REVERSES OF OPERATOR HERMITE-HADAMARD INEQUALITIES

SILVESTRU SEVER DRAGOMIR

Abstract. Let f be an operator convex function on I and $A, B \in \mathcal{SA}_I(H)$, the convex set of selfadjoint operators with spectra in I. If $A \neq B$ and f, as an operator function, is Gâteaux differentiable on $[A, B] := \{(1-t)A + tB \mid t \in [0,1]\}$, then

$$0 \leq \int_0^1 f((1-t)A + tB) \, dt - f\left(\frac{A + B}{2}\right)$$

and

$$0 \leq \frac{f(A) + f(B)}{2} - \int_0^1 f((1-t)A + tB) \, dt$$

and

$$0 \leq \frac{f(A) + f(B)}{2} - \int_0^1 f((1-t)A + tB) \, dt$$

The logarithmic function $f(t) = \ln t$ is operator monotone and operator concave on $(0,1)$. The entropy function $f(t) = t \ln t$ is operator concave on $(0,1)$. The exponential function $f(t) = e^t$ is neither operator convex nor operator monotone.

1. Introduction

A real valued continuous function f on an interval I is said to be operator convex (operator concave) on I if

\begin{equation}
 f((1-\lambda)A + \lambda B) \leq (\geq) (1-\lambda)f(A) + \lambda f(B)
\end{equation}

in the operator order, for all $\lambda \in [0,1]$ and for every selfadjoint operator A and B on a Hilbert space H whose spectra are contained in I. Notice that a function f is operator concave if $-f$ is operator convex.

A real valued continuous function f on an interval I is said to be operator monotone if it is monotone with respect to the operator order, i.e., $A \leq B$ with $\text{Sp}(A), \text{Sp}(B) \subseteq I$ imply $f(A) \leq f(B)$.

For some fundamental results on operator convex (operator concave) and operator monotone functions, see [7] and the references therein.

As examples of such functions, we note that $f(t) = t^r$ is operator monotone on $[0,\infty)$ if and only if $0 \leq r \leq 1$. The function $f(t) = t^r$ is operator convex on $(0,\infty)$ if either $1 \leq r \leq 2$ or $-1 \leq r \leq 0$ and is operator concave on $(0,\infty)$ if $0 \leq r \leq 1$. The logarithmic function $f(t) = \ln t$ is operator monotone and operator concave on $(0, \infty)$. The entropy function $f(t) = -t \ln t$ is operator concave on $(0, \infty)$. The exponential function $f(t) = e^t$ is neither operator convex nor operator monotone.

1991 Mathematics Subject Classification. 47A63; 47A99.

Key words and phrases. Operator convex functions, Integral inequalities, Hermite-Hadamard inequality, Multivariate operator convex function.
In [5] we obtained among others the following Hermite-Hadamard type inequalities for operator convex functions \(f : I \rightarrow \mathbb{R} \)

\[
(1.2) \quad f \left(\frac{A + B}{2} \right) \leq \int_0^1 f \left((1-s)A + sB \right) ds \leq \frac{f(A) + f(B)}{2},
\]

where \(A, B \) are selfadjoint operators with spectra included in \(I \).

For recent inequalities for operator convex functions see [1]-[6] and [8]-[17].

Motivated by the above results, in this paper we show among others that if \(A \neq B \) and \(f \) is Gâteaux differentiable on \([A, B] := \{(1-t)A + tB \mid t \in [0,1]\} \), then

\[
0 \leq \int_0^1 f \left((1-t)A + tB \right) dt - f \left(\frac{A + B}{2} \right) \leq \frac{1}{8} \left| \nabla f_B (B - A) - \nabla f_A (B - A) \right|
\]

and

\[
0 \leq \frac{f(A) + f(B)}{2} - \int_0^1 f \left((1-t)A + tB \right) dt \leq \frac{1}{8} \left| \nabla f_B (B - A) - \nabla f_A (B - A) \right|.
\]

Two particular examples of interest for \(f(x) = -\ln x \) and \(f(x) = x^{-1} \) are also given.

2. Some Preliminary Facts

Let \(f \) be an operator convex function on \(I \). For \((A, B) \in \mathcal{S}A_I (H) \), the class of all selfadjoint operators with spectra in \(I \), we consider the auxiliary function \(\varphi_{(A,B)} : [0,1] \rightarrow \mathcal{S}A_I (H) \) defined by

\[
(2.1) \quad \varphi_{(A,B)} (t) := f \left((1-t)A + tB \right).
\]

For \(x \in H \) we can also consider the auxiliary function \(\varphi_{(A,B);x} : [0,1] \rightarrow \mathbb{R} \) defined by

\[
(2.2) \quad \varphi_{(A,B);x} (t) := \left\langle \varphi_{(A,B)} (t) x, x \right\rangle = \left(f \left((1-t)A + tB \right) x \right) x.
\]

We have the following basic fact:

Lemma 1. Let \(f \) be an operator convex function on \(I \). For any \((A, B) \in \mathcal{S}A_I (H) \), \(\varphi_{(A,B)} \) is well defined and convex in the operator order. For any \((A, B) \in \mathcal{S}A_I (H) \) and \(x \in H \) the function \(\varphi_{(A,B);x} \) is convex in the usual sense on \([0,1] \).

Proof. If \((A, B) \in \mathcal{S}A_I (H) \) and \(t \in [0,1] \) the convex combination \((1-t)A + tB \) is a selfadjoint operator with the spectrum in \(I \) showing that \(\mathcal{S}A_I (H) \) in the Banach algebra \(B(H) \) of all bounded linear operators on \(H \). By the continuous functional calculus of selfadjoint operator we also conclude that \(f \left((1-t)A + tB \right) \) is a selfadjoint operator with spectrum in \(I \).
Let \((A, B) \in \mathcal{SA}_I(H)\) and \(t_1, t_2 \in [0, 1]\). If \(\alpha, \beta > 0\) with \(\alpha + \beta = 1\), then
\[
\varphi_{(A,B)}(\alpha t_1 + \beta t_2) := f((1 - \alpha t_1 - \beta t_2) A + (\alpha t_1 + \beta t_2) B)
\]
\[
= f((\alpha + \beta - \alpha t_1 - \beta t_2) A + (\alpha t_1 + \beta t_2) B)
\]
\[
= f(\alpha [(1 - t_1) A + t_1 B] + \beta [(1 - t_2) A + t_2 B])
\]
\[
\leq \alpha f((1 - t_1) A + t_1 B) + \beta f((1 - t_2) A + t_2 B)
\]
\[
= \alpha \varphi_{(A,B)}(t_1) + \beta \varphi_{(A,B)}(t_2),
\]
which proves the convexity of \(\varphi_{(A,B)}\) in the operator order. Let \((A, B) \in \mathcal{SA}_I(H)\) and \(x \in H\). If \(t_1, t_2 \in [0, 1]\) and \(\alpha, \beta > 0\) with \(\alpha + \beta = 1\), then
\[
\varphi_{(A,B);x}(\alpha t_1 + \beta t_2) = \left\langle \varphi_{(A,B)}(\alpha t_1 + \beta t_2), x \right\rangle
\]
\[
\leq \left\langle \alpha \varphi_{(A,B)}(t_1), x \right\rangle + \beta \left\langle \varphi_{(A,B)}(t_2), x \right\rangle
\]
\[
= \alpha \varphi_{(A,B);x}(t_1) + \beta \varphi_{(A,B);x}(t_2),
\]
which proves the convexity of \(\varphi_{(A,B);x}\) on \([0, 1]\).

A continuous function \(g : \mathcal{SA}_I(H) \to \mathcal{B}(H)\) is said to be Gâteaux differentiable in \(A \in \mathcal{SA}_I(H)\) along the direction \(B \in \mathcal{B}(H)\) if the following limit exists in the strong topology of \(\mathcal{B}(H)\)
\[
(2.3) \quad \nabla g_A(B) := \lim_{s \to 0} \frac{g(A + sB) - g(A)}{s} \in \mathcal{B}(H).
\]
If the limit (2.3) exists for all \(B \in \mathcal{B}(H)\), then we say that \(f\) is Gâteaux differentiable in \(A\) and we can write \(g \in \mathcal{G}(A)\). If this is true for any \(A\) in an open set \(S\) from \(\mathcal{SA}_I(H)\) we write that \(g \in \mathcal{G}(S)\).

If \(g\) is a continuous function on \(I\), by utilising the continuous functional calculus the corresponding function of operators will be denoted in the same way.

For two distinct operators \(A, B \in \mathcal{SA}_I(H)\) we consider the segment of selfadjoint operators
\[
[A, B] := \{(1 - t) A + tB \mid t \in [0, 1]\}.
\]
We observe that \(A, B \in [A, B]\) and \([A, B] \subset \mathcal{SA}_I(H)\).

Lemma 2. Let \(f\) be an operator convex function on \(I\) and \((A, B) \in \mathcal{SA}_I(H)\), with \(A \neq B\). If \(f \in \mathcal{G}([A, B])\), then the auxiliary function \(\varphi_{(A,B)}\) is differentiable on \((0, 1)\) and
\[
(2.4) \quad \varphi'_{(A,B)}(t) = \nabla f_{(1-t)A+tB}(B - A).
\]
Also we have for the lateral derivative that
\[
(2.5) \quad \varphi'_{(A,B)}(0+) = \nabla f_A(B - A)
\]
and
\[
(2.6) \quad \varphi'_{(A,B)}(1-) = \nabla f_B(B - A).
\]
Proof. Let $t \in (0, 1)$ and $h \neq 0$ small enough such that $t + h \in (0, 1)$. Then
\begin{equation}
\frac{\varphi_{(A,B)}(t+h) - \varphi_{(A,B)}(t)}{h} = \frac{f((1-t-t)A + (t+h)B) - f((1-t)A + tB)}{h} = \frac{f((1-t)A + tB + h(B-A)) - f((1-t)A + tB)}{h}.
\end{equation}

Since $f \in G([A,B])$, hence by taking the limit over $h \to 0$ in (2.7) we get
\begin{align*}
\varphi'_{(A,B)}(t) &= \lim_{h \to 0} \frac{\varphi_{(A,B)}(t+h) - \varphi_{(A,B)}(t)}{h} \\
&= \lim_{h \to 0} \frac{f((1-t)A + tB + h(B-A)) - f((1-t)A + tB)}{h} \\
&= \nabla g_{(1-t)A+tB}(B-A),
\end{align*}
which proves (2.8).

Also, we have
\begin{align*}
\varphi'_{(A,B)}(0+) &= \lim_{h \to 0^+} \frac{\varphi_{(A,B)}(h) - \varphi_{(A,B)}(0)}{h} \\
&= \lim_{h \to 0^+} \frac{f((1-h)A + hB) - f(A)}{h} \\
&= \lim_{h \to 0^+} \frac{f(A + h(B-A)) - f(A)}{h} \\
&= \nabla f_A(B-A)
\end{align*}
since f is assumed to be Gâteaux differentiable in A. This proves (2.5).

The equality (2.6) follows in a similar way.

\textbf{Lemma 3.} Let f be an operator convex function on I and $(A,B) \in SA_I(H)$, with $A \neq B$. If $f \in G([A,B])$, then for $0 < t_1 < t_2 < 1$ we have
\begin{equation}
\nabla g_{(1-t_1)A+t_1B}(B-A) \leq \nabla g_{(1-t_2)A+t_2B}(B-A)
\end{equation}
in the operator order.

We also have
\begin{equation}
\nabla f_A(B-A) \leq \nabla g_{(1-t_1)A+t_1B}(B-A)
\end{equation}
and
\begin{equation}
\nabla g_{(1-t_2)A+t_2B}(B-A) \leq \nabla f_B(B-A).
\end{equation}

\textbf{Proof.} Let $x \in H$. The auxiliary function $\varphi_{(A,B);x}$ is convex in the usual sense on $[0,1]$ and differentiable on $(0,1)$ and for $t \in (0,1)$
\begin{align*}
\varphi'_{(A,B);x}(t) &= \lim_{h \to 0} \frac{\varphi_{(A,B);x}(t+h) - \varphi_{(A,B);x}(t)}{h} \\
&= \lim_{h \to 0} \left\langle \frac{\varphi_{(A,B)}(t+h) - \varphi_{(A,B)}(t)}{h} , x \right\rangle \\
&= \left\langle \lim_{h \to 0} \frac{\varphi_{(A,B)}(t+h) - \varphi_{(A,B)}(t)}{h} , x \right\rangle \\
&= \left\langle \nabla g_{(1-t)A+tB}(B-A)x , x \right\rangle.
\end{align*}
Since for $0 < t_1 < t_2 < 1$ we have by the gradient inequality for scalar convex functions that
\[
\varphi'_{(A,B),x}(t_1) \leq \varphi'_{(A,B),x}(t_2)
\]
then we get
\[
(2.11) \quad \langle \nabla g_{(1-t_1)A+t_1B} (B-A) x,x \rangle \leq \langle \nabla g_{(1-t_2)A+t_2B} (B-A) x,x \rangle
\]
for all $x \in H$, which is equivalent to the inequality (2.8) in the operator order.

Let $0 < t_1 < 1$. By the gradient inequality for scalar convex functions we also have
\[
\varphi'_{(A,B),x}(0+) \leq \varphi'_{(A,B),x}(t_1),
\]
which, as above implies that
\[
\langle \nabla f_{A} (B-A) x,x \rangle \leq \langle \nabla g_{(1-t_1)A+t_1B} (B-A) x,x \rangle
\]
for all $x \in H$, that is equivalent to the operator inequality (2.9).

The inequality (2.10) follows in a similar way.

\[\square\]

Corollary 1. Let f be an operator convex function on I and $(A, B) \in \mathcal{S}A_{f} (H)$, with $A \neq B$. If $f \in \mathcal{G} ([A, B])$, then for all $t \in (0, 1)$ we have
\[
(2.12) \quad \nabla f_{A} (B-A) \leq \nabla f_{(1-t)A+tB} (B-A) \leq \nabla f_{B} (B-A).
\]

3. Reverses of Operator Hermite-Hadamard Inequalities

It is well known that, if E is a Banach space and $f : [0, 1] \to E$ is a continuous function, then f is Bochner integrable, and its Bochner integral coincides with its Riemann integral. We denote this integral as usual by $\int_{0}^{1} f (t) \, dt$.

We have the following reverse of the first operator Hermite-Hadamard inequality:

Theorem 1. Let f be an operator convex function on I and $A, B \in \mathcal{S}A_{f} (H)$, with $A \neq B$. If $f \in \mathcal{G} ([A, B])$, then
\[
(3.1) \quad 0 \leq \int_{0}^{1} f ((1-t) A + tB) \, dt - f \left(\frac{A + B}{2} \right)
\]
\[
\leq \frac{1}{8} [\nabla f_{B} (B-A) - \nabla f_{A} (B-A)].
\]

Proof. Using integration by parts formula for the Bochner integral, we have
\[
(3.2) \quad \int_{0}^{1/2} t \varphi'_{(A,B)} (t) \, dt = \frac{1}{2} \varphi_{(A,B)} \left(\frac{1}{2} \right) - \int_{0}^{1/2} \varphi_{(A,B)} (t) \, dt
\]
\[
= \frac{1}{2} f \left(\frac{A + B}{2} \right) - \int_{0}^{1/2} f ((1-t) A + tB) \, dt
\]
and
\[
(3.3) \quad \int_{1/2}^{1} (t-1) \varphi'_{(A,B)} (t) \, dt = \frac{1}{2} \varphi_{(A,B)} \left(\frac{1}{2} \right) - \int_{1/2}^{1} f ((1-t) A + tB) \, dt
\]
\[
= \frac{1}{2} f \left(\frac{A + B}{2} \right) - \int_{1/2}^{1} f ((1-t) A + tB) \, dt.
\]
If we add these two equalities, we get the following identity of interest

\[
\int_0^1 f \left((1-t)A + tB \right) dt - f \left(\frac{A+B}{2} \right) = \int_{1/2}^1 (1-t) \varphi'_{(A,B)} (t) dt - \int_0^{1/2} t \varphi'_{(A,B)} (t) dt.
\]

From Lemma 3 we have

\[
\varphi'_{(A,B)} (1/2) \leq \varphi'_{(A,B)} (t) \leq \varphi'_{(A,B)} (1-) = \nabla f_B (B - A), \; t \in [1/2, 1)
\]

and

\[
\nabla f_A (B - A) = \varphi'_{(A,B)} (0+) \leq \varphi'_{(A,B)} (t) \leq \varphi'_{(A,B)} (1/2), \; t \in (0, 1/2],
\]

This implies that

\[
(1-t) \varphi'_{(A,B)} (1/2) \leq (1-t) \varphi'_{(A,B)} (t) \leq (1-t) \nabla f_B (B - A)
\]

for \(t \in [1/2, 1) \) and

\[
-t \varphi'_{(A,B)} (1/2) \leq -t \varphi'_{(A,B)} (t) \leq -t \nabla f_A (B - A)
\]

for \(t \in (0, 1/2] \).

By integrating these inequalities on the corresponding intervals, we get

\[
\frac{1}{8} \varphi'_{(A,B)} (1/2) \leq \int_{1/2}^1 (1-t) \varphi'_{(A,B)} (t) dt \leq \frac{1}{8} \nabla f_B (B - A)
\]

and

\[
-\frac{1}{8} \varphi'_{(A,B)} (1/2) \leq - \int_0^{1/2} t \varphi'_{(A,B)} (t) dt \leq - \frac{1}{8} \nabla f_A (B - A).
\]

By addition, we deduce that

\[
0 \leq \int_{1/2}^1 (1-t) \varphi'_{(A,B)} (t) dt - \int_0^{1/2} t \varphi'_{(A,B)} (t) dt \leq \frac{1}{8} [\nabla f_B (B - A) - \nabla f_A (B - A)]
\]

and by the identity (3.4) we get (3.1).

We have the following reverse of the second operator Hermite-Hadamard inequality:

Theorem 2. Let \(f \) be an operator convex function on \(I \) and \(A, B \in \mathcal{S}_A I (H) \), with \(A \neq B \). If \(f \in \mathcal{G} ([A, B]) \), then

\[
0 \leq \frac{f(A) + f(B)}{2} - \int_0^1 f ((1-t)A + tB) dt \leq \frac{1}{8} [\nabla f_B (B - A) - \nabla f_A (B - A)].
\]

\[
(3.7)
\]
Proof. Using integration by parts formula for the Bochner integral, we have

\begin{equation}
\int_0^1 \left(t - \frac{1}{2} \right) \varphi'_{(A,B)} (t) \, dt = \left(t - \frac{1}{2} \right) \varphi_{(A,B)} (t) \bigg|_0^1 - \int_0^1 \varphi_{(A,B)} (t) \, dt \\
= \frac{\varphi_{(A,B)} (1) + \varphi_{(A,B)} (0)}{2} - \int_0^1 \varphi_{(A,B)} (t) \, dt \\
= \frac{f (B) + f (A)}{2} - \int_0^1 f ((1 - t) A + tB) \, dt.
\end{equation}

Observe that

\begin{equation}
\int_0^1 \left(t - \frac{1}{2} \right) \varphi'_{(A,B)} (t) \, dt \\
= \int_{1/2}^1 \left(t - \frac{1}{2} \right) \varphi'_{(A,B)} (t) \, dt - \int_0^{1/2} \left(\frac{1}{2} - t \right) \varphi'_{(A,B)} (t) \, dt.
\end{equation}

Therefore, we have the following identity of interest

\begin{align*}
\frac{f (B) + f (A)}{2} - \int_0^1 f ((1 - t) A + tB) \, dt \\
= \int_{1/2}^1 \left(t - \frac{1}{2} \right) \varphi'_{(A,B)} (t) \, dt - \int_0^{1/2} \left(\frac{1}{2} - t \right) \varphi'_{(A,B)} (t) \, dt.
\end{align*}

From the inequality (3.5) we obtain

\begin{align*}
\left(t - \frac{1}{2} \right) \varphi'_{(A,B)} (1/2) &\leq \left(t - \frac{1}{2} \right) \varphi_{(A,B)} (t) \\
&\leq \left(t - \frac{1}{2} \right) \nabla f_B (B - A), \ t \in [1/2,1)
\end{align*}

and from (3.6)

\begin{align*}
\left(\frac{1}{2} - t \right) \nabla f_A (B - A) &\leq \left(\frac{1}{2} - t \right) \varphi'_{(A,B)} (t) \\
&\leq \left(\frac{1}{2} - t \right) \varphi_{(A,B)} (1/2), \ t \in (0,1/2],
\end{align*}

namely

\begin{align*}
- \left(\frac{1}{2} - t \right) \varphi'_{(A,B)} (1/2) &\leq - \left(\frac{1}{2} - t \right) \varphi_{(A,B)} (t) \\
&\leq - \left(\frac{1}{2} - t \right) \nabla f_A (B - A), \ t \in (0,1/2].
\end{align*}

Integrating these inequalities on the corresponding intervals, we get

\begin{align*}
\frac{1}{8} \varphi_{(A,B)} (1/2) &\leq \int_{1/2}^1 \left(t - \frac{1}{2} \right) \varphi_{(A,B)} (t) \, dt \leq \frac{1}{8} \nabla f_B (B - A),
\end{align*}

and

\begin{align*}
- \frac{1}{8} \varphi_{(A,B)} (1/2) &\leq - \int_0^{1/2} \left(\frac{1}{2} - t \right) \varphi_{(A,B)} (t) \, dt \leq - \frac{1}{8} \nabla f_A (B - A).
\end{align*}
If we add these two inequalities, we obtain
\begin{align*}
0 & \leq \int_{1/2}^{1} \left(t - \frac{1}{2} \right) \varphi'_{(A,B)}(t) \, dt - \int_{0}^{1/2} \left(\frac{1}{2} - t \right) \varphi'_{(A,B)}(t) \, dt \\
& \leq \frac{1}{8} \left[\nabla f_B (B - A) - \nabla f_A (B - A) \right],
\end{align*}
which, by the use of identity (3.9) produces the desired result (3.7).

\textbf{Remark 1.} It is well known that, if \(h \) is a \(C^1 \)-function defined on an open interval, then the operator function \(h(X) \) is Fréchet differentiable and the derivative \(Dh(A)(B) \) equals the Gâteaux derivative \(\nabla f_A (B) \). So for operator convex functions \(f \) that are of class \(C^1 \) on \(I \) we have the inequalities
\begin{align*}
0 & \leq \int_{0}^{1} f ((1 - t) A + tB) \, dt - f \left(\frac{A + B}{2} \right) \\
& \leq \frac{1}{8} \left[Df (B) (B - A) - Df (A) (B - A) \right]
\end{align*}
and
\begin{align*}
0 & \leq \frac{f (A) + f (B)}{2} - \int_{0}^{1} f ((1 - t) A + tB) \, dt \\
& \leq \frac{1}{8} \left[Df (B) (B - A) - Df (A) (B - A) \right]
\end{align*}
for all \(A, B \in SA_I (H) \).

4. Some Examples

We note that the function \(f(x) = - \ln x \) is operator convex on \((0, \infty) \). The \(\ln \) function is operator Gâteaux differentiable with the following explicit formula for the derivative (cf. Pedersen [12, p. 155]):
\begin{align*}
\nabla \ln_T (S) &= \int_{0}^{\infty} (s1_H + T)^{-1} S (s1_H + T)^{-1} \, ds
\end{align*}
for \(T, S > 0 \).

If we write the inequalities (3.1) and (3.7) for \(- \ln \) we get
\begin{align*}
0 & \leq \int_{0}^{1} \ln \left(\frac{A + B}{2} \right) - \int_{0}^{1} \ln ((1 - t) A + tB) \, dt \\
& \leq \frac{1}{8} \left[\int_{0}^{\infty} (s1_H + A)^{-1} (B - A) (s1_H + A)^{-1} \, ds \\
& \quad - \int_{0}^{\infty} (s1_H + B)^{-1} (B - A) (s1_H + B)^{-1} \, ds \right]
\end{align*}
and
\begin{align*}
0 & \leq \int_{0}^{1} \ln ((1 - t) A + tB) \, dt - \frac{\ln A + \ln B}{2} \\
& \leq \frac{1}{8} \left[\int_{0}^{\infty} (s1_H + A)^{-1} (B - A) (s1_H + A)^{-1} \, ds \\
& \quad - \int_{0}^{\infty} (s1_H + B)^{-1} (B - A) (s1_H + B)^{-1} \, ds \right]
\end{align*}
for all $A, B > 0$.

The function $f(x) = x^{-1}$ is also operator convex on $(0, \infty)$, operator Gâteaux differentiable and

$$
\nabla f_T(S) = -T^{-1}ST^{-1}
$$

for $T, S > 0$.

If we write the inequalities (3.1) and (3.7) for this function, then we get

$$
0 \leq \int_0^1 ((1 - t) A + tB)^{-1} dt - \left(\frac{A + B}{2} \right)^{-1}
$$

$$
\leq \frac{1}{8} [A^{-1} (B - A) A^{-1} - B^{-1} (B - A) B^{-1}]
$$

and

$$
0 \leq \frac{A^{-1} + B^{-1}}{2} - \int_0^1 ((1 - t) A + tB)^{-1} dt
$$

$$
\leq \frac{1}{8} [A^{-1} (B - A) A^{-1} - B^{-1} (B - A) B^{-1}]
$$

for all $A, B > 0$.

References

[16] S.-H. Wang, Hermite-Hadamard type inequalities for operator convex functions on the co-

1Mathematics, College of Engineering & Science, Victoria University, PO Box 14428,
Melbourne City, MC 8001, Australia.
E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

2DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences,
School of Computer Science, & Applied Mathematics, University of the Witwater-
srand, Private Bag 3, Johannesburg 2050, South Africa