REVERSES AND REFINEMENTS OF FEJER’S SECOND
INEQUALITY FOR RIEMANN-STIELTJES INTEGRAL OF
CONVEX FUNCTIONS
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ABSTRACT. Let f be a continuous convex function on [a,b] and g : [a,b] — R
a function of bounded variation with the property that

g(t)zwforte [a+b,b}

and
g(a)+g(b)
2
then we have the following refinement and reverse of Féjer’s second inequality
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where f () := % [f )+ f(a+b—1t)]. Some similar results are also provided.
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1. INTRODUCTION

The following inequality holds for any convex function f defined on R

b

(1.1) f<a+b>gl/ f(t)dth, a, beR, a < b.
2 b—a J, 2

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [8]).

But this result was nowhere mentioned in the mathematical literature and was not

widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [2]. In
1974, D. S. Mitrinovi¢ found Hermite’s note in Mathesis [8]. Since (1.1) was known
as Hadamard’s inequality, the inequality is now commonly referred as the Hermite-
Hadamard inequality. For a monograph devoted to this result see [6]. The recent
survey paper [5] provides other related results.
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Let f : [a,b] — R be a convex function on [a,b] and assume that f) (a) and
fL (b) are finite. We recall the following improvement and reverse inequality for
the first Hermite-Hadamard result that has been established in [3]

(1.2) 0< % {f@ <a2+b> —f (a;b)] (b—a)

b
<5 [ toa-1(5) <500l 0 fi@)].

The constant & is best possible in both sides of (1.2).
By the convexity of f : [a,b] — R we have

13 (") SO =[O+ faro-n)<

[f (a) + £ ()]

N | =

for all ¢ € [a,b].

If g : [a,b] — R is monotonic nondecreasing on [a, b], then the Riemann-Stieltjes
integral ff f (t)dg (t) exists and by using the properties of Riemann-Stieltjes inte-
gral for monotonic nondreasing integrators, we deduce from (1.3) that the following
Féjer’s type inequalities for Riemann-Stieltjes integral

b
() o0 @i [ a0 < 5@+ 5010 - o)

If g is expressed by a Riemann-Stieltjes integral g (¢t) = f(;p(s) dv (s), with g is
monotonic nondreasing, then (1.4) becomes

) 1) [rowe < [ Forow
1

IN

< U@+r0] [ pe ).

If, for instance, p is continuous and nonnegative on [a,b] and v is monotonic non-
dreasing on [a, b], then the inequality (1.5) holds true.

Motivated by the above results, in this paper we establish some refinements and
reverses of the second Féjer’s inequality. Some related results are also provided.

2. THE RESULTS

Following Roberts and Varberg [9, p. 5 ], we recall that if f: I — R is a convex
function, then for any z¢ € I (the interior of the interval I) the limits
. f(x) = f(20) [ (@) — [ (%)
fo(@o)i= lim T and fy (o) o= lim T
exists and f (z0) < f! (20) . The functions f” and f/ are monotonic nondecreasing

on I and this property can be extended to the whole interval I (see [9, p. 7 ]).
From the monotonicity of the lateral derivatives f and f| we also have the
gradient inequality

fr@)(@—y) = f)—fy)=f@ -y

for any x, y € I.
If T = [a,b], then at the end points we also have the inequalities

f@)—f(a) > fi(a)(z—a)
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for any x € (a,b] and
fly)—f0) =) (y—0b)

for any y € [a,b).
We also have:

Theorem 1. Let f be a continuous convex function on [a,b] and g : [a,b] — R a
function of bounded variation with the property that

(2.1) g(t) > M forte {a;b,b}
and
(2.2) g(a);rg(b)>g(t) forte{a ;rb],

or, equivalently

o 2 () [(50) 105 (- a]
(e () et (4 )ate]

a b
M [9(b) — g (a)] — /a f(t) dg (t)

<b2a> g(b);g(a) /a; (ta;b) dg(t)]
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Proof. Using the integration by parts for the Riemann-Stieltjes integral, we have

[ (s0- 2520

(2.5)

and

1 <a>/;2+b (1520 g0 ar
< (19520 g0 r @




and by (2.5) we get (2.3).
Using integration by parts, we have

which gives that
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Also, we have

:/* (g(a);‘g(b)_g(b);g(a)_g(t)>dt
_/7 (g(a)_g(t»dt:/&a;b (g<a>—9<t)>d<t‘a;b>

which gives

/ (g(a) +o(0) _g@)) it
_ (b2a> 9(">29(a>+/aa2“ (ta;rb>dg(t).

Then by (2.3) we get
fﬁr(a;b) (b;a)g(b);g(a)_/; (t_a;b>dg(t)]
()[R e [ (o)
IO D 00 g~ [ rwas
()58 [ 5]

~ fita) l(b;“) 2 e, [ (t—a;b>d9(t)l

that is equivalent to (2.4). O

< fL(b)

Remark 1. If f is conver and differentiable at %rb, then the first inequality in
(2.4) becomes

(2. P [ (4w
O 50— g@i - [ 10000

provided that g satisfy the conditions (2.1) and (2.2).
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If g (¢ f p(s ) then the condition (2.1) is equivalent to

/atp(s>dv<s> 21 [ pae)

or to

(2.7) /atp(s)dv(s) > /tbp(s)dv(s)7 fort € [a;—b,b} ,

while (2.2) is equivalent to

(2.8) /t " (s dv (s) > / "o (s)dv(s) for t € {a, “*b]

2

Corollary 1. Let p: [a,b] — R be continuous and v of bounded variation on [a,b]
and such that the conditions (2.7) and (2.8) are valid, then for any f a continuous
convez function on [a,b], we have

e ()| [ rae - [ (t—ajb)pu)dv(t)]

(Y 5 [rwwe - [ (“;b—t)pu)dv(t)]

b b
§f<b>;f<>/ p(E)dv(s) = [ S @pt)dv()

b;“pr<s>dv<s>—/; (t—a;b)pu)dv(t)]
~fL (@) [b;“/:pwmv(s)—/aa;b (“;"—t)p(wdv(w].

If f is differentiable in ‘IT“’, then the first inequality in (2.9) becomes

(2.10) (““’) :(“;Lb > (t) do (t)

< ff/ p(s)dv(s)—/a £ () p () do (t)

< fL(b)
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Remark 2. Ifv(t) = ¢, t € [a,b], p is symmetric on [a,b] in the sense that
pla+b—1t)=p(t) for all t € [a,b] and p is nonnegative on [a,b], then the condi-
tions (2.7) and (2.8) hold for v (t) =1t and by (2.9) we get

(2.11) 4 <“+b> b4“/abp(s)ds/:b <ta;b)p(t)dt]
_y <a+b> b4a/abp(s)ds/aaz (a;bt>p(t)dt]

gf(b”f(‘”/bp(s)ds (o) de

a

— £ (a) lbzxa/abp(s)ds/a ’ (a;rbt)p(t)dt].

If f is differentiable in %, then

(2.12) f’(a;b) /;(a;_b—t)p(t)dt
gf() f(a) / ds_/f

We provide now some inequalities for the symmetric transform of a convex func-

tion f : [a,b] — R defined by

1

= SO+ (@+b-1).

Theorem 2. Let f be a continuous convex function on [a,b] and g : [a,b] — R a
function of bounded variation with the properties (2.1) and (2.2), then

s estfe () £ (2
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Proof. The function h : [a,b] — R defined by h (¢t) = f (a + b — t) is convex and

hy () = Tim 2ot Zh@) o fO=9)=F0)

s—0+ S s—0+
I (e e SO N (RN A0
s—0+ —S u—0— U

Sy

Similarly

a+b a+b a+b a+b
() () e ()= ()

h- (b) = —f} (a).
By writing the inequality (2.3) for the function h we hav

)
h,+< ;—b) <b2 )g()2 ()_/ib<t_“2“’>dg(t)1
([ (5) e [ (Y]

b
7“[g<b>—g<a>]—/ h(t) dg (t)

b;a)g(b);g(a)_/; (t—a;b)dg(t)]
)L

and
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If we add this inequality and (2.4) and divide by 2, then we get

;,+<a—2kb> (b_a)g(b)—g(a)_/ab t—“;b‘dg(t)]

2
57 (450) |- eizsl@_f “;bt‘dg(w]
<O 50y g1 - [ F0ras)
g%f’_(b) l(ba)g(b);g(“) /ab ta;b‘dg(t)]
L [(ba)g@)Qg(a)/ab a;bt‘dg(t)]

that is equivalent to the second and third inequalities in (2.13).
Observe that

og/b <g(t>—9(“)2+g(b))dt

+b
2

_ (b;a) g(b);g(a) _/i (t_a;b)dg(t)

2

and
0</fb (g(a);g(b)—g(t)) dt
_ <b;a> g(b);g(a) L E (t_“;b) dg (t)

If we add these inequalities, we get

0<(b—a)‘W—/; (t—“;b>dg(t)—/aa2b (“;Lb—t>dg(t)

(b) —g(a) ’
:(b—a)gi—/

2

which shows that the first inequality in (2.13) is also true. ]

Corollary 2. Letp: [a,b] — R be continuous and v of bounded variation on [a,b]
and such that the conditions (2.7) and (2.8) are valid, then for any f a continuous
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convex function on [a,b], we have
(2.15) 0<;[f’+ <a;rb> —fL (a;bﬂ
y ab B(ba) a;rthp(t)dv()
f () + f(a)

- tH p(t)dv(t).
Remark 3. Ifv(t) = t, ¢t € [a,b], p is symmetric on [a,b] in the sense that

pla+b—1t)=p(t) for all t € [a,b] and p is nonnegative on [a,b], then the condi-
tions (2.7) and (2.8) hold for v (t) =1t and by (2.15) we get

(2.16) o<{f+ <a+b>—f’_ (a;bﬂ

x/ab B(b—a)— a+b—th(t)dt

b b
L0 [yyas— [ Fapwa
S ACEYA)

Observe that, by the change of variable s = a + b —t, we have

/fa—!—b—t t)dt = /f pla+b—23) ds-/f S,

which implies that
b b
[ Faopwa= [ ropna
and by (2.16) we get

e osh[n () (452)]
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