
OPERATOR SCHUR CONVEXITY OF INTEGRAL MEANS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. For a Lebesgue integrable function p : [0; 1]! [0;1) we consider
the function Sf;p; Mf;p : I � I ! R de�ned by

Sf;p (x; y) =

Z 1

0
f (tx+ (1� t) y; ty + (1� t)x) p (t) dt

and

Mf;p (x; y) =

Z 1

0
f (tx+ (1� t) y; ty + (1� t)x) p (t) dt

� f
�
x+ y

2
;
x+ y

2

�Z 1

0
p (t) dt;

where f : I � I ! R is an operator Schur convex function on I � I: In this
paper we show among others that Sf;p and Mf;p preserve the operator Schur
convexity of f: We also provide some applications for powers and logarithms.

1. Introduction

A real valued continuous function f on an interval I is said to be operator convex
(operator concave) on I if

(1.1) f ((1� �)A+ �B) � (�) (1� �) f (A) + �f (B)
in the operator order, for all � 2 [0; 1] and for every selfadjoint operator A and B
on a Hilbert space H whose spectra are contained in I: Notice that a function f is
operator concave if �f is operator convex.
A real valued continuous function f on an interval I is said to be operator

monotone if it is monotone with respect to the operator order, i.e., A � B with
Sp (A) ;Sp (B) � I imply f (A) � f (B) :
For some fundamental results on operator convex (operator concave) and oper-

ator monotone functions, see [15] and the references therein.
As examples of such functions, we note that f (t) = tr is operator monotone on

[0;1) if and only if 0 � r � 1: The function f (t) = tr is operator convex on (0;1)
if either 1 � r � 2 or �1 � r � 0 and is operator concave on (0;1) if 0 � r � 1:
The logarithmic function f (t) = ln t is operator monotone and operator concave
on (0;1): The entropy function f (t) = �t ln t is operator concave on (0;1): The
exponential function f (t) = et is neither operator convex nor operator monotone.
For recent inequalities for operator convex functions see [1], [3], [6], [7], [8], [10]-[19]
and [26]-[30].
Let I1; :::; Ik be intervals from R and let f : I1 � ::: � Ik ! R be an essentially

bounded real function de�ned on the product of the intervals. Let A = (A1; :::; An)
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be a k-tuple of bounded selfadjoint operators on Hilbert spaces H1; :::;Hk such that
the spectrum of Ai is contained in Ii for i = 1; :::; k: We say that such a k-tuple is
in the domain of f . If

Ai =

Z
Ii

�iEi (d�i)

is the spectral resolution of Ai for i = 1; :::; k; by following [2] we de�ne

(1.2) f (A) = f (A1; :::; An) =

Z
I1�:::�Ik

f (�1; :::; �1)E1 (d�1)
 :::
 Ek (d�k)

as a bounded selfadjoint operator on H1 
 :::
Hk:
The above function f : I1 � ::: � Ik ! R is said to be operator convex, if the

operator inequality

(1.3) f ((1� �)A+ �B) � (1� �) f (A) + �f (B)
for all � 2 [0; 1] ; for any Hilbert spaces H1; :::;Hk and any k-tuples of of selfadjoint
operators A = (A1; :::; An) ; B = (B1; :::; Bn) on H1 
 ::: 
 Hk contained in the
domain of f: The de�nition is meaningful since also the spectrum of �Ai +(1��)Bi
is contained in the interval Ii for each i = 1; :::; k:
In the following we restrict ourself to the case k = 1; I1 = I2 = I and H1 =

H1 = H: The operator convexity of f : I � I ! R in this case means, for instance,
(1.4) f ((1� �)A1 + �B1; (1� �)A2 + �B2) � (1� �) f (A1; A2) + �f (B1; B2)
or, equivalently,

(1.5) f ((1� �) (A1; A2) + � (B1; B2)) � (1� �) f (A1; A2) + �f (B1; B2)
for all selfadjoint operators A1; A2; B1; B2 with spectra in I and for all � 2 [0; 1] :
For I an interval, we consider the set SAI (H) of all selfadjoint operators with

spectra in I: SAI (H) is a convex set in B (H) since for A; B selfadjoints with
Sp (A) ; Sp (B) � I; �A+�B is selfadjoint with Sp (�A+ �B) � I; where �; � � 0
and �+ � = 1:We can introduce the following concept [11]:

De�nition 1. We say that the function f : I � I ! R is called operator Schur
convex, if f is symmetric, namely f (x; y) = f (y; x) for all x; y 2 I and

f (tA+ (1� t)B; tB + (1� t)A) � f (A;B)
or, equivalently,

f (t (A;B) + (1� t) (B;A)) � f (A;B)
in the operator order, for all (A;B) 2 SAI (H) � SAI (H) and t 2 [0; 1] : The
function f is called operator Schur concave if �f is operator Schur convex.
For (A;B) 2 SAI (H)� SAI (H) ; let us de�ne the following auxiliary function

'(A;B) : [0; 1]! SA (H 
H) ; the set of all selfadjoint operators on H 
H; by
'f;(A;B) (t) = f (t (A;B) + (1� t) (B;A))(1.6)

= f (tA+ (1� t)B; tB + (1� t)A) :
A function f : J ! SA (K) de�ned of an interval of real numbers J with self

adjoint operator values on a Hilbert space K is called operator monotone increasing
on J if

f (t) � f (s) in the operator order
for all s; t 2 J with t < s:
The following characterization of operator Schur convexity holds [11]:
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Theorem 1. Let f : I � I ! R be a continuous symmetric function on I � I.
Then f is operator Schur convex on I � I if and only if for all arbitrarily �xed
(A;B) 2 SAI (H)�SAI (H) the function 'f;(A;B) is operator monotone decreasing
on [0; 1=2), operator monotone increasing on (1=2; 1], and 'f;(A;B) has a global
minimum at 1=2 in the operator order.

We have the following integral inequality in the operator order [11]:

Theorem 2. Assume that the function f : I � I ! R is operator Schur convex
on I � I . Then for any Lebesgue integrable function p : [0; 1] ! [0;1) withR 1
0
p (t) dt = 1 we have

f

�
A+B

2
;
A+B

2

�
dt �

Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) p (t) dt(1.7)

� f (A;B)
for all (A;B) 2 SAI (H)� SAI (H) :
In particular, we have

(1.8) f

�
A+B

2
;
A+B

2

�
�
Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) dt � f (A;B)

for all (A;B) 2 SAI (H)� SAI (H) :

For a Lebesgue integrable function p : [0; 1] ! [0;1) we consider the function
Sf;p; Mf;p : I � I ! R de�ned by

Sf;p (x; y) =

Z 1

0

f (tx+ (1� t) y; ty + (1� t)x) p (t) dt

and

Mf;p (x; y) =

Z 1

0

f (tx+ (1� t) y; ty + (1� t)x) p (t) dt

� f
�
x+ y

2
;
x+ y

2

�Z 1

0

p (t) dt;

where f : I � I ! R is an operator Schur convex function on I � I: In this paper
we show among others that Sf;p and Mf;p preserve the operator Schur convexity
of f: We also provide some applications for powers and logarithms.

2. Operator Schur Convexity for Functions of Composite Arguments

Assume that the function f : I � I ! R is Schur convex on the convex and
symmetric set I � I � R2. For t 2 [0; 1] ; we de�ne the function Sf;t : I � I ! R
de�ned by

(2.1) Sf;t (x; y) := f (t (x; y) + (1� t) (y; x)) = f (tx+ (1� t) y; ty + (1� t)x) :
In the case when t = 0 or t = 1 the de�nition (2.1) becomes, by the symmetry of f
in I � I; that

Sf;0 (x; y) = Sf;1 (x; y) = f (x; y) ; (x; y) 2 I � I:
We have:

Theorem 3. Assume that the function f : I � I ! R is operator Schur convex on
I � I then Sf;t is operator Schur convex on I � I for all t 2 (0; 1) :
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Proof. Let (A;B) 2 SAI (H)� SAI (H) and s 2 [0; 1], t 2 (0; 1) : Observe that
t (sA+ (1� s)B; sB + (1� s)A) + (1� t) (sB + (1� s)A; sA+ (1� s)B)
= t (s (A;B) + (1� s) (B;A)) + (1� t) (s (B;A) + (1� s) (A;B))
= s [t (A;B) + (1� t) (B;A)] + (1� s) [t (B;A) + (1� t) (A;B)]
= s (tA+ (1� t)B; tB + (1� t)A) + (1� s) [(tB + (1� t)A; tA+ (1� t)B)]
= s (C;D) + (1� s) (D;C) ;

where C := tA + (1� t)B and D := tB + (1� t)A for all (A;B) 2 SAI (H) �
SAI (H) and s; t 2 [0; 1].
By Schur convexity of f on I � I we get

f (s (C;D) + (1� s) (D;C)) � f (C;D)
for all s 2 [0; 1] :
Therefore

(2.2) Sf;t (s (A;B) + (1� s) (B;A))
= f [t (sA+ (1� s)B; sB + (1� s)A) + (1� t) (sB + (1� s)A; sA+ (1� s)B)]

� f (tA+ (1� t)B; tB + (1� t)A) = Sf;t (A;B)
for (A;B) 2 SAI (H)� SAI (H) and s; t 2 [0; 1].
This proves the operator Schur convexity of Sf;t on I � I: �

We de�ne for t 2 [0; 1] ; t 6= 1
2 the function Mf;t on I � I by

Mf;t (x; y) := f (t (x; y) + (1� t) (y; x))� f
�
x+ y

2
;
x+ y

2

�
= f (tx+ (1� t) y; ty + (1� t)x)� f

�
x+ y

2
;
x+ y

2

�
= Sf;t (x; y)� f

�
x+ y

2
;
x+ y

2

�
;

where f : I � I ! R is operator Schur convex on the convex and symmetric subset
I � I � R2:
We have the following result.

Corollary 1. Let f be an operator Schur convex function on I � I and t 2 [0; 1] ;
t 6= 1

2 : Then the function Mf;t is operator Schur convex on I � I :

Proof. Let s 2 [0; 1] and (A;B) 2 SAI (H)� SAI (H) : Then
Mf;t (s (A;B) + (1� s) (B;A))
= Sf;t (s (A;B) + (1� s) (B;A))

� f
�
sA+ (1� s)B + sB + (1� s)A

2
;
sA+ (1� s)B + sB + (1� s)A

2

�
=Mf;t (s (A;B) + (1� s) (B;A))� f

�
A+B

2
;
A+B

2

�
� Sf;t (A;B)� f

�
A+B

2
;
A+B

2

�
=Mf;t (A;B) ;

which proves the operator Schur convexity of Mf;t on I � I: �
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Assume that the function f : I � I ! R is continuous. For (t; s) 2 [0; 1]2 we
consider the function Pf;(t;s) : I � I ! R de�ned by

Pf;(t;s) (x; y)

:=
1

2
[f (tx+ (1� t) y; sx+ (1� s) y) + f ((1� t)x+ ty; sy + (1� s)x)] ;

where (x; y) 2 I � I:

Theorem 4. Assume that f : I � I ! R is operator convex on I � I and (t; s) 2
[0; 1]

2
: Then the function Pf;(t;s) is operator Schur convex on I � I:

Proof. Let �; � � 0 with �+ � = 1; (A;B) 2 SAI (H)� SAI (H) and consider

2P(t;s) (� (A;B) + � (B;A))

= P(t;s) (�A+ �B;�B + �A)

= f (t (�A+ �B) + (1� t) (�B + �A) ; s (�A+ �B) + (1� s) (�B + �A))
+ f ((1� t) (�A+ �B) + t (�B + �A) ; s (�B + �A) + (1� s) (�A+ �B)) :

Observe that

(t (�A+ �B) + (1� t) (�B + �A) ; s (�A+ �B) + (1� s) (�B + �A))
= � (tA+ (1� t)B; sA+ (1� s)B) + � (tB + (1� t)A; sB + (1� s)A)

and

((1� t) (�A+ �B) + t (�B + �A) ; s (�B + �A) + (1� s) (�A+ �B))
= � ((1� t)A+ tB; sB + (1� s)A) + � ((1� t)B + tA; sA+ (1� s)B) :

Since f is operator convex on I � I , hence

f [� (tA+ (1� t)B; sA+ (1� s)B) + � (tB + (1� t)A; sB + (1� s)A)]
� �f (tA+ (1� t)B; sA+ (1� s)B) + �f (tB + (1� t)A; sB + (1� s)A)

and

f [� ((1� t)A+ tB; sB + (1� s)A) + � ((1� t)B + tA; sA+ (1� s)B)]
� �f ((1� t)A+ tB; sB + (1� s)A) + �f ((1� t)B + tA; sA+ (1� s)B) :

If we add these two inequalities, we get

2P(t;s) (� (A;B) + � (B;A)) � �f (tA+ (1� t)B; sA+ (1� s)B)
+ �f ((1� t)B + tA; sA+ (1� s)B)
+ �f (tB + (1� t)A; sB + (1� s)A)
+ �f ((1� t)A+ tB; sB + (1� s)A)
= f (tA+ (1� t)B; sA+ (1� s)B)
+ f (tB + (1� t)A; sB + (1� s)A) = 2P(t;s) (A;B) ;

which shows that P(t;s) is Schur convex on I � I: �
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For (t; s) 2 [0; 1]2 we also consider the function Qf;(t;s) : I � I ! R de�ned by
Qf;(t;s) (x; y)

:= Pf;(t;s) (x; y)� Pf;(t;s)
�
x+ y

2
;
x+ y

2

�
=
1

2
[f (tx+ (1� t) y; sx+ (1� s) y) + f ((1� t)x+ ty; sy + (1� s)x)]

� f
�
x+ y

2
;
x+ y

2

�
:

Corollary 2. Assume that f : I � I ! R is operator convex on I � I and (t; s) 2
[0; 1]

2
: Then the function Q(t;s) is operator Schur convex on I � I:

3. Operator Schur Convexity of Integral Mean

For a Lebesgue integrable function p : [0; 1] ! [0;1) and an operator Schur
convex function f : I � I ! R on the convex and symmetric set I � I � R2 we
de�ne the functions Sf;p and Mf;p on I � I by

Sf;p (x; y) :=

Z 1

0

Sf;t (x; y) p (t) dt

=

Z 1

0

f (tx+ (1� t) y; ty + (1� t)x) p (t) dt

and

Mf;p (x; y) :=

Z 1

0

f (tx+ (1� t) y; ty + (1� t)x) p (t) dt

� f
�
x+ y

2
;
x+ y

2

�Z 1

0

p (t) dt:

In particular, if p � 1; then we also consider the functions

Sf (x; y) :=

Z 1

0

f (tx+ (1� t) y; ty + (1� t)x) dt

and

Mf (x; y) :=

Z 1

0

f (tx+ (1� t) y; ty + (1� t)x) dt� f
�
x+ y

2
;
x+ y

2

�
:

We have:

Theorem 5. Assume that the function f : I � I ! R is operator Schur convex on
I � I and p : [0; 1] ! [0;1) is a Lebesgue integrable function on [0; 1] ; then the
functions Sf;p and Mf;p are operator Schur convex on I � I:
Proof. Let s 2 [0; 1] and (A;B) 2 SAI (H) � SAI (H) : Then, by the operator
Schur convexity of Sf;t for t 2 [0; 1] ; we have

Sf;p (s (A;B) + (1� s) (B;A)) =
Z 1

0

Sf;t (s (A;B) + (1� s) (B;A)) p (t) dt

�
Z 1

0

Sf;t (A;B) p (t) dt = Sf;p (A;B) ;

which proves the operator Schur convexity of Sf;p:
The proof for Mf;p is similar. �
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Corollary 3. Assume that the function f : I � I ! R is operator Schur convex on
I � I, then the functions Sf and Mf are operator Schur convex on I � I:

We also have the following double integral inequalities:

Corollary 4. Assume that the function f : I � I ! R is operator Schur convex
on the convex and symmetric set I � I � R2. Then for any Lebesgue integrable
functions w; p : [0; 1]! [0;1) we have

f

�
A+B

2
;
A+B

2

�Z 1

0

p (t) dt

Z 1

0

w (s) ds(3.1)

�
Z 1

0

Z 1

0

f [t (sA+ (1� s)B) + (1� t) (sB + (1� s)A) ;

t (sB + (1� s)A) + (1� t) (sA+ (1� s)B)] p (t)w (s) dtds

�
Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) p (t) dt
Z 1

0

w (s) ds�
� f (A;B)

Z 1

0

p (t) dt

Z 1

0

w (s) ds

�
for all (A;B) 2 SAI (H)� SAI (H) :

The proof follows by Theorem ?? applied for the function Sf;p: This is a re�ne-
ment of the inequality (1.7) from Introduction.
For p; w � 1 we get for (A;B) 2 SAI (H)� SAI (H) that

f

�
A+B

2
;
A+B

2

�
(3.2)

�
Z 1

0

Z 1

0

f [t (sA+ (1� s)B) + (1� t) (sB + (1� s)A) ;

t (sB + (1� s)A) + (1� t) (sA+ (1� s)B)] dtds

�
Z 1

0

f (tA+ (1� t)B; tB + (1� t)A) dt (� f (A;B)) ;

where f : I � I ! R is operator Schur convex on the convex and symmetric set
I � I � R2: This is a re�nement of the inequality (1.8) from Introduction.
Consider the two variable weightW : [0; 1]

2 ! [0;1) that is Lebesgue integrable
on [0; 1]2 and de�ne

Pf;W (x; y) :=

Z 1

0

Z 1

0

Pf;(t;s) (x; y)W (t; s) dtds

=
1

2

Z 1

0

Z 1

0

f (tx+ (1� t) y; sx+ (1� s) y)W (t; s) dtds

+
1

2

Z 1

0

Z 1

0

f ((1� t)x+ ty; sy + (1� s)x)W (t; s) dtds:

IfW is symmetric on [0; 1]2 in the sense thatW (t; s) =W (s; t) for all (t; s) 2 [0; 1]2 ;
then

Pf;W (x; y) =

Z 1

0

Z 1

0

f (tx+ (1� t) y; sx+ (1� s) y)W (t; s) dtds:
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In particular, if w : [0; 1] ! [0;1) is Lebesgue integrable on [0; 1] ; then by taking
W (t; s) = w (t)w (s) ; (t; s) 2 [0; 1]2 we can also consider the function

Pf;w (x; y) =

Z 1

0

Z 1

0

f (tx+ (1� t) y; sx+ (1� s) y)w (t)w (s) dtds

and the unweighted function

Pf (x; y) =

Z 1

0

Z 1

0

f (tx+ (1� t) y; sx+ (1� s) y) dtds:

In a similar way, we can consider

Qf;W (x; y) := Pf;W (x; y)� f
�
x+ y

2
;
x+ y

2

�Z 1

0

Z 1

0

W (t; s) dtds;

Qf;w (x; y) := Pf;w (x; y)� f
�
x+ y

2
;
x+ y

2

��Z 1

0

w (t) dt

�2
;

and

Qf (x; y) := Pf (x; y)� f
�
x+ y

2
;
x+ y

2

�
:

Theorem 6. Assume that the function f : I � I ! R is operator Schur convex
on I � I and W : [0; 1]

2 ! [0;1) is Lebesgue integrable on [0; 1]2 ; then Pf;W and
Qf;W are operator Schur convex on I � I:
Proof. Let � 2 [0; 1] and (A;B) 2 SAI (H) � SAI (H) : Then, by the operator
Schur convexity of Pf;(t;s) for (t; s) 2 [0; 1]2 ; we have

Pf;W (� (A;B) + (1� �) (B;A))

=

Z 1

0

Z 1

0

Pf;(t;s) (� (A;B) + (1� �) (B;A))W (t; s) dtds

�
Z 1

0

Z 1

0

Pf;(t;s) (A;B)W (t; s) dtds = Pf;W (A;B) ;

which proves the operator Schur convexity of Pf;W :
The operator Schur convexity of Qf;W goes in a similar way. �

Corollary 5. Assume that f : I � I ! R is operator convex on I � I and w :
[0; 1] ! [0;1) is Lebesgue integrable on [0; 1] ; then Pf;w and Qf;w are operator
Schur convex on I � I: In particular, Pf and Qf are operator Schur convex on
I � I:

4. Some Examples

For a Lebesgue integrable function p : [0; 1] ! [0;1) and an operator Schur
convex function f : I2 ! R where I is an interval of real numbers, by changing the
variable

u = (1� t)x+ ty; t 2 [0; 1] with (x; y) 2 I2 and x 6= y
we can express the functions Sf;p and Mf;p on I2 by

Sf;p (x; y) =

Z 1

0

f (tx+ (1� t) y; ty + (1� t)x) p (t) dt(4.1)

=
1

y � x

Z y

x

f (u; x+ y � u) p
�
u� x
y � x

�
du



OPERATOR SCHUR CONVEXITY OF INTEGRAL MEANS 9

and

Mf;p (x; y) =

Z 1

0

f (tx+ (1� t) y; ty + (1� t)x) p (t) dt(4.2)

� f
�
x+ y

2
;
x+ y

2

�Z 1

0

p (t) dt

=
1

y � x

Z y

x

f (u; x+ y � u) p
�
u� x
y � x

�
du

� f
�
x+ y

2
;
x+ y

2

�Z 1

0

p (t) dt:

For (x; y) 2 I2 with x = y we have

(4.3) Sf;p (x; x) = f (x; x)

Z 1

0

p (t) dt and Mf;p (x; x) = 0:

In particular, if p � 1; then we also consider the functions

(4.4) Sf (x; y) :=

8<:
1

y�x
R y
x
f (u; x+ y � u) du for (x; y) 2 I2 with x 6= y;

f (x; x) for (x; y) 2 I2 with x = y
and

(4.5) Mf (x; y) =

8>><>>:
1

y�x
R y
x
f (u; x+ y � u) du� f

�
x+y
2 ;

x+y
2

�
for (x; y) 2 I2 with x 6= y;

0 for (x; y) 2 I2 with x = y:

Proposition 1. Assume that f : I2 ! R is operator Schur convex on I2 and
p : [0; 1] ! [0;1) is Lebesgue integrable on [0; 1] ; then Sf;p and Mf;p de�ned by
(4.1)-(4.3) are operator Schur convex on I2: In particular, the functions Sf and
Mf de�ned by (4.4) and (4.5) are operator Schur convex on I2:

If w : [0; 1]! [0;1) is Lebesgue integrable on [0; 1] and f : I2 ! R is convex on
I2; then by changing the variables ty+ (1� t)x = u and sy+ (1� s)x = v and we
can also consider the function

(4.6) Pf;w (x; y) :=
1

(y � x)2
Z y

x

Z y

x

f (u; v)w

�
u� x
y � x

�
w

�
v � x
y � x

�
dudv

if (x; y) 2 I2 with x 6= y and

(4.7) Pf;w (x; x) := f (x; x)

�Z 1

0

w (t) dt

�2
:

We also can consider

Qf;w (x; y) :=
1

(y � x)2
Z y

x

Z y

x

f (u; v)w

�
u� x
y � x

�
w

�
v � x
y � x

�
dudv(4.8)

� f
�
x+ y

2
;
x+ y

2

��Z 1

0

w (t) dt

�2
if (x; y) 2 I2 with x 6= y and
(4.9) Qf;w (x; x) := 0:
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In particular, we have

(4.10) Pf (x; y) :=

8<:
1

(y�x)2
R y
x

R y
x
f (u; v) dudv if (x; y) 2 I2 with x 6= y;

f (x; x) if (x; y) 2 I2 with x 6= y
and

(4.11) Qf (x; y) :=

8>><>>:
1

(y�x)2
R y
x

R y
x
f (u; v) dudv � f

�
x+y
2 ;

x+y
2

�
if (x; y) 2 I2 with x 6= y;

0 if (x; y) 2 I2 with x 6= y:

Proposition 2. Assume that f : I2 ! R is operator convex on I2 and w : [0; 1]!
[0;1) is Lebesgue integrable on [0; 1] ; then Pf;w and Qf;w de�ned by (4.6)-(4.9)
are operator Schur convex on I2: In particular, the functions Sf and Mf de�ned by
(4.10) and (4.11) are operator Schur convex on I2:

In the recent paper [11], we gave several examples of operator Schur convex and
concave functions as follows.
The two variables function

(4.12) fr (x; y) :=

8><>:
yr+1�yr+1
(r+1)(y�x) ; (x; y) 2 (0;1)� (0;1) ; x 6= y;

xr; (x; y) 2 (0;1)� (0;1) ; x = y:

is operator Schur convex on (0;1)� (0;1) if either 1 � r � 2 or �1 < r � 0 and
is operator Schur concave on (0;1)� (0;1) if 0 � r � 1:
For r = �1; if we put

(4.13) f�1 (x; y) :=

8<:
ln y�ln x
y�x ; (x; y) 2 (0;1)� (0;1) ; x 6= y;

x�1; (x; y) 2 (0;1)� (0;1) ; x = y;
then we conclude that F�1 is operator Schur convex on (0;1)� (0;1) :
Since f (t) = ln t; t 2 (0;1) is operator concave, then

(4.14) fln (x; y) :=

8<:
y ln y�x ln x

y�x � 1; (x; y) 2 (0;1)� (0;1) ; x 6= y;

lnx; (x; y) 2 (0;1)� (0;1) ; x = y;
is fln is operator Schur concave on (0;1)� (0;1) :
If we replace the function f in the general examples above by fr; f�1 and fln

we have more particular power and logarithmic examples of operator Schur convex
functions. The details are omitted.
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