REVERSES OF OPERATOR HERMITE-HADAMARD
INEQUALITIES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let f be an operator convex function on I and A, B € SA; (H),

the convex set of selfadjoint operators with spectra in I. If A # B and f, as an
operator function, is Gateaux differentiable on [A, B] := {(1 —t) A+ tB | t € [0,1]},
then

OS/OIf((lft)AthB)dtff(A+B)

< é[va (B—A) =V (B— A)

and

fA)+1(B) !
ng*/o f((1—t)A+tB)dt

< S [Vfn (B—A) = Via (B - A).

Two particular examples of interest are also given.

1. INTRODUCTION

A real valued continuous function f on an interval I is said to be operator convex
(operator concave) on I if

(1.1) FA=XNA+AB) <(2)(1 =) f(A) +Af(B)

in the operator order, for all A € [0,1] and for every selfadjoint operator A and B
on a Hilbert space H whose spectra are contained in I. Notice that a function f is
operator concave if —f is operator convex.

A real valued continuous function f on an interval I is said to be operator
monotone if it is monotone with respect to the operator order, i.e., A < B with
Sp(A),Sp (B) € I imply f(4) < (B).

For some fundamental results on operator convex (operator concave) and oper-
ator monotone functions, see [7] and the references therein.

As examples of such functions, we note that f (¢) =¢" is operator monotone on
[0,00) if and only if 0 < < 1. The function f (t) = t" is operator convex on (0, c0)
if either 1 <r <2 or —1 < r < 0 and is operator concave on (0,00) if 0 < r < 1.
The logarithmic function f(¢) = Int is operator monotone and operator concave
on (0,00). The entropy function f (t) = —tInt is operator concave on (0,00). The
exponential function f (t) = e’ is neither operator convex nor operator monotone.
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In [5] we obtained among others the following Hermite-Hadamard type inequal-
ities for operator convex functions f: I — R

1
(1.2) f(A;LB)g/O f((lfs)AJrsB)dsgw’

where A, B are selfadjoint operators with spectra included in I.
For recent inequalities for operator convex functions see [1]-[6] and [8]-[17].
Motivated by the above results, in this paper we show among others that if
A # B and f is Gateaux differentiable on [A,B] := {(1—-t)A+¢B |t €[0,1]},
then

2

OS/()1f((1—t)A+tB)dt—f<A+B>

gé[VfB(B—A)—VfA(B—A)]

and
0< w —/Olf((l—t)A—I—tB)dt
< 5 (V/n(B=4) = Via(B-A),
' Two particular examples of interest for f (z) = —Inz and f (z) = 2~ are also
given.

2. SOME PRELIMINARY FACTS

Let f be an operator convex function on I. For (A, B) € SA; (H), the class
of all selfadjoint operators with spectra in I, we consider the auxiliary function
¢a,p) : 0,1] — SA; (H) defined by

(2.1) Yap @) =f((1-t)A+1tB).

For x € H we can also consider the auxiliary function ¢4 g)., : [0,1] — R defined
by

(2.2) Pea,B) (t) = <80(A,B) (t) z, $> =(f(1-t)A+tB)z,z).
We have the following basic fact:

Lemma 1. Let f be an operator convex function on I. For any (A, B) € SA; (H),
©a,p) is well defined and convex in the operator order. For any (A, B) € SA; (H)
and x € H the function 4 p),, is convez in the usual sense on [0, 1].

Proof. If (A,B) € SA; (H) and t € [0, 1] the convex combination (1 —t) A+ ¢B is
a selfadjoint operator with the spectrum in I showing that SA; (H) in the Banach
algebra B (H) of all bounded linear operators on H. By the continuous functional
calculus of selfadjoint operator we also conclude that f ((1 —¢) A+ tB) is a selfad-
joint operator with spectrum in I.
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Let (A,B) € SA; (H) and t1,t, € [0,1]. If a, 8 > 0 with a + 3 = 1, then
Pa,p) (at1 + Btz) == f((1 — at1 — Bt2) A+ (at1 + Bt2) B)
= f((a+ 8 — at; — Bta) A+ (at; + Bta) B)
=flall—t) A+ t:B]+B[(1 —t2) A+t2B])
<af(l—t))A+t:B)+56f((1 —1t2) A+ t2B)
= apa p) (t1) + Bea p) (t2),

which proves the convexity ¢4 py in the operator order.
Ley (A,B) € SA; (H) and xz € H. If t1,t2 € [0,1] and o, 8 > 0 with o+ 8 =1,
then

Pa,B)e (b1 + Bt2) = <<P(A,B) (at1 + Bt2) $79€>
< ([aviam (1) + Bas ()] 2.2
=« <<P(A,B) (t1) 37733> + 5 <S0(A,B) (t2) 33733>
= P, By (t1) + 8P By (t2),

which proves the convexity of ¢4 p)., on [0,1]. O

A continuous function g : SA; (H) — B(H) is said to be Géteaux differentiable
in A € SA; (H) along the direction B € B (H) if the following limit exists in the
strong topology of B (H)

g(A+sB)—g(4)

(2.3) Vga (B) = lim ; €B(H).

If the limit (2.3) exists for all B € B (H), then we say that f is Géateaux differentiable
in A and we can write g € G (A). If this is true for any A in an open set S from
SA; (H) we write that g € G (S).

If g is a continuous function on I, by utilising the continuous functional calculus
the corresponding function of operators will be denoted in the same way.

For two distinct operators A, B € SA; (H) we consider the segment of selfadjoint
operators

[A,B] :={(1-t)A+tB|te]0,1]}.
We observe that A, B € [A,B] and [A,B] C SA; (H).
Lemma 2. Let f be an operator convex function on I and (A, B) € SA; (H), with

A # B. If f € G([A, B]), then the auziliary function ¢4 gy is differentiable on
(0,1) and

(2.4) SDI(A,B) (t) =Vfa-tapp(B—A).
Also we have for the lateral derivative that

(2.5) gp'(A73) (0+) =V fa(B-A)
and

(2.6) Plap (1-) =V 5 (B—A).



4 S.S. DRAGOMIR

Proof. Let t € (0,1) and h # 0 small enough such that ¢t + h € (0,1). Then
oap) t+h)—puap )

(2.7) .
(A —t=h)A+(t+h)B)— f((1—t) A+tB)
h
_f((A-DA+tB+h(B-A) - f(1-t)A+tB)
- .

Since f € G ([4, B]), hence by taking the limit over h — 0 in (2.7) we get
1y PAs) (t+h) —@u,p @)

80/(1473) (t) = }lLl—>0 h
B limf((l*i)A‘i’tB‘i’h(B*A))7f((17t)A+tB)
T hSo0 h

= v9(1—t)A-|—tB (B—A4),

which proves (2.8).
Also, we have

P(A,B) (h) — P(A,B) (0)

(,D/(A7B) (0+) = lim

h—0+ h

o S A RB) ()
h—0+ h

e SAR(B - A) - f ()
h—0+ h

= Vfa(B—-A4)

since f is assumed to be Gateaux differentiable in A. This proves (2.5).
The equality (2.6) follows in a similar way. O

Lemma 3. Let f be an operator convex function on I and (A, B) € SA; (H), with
A% B. If f € G([A, B]), then for 0 < t; <ty < 1 we have

(2.8) Vya-t)a+t B (B-A) < Vi(1-ts)A+t2B (B—A)

in the operator order.
We also have

(2.9) Vfa(B—A) <Vgu-i)atup(B—A)
and
(2.10) Via—ty)A+t:B (B-A)<Vfp(B-A4).

Proof. Let x € H. The auxiliary function ¢4 p),, is convex in the usual sense on
[0,1] and differentiable on (0, 1) and for ¢t € (0, 1)

P E+h) =0 p). @)

Plap).t) = %li% 3
. <‘P(A,B) (t+h)—ap () >
= lim T, T
h—0 h
<1. Pa,p) E+h)— v p) () >
= im T,
h—0 h

= (Vya-tyattp (B—A)z,z).
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Since for 0 < t; < t2 < 1 we have by the gadient inequality for scalar convex
functions that

SDI(A,B),:U (tl) < SDI(A,B),Q: (t2)
then we get
(2~11) <v9(17t1)A+tlB (B - A) 90795> < <Vg(17t2)A+t2B (B —A)z, $>

for all z € H, which is equivalent to the inequality (2.8) in the operator order.
Let 0 < t; < 1. By the gadient inequality for scalar convex functions we also
have

a5,z (0F) < @lap). (t1),
which, as above implies that
(Vfa(B—A)x,2) < (Vga—tya+e, B (B—A)z,x)
for all x < H, that is equivalent to the operator inequality (2.9).
The inequality (2.10) follows in a similar way. O

Corollary 1. Let f be an operator convex function on I and (A, B) € SA;(H),
with A # B. If f € G([A, B]), then for all t € (0,1) we have

(2.12) Via(B—A) <V pyaps(B—A)<Vfs(B—A).

3. REVERSES OF OPERATOR HERMITE-HADAMARD INEQUALITIES

It is well known that, if E is a Banach space and f : [0,1] — E is a continuous
function, then f is Bochner integrable, and its Bochner integral coincides with its
Riemann integral. We denote this integral as usual by fol f(t)dt.

We have the following reverse of the first operator Hermite-Hadamard inequality:

Theorem 1. Let f be an operator convex function on I and A, B € SA; (H) , with
A# B.If f € G([A, B]), then

3.1) og/o f((l—t)A—i—tB)dt—f(A;B)
gé[wB(B—A)—va—A)]-

Proof. Using integration by parts formula for the Bochner integral, we have

1/2 1 1 1/2
(3.2) /0 toap (t)dt = 59(4.B) <2> - /0 Pea,p) (t)dt

/
:1f(A+B>— Pt A+ B ar
2 2 .
and
1 1 1 1
63 [ 0-D¢lam Ot = Seun (5) - [ s@-nasmi

_ 1f(A+B)_ 1f((1—t)A+tB)dt.
2 2 1o
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If we add these two equalities, we get the following identity of interest

A+B>

(3.4) /Of((l—t)A+tB)dt—f< :

1 1/2
- / (1= ) (£) i — / bl (1) dt.
1/2 0

From Lemma 3 we have
(3.5) ?(a,5) (1/2) < ¢l p) () < ¢(a
and
(3.-6)  VIa(B—A)=ap (0+) < ¢lap) (t) < oanp(1/2), t€(0,1/2],
This implies that
(1 =t)p(ap) (1/2) <A =t)pap) (t) < (1-t) Vs (B - A)
for t € [1/2,1) and

—tp(a,p) (1/2) < —tp(a p) (1) < —tVfa (B~ A)

B (1) =Vfs(B-A), te[l/2,1)

)

for ¢ € (0,1/2].
By integrating these inequalities on the corresponding intervals, we get

1

§9am 112 < [ (1=06u (Odt < GVIa(B -4

1/2

and

1 1/2 1
—gﬁmm(wmg‘i/ t@Am@ﬁﬁg—§VﬁmB—Ay
0

By addition, we deduce that
1 1/2
0< / (=) @) (1) / 164 (1) dt
1/2 0
1
< S (Vi (B~ A) = Vfa(B - A)

and by the identity (3.4) we get (3.1). O

We have the following reverse of the second operator Hermite-Hadamard inequal-
ity:

Theorem 2. Let f be an operator convex function on I and A, B € SA; (H) , with
A+ B.If f € G([A, B]), then

(3.7) ogw— Rty Ay B)dt
< S5 (B~ A) = Via(B - ).
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Proof. Using integration by parts formula for the Bochner integral, we have

(3.8) /01 (75 - ;) Plap) (t)dt = (75 - ;) ©(A,B) (t)]: - /01 ®a,p) (1)

) (1) +9a,p) 0) !
= T45 (4.5 —/0 b, (t)

2

:7“3);]0(/1) /Olf((lt)AthB)dt.

Observe that

1
1
39 [ (t-3)dam @
1 N 1/2 /1 /
= /1/2 <f - 2) P(a,p) (1) dt — /0 <2 - t) P(a,p) (t) dt.

Therefore, we have the following identity of interest

f(B);rf(A)/Ulf((lt)AthB)dt

= 1 1) ( (t) e ( (t)
t—— ) tdt—/ <—t)<p t) dt.
/1/2 ( 2 (A,B) 0 2 (A,B)

From the inequality (3.5) we obtain

(t - ;) P(ap) (1/2) < (t - ;) Yla,p) (1)
1
2
)

and from (3.6)

namely

IN

~(3-1) ¢lam®

_(;_t)VfA(B—A), t€(0,1/2].

Integrating these inequalities on the corresponding intervals, we get

1
§<P2A,B) (1/2) < /

1/2

- (3-1) #lam W2

IN

! 1 1
(1= 3) ¥lam e < {9 1n (B~ ).

and

1, 12 11 . 1
—g%(A.B) (1/2) < - ; 5 " t)¥B (t)dtﬁfgva(B*A)-
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If we add these two inequalities, we obtain

1 10 12 /4 /
0< /1/2 (t - 2) i (8)dt — /0 (2 - t) s (1) dt

1
< g VB (B-A)=Via(B-A4),
which, by the use of identity (3.9) produces the desired result (3.7). O

Remark 1. It is well known that, if h is a C'-function defined on an open in-
terval, then the operator function h(X) is Fréchet differentiable and the derivative
Dh(A)(B) equals the Gdteauz derivative V f4 (B). So for operator convex functions
f that are of class C' on I we have the inequalities

! A+B
(3.10) Og/of((l—t)A—i—tB)dt—f( : )
< S [DF (B) (B~ 4) ~ Df (4) (B - 4)]
and
(3.11) O§W—/Olf((1—t)A+tB)dt
< L Df (B)(B ~ A) - Df (4) (B - 4]

for all A, Be SA; (H).

4. SOME EXAMPLES

We note that the function f(z) = —Inz is operator convex on (0,00). The In
function is operator Gateaux differentiable with the following explicit formula for
the derivative (cf. Pedersen [12, p. 155]):

(4.1) Ving (S) :/ (slg +T) " S(slg +T) " ds
0
forT, S >0
If we write the inequalities (3.1) and (3.7) for —In we get
1
(4.2) 0<1n<A;B>—/1n((1—t)A+tB)dt
0

UOOO (sl +A) " (B—A) (sly + A)" " ds

1
8

_/ (slg +B) ' (B—A)(sly + B) 'ds
0

and
' mA+nB
(4.3) Og/ ln((l—t)A+tB)dt_%
0
1] [ B B
SSU (slg +A) " (B — A) (sly + A) " ds
0

- /oo (sly +B) ' (B—A)(sly + B) ds
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for all A, B > 0.
The function f (x) = 7! is also operator convex on (0, 00), operator Gateaux
differentiable and

Vir(S)= —7-lsTt
for T, S > 0.
If we write the inequalities (3.1) and (3.7) for this function, then we get

A+B>‘1

(4.4) og/%u_oA+ﬁﬂ*ﬁ_( '

< é [A"'(B-A4)A™' =B " (B-A)B']
and
A1+ B! ! 4
(4.5) ogg—if—f—A(a—ﬂA+ﬂﬂ dt
< é [A"'(B-—A4)A'-B ' (B-A)B]

for all A, B > 0.
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