave on (0,00). For p :
[0,1] — [0,00) a Lebesgue integrable symmetric function on [0, 1],

ﬁ fwyp <Z::) Inudu — In (%) folp (t) dt,
(39) Mp,ln (.’,C,y) = (m,y) € (0,00) X (0700), x 7& Y,

0, (z,y) € (0,00) x (0,00), = #y

and

g [ () dt gL [ (425 ) nud
(3.10) Tpin (z,y) = { (#:9) € (0,00) x(0,00), = #y,

0, (z,y) € (0,00) x (0,00), = #y

are operator Schur concave on (0,00) x (0,00).
In particular,

ylny—xlnz 1 4y
y—x 1 ln( 2 )7

(3.11) M, (z,y) = (x,y) € (0,00) x (0,00), = #y,

0, (z,y) € (0,00) x (0,00), z#y



12 S. S. DRAGOMIR
and
In z+1n Iny—zlnz
5 y_ ¥y E’J_w + 1
(3.12) T (z,y) : = (z,y) € (0,00) X (0,00), = #y,
0, (I'vy) € (0,00) X (0700)7 x?éy
T Iny—Inz
1 - % y—x )
(3.13) - (z,y) € (0,00) x (0,00), z #y,

0, (x,y) € (0,00) x (0,00), z#y

are operator Schur concave on (0,00) x (0,00).

(1]
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(3]

(4]
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