COMPARING WEIGHTED AND INTEGRAL MEANS FOR
CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let f be a convex function on I and a, b € I with a < b. If
p: [a,b] — [0, 00) is Lebesgue integrable and symmetric, namely p (b+a —t) =
p (t) for all ¢t € [a,b], then we show in this paper among others that

b b

W/P(ff)f(m)df—ﬁ/ [ (z) dx
S L[ZO) -~ f(a) 1
T2 b—a f;p(w)dx

/:p(x) (z —a)? dz.

Some examples are given as well.

1. INTRODUCTION

The following inequality holds for any convex function f defined on R

(1.1) f(““’) <bla/bf(t)dt< f<“);rf(b)7 a, bER, a <b.

2
It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [8]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In
1974, D. S. Mitrinovi¢ found Hermite’s note in Mathesis [8]. Since (1.1) was known
as Hadamard’s inequality, the inequality is now commonly referred as the Hermite-
Hadamard inequality. For a monograph devoted to this result see [6]. Reverses of
the Hermite-Hadamard inequality are provided in [2] and [3]. The recent survey
paper [4] provides other related results.

In 1906, Fejér [7], while studying trigonometric polynomials, obtained inequali-
ties which generalize that of Hermite & Hadamard:

Theorem 1. Consider the integral f; f(@)p(t)dt, where f is a convex function in
the interval (a,b) and p is a positive function in the same interval such that

1
pla+t)y=pb-t), 0<t< §(b—a),
i.e., y = p(t) is a symmetric curve with respect to the straight line which contains

the point (% (a+ b),O) and is normal to the t-azis. Under those conditions the
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following inequalities are valid:

a b a
(1.2 f(é”)gﬁl)ﬁlf@p@ﬁsf“+f@.

p(t 2
If f is concave on (a,b), then the inequalities reverse in (1.2)

In the recent paper [5] we obtained the following refinement and reverse of Féjer’s
first inequality:

Theorem 2. Let f be a convex function on I and a, b € I, with a < b. If p :
[a,b] — [0,00) is Lebesgue integrable and symmetric, namely p(b+a —t) = p(t)

for allt € [a,b], then
1 1 b a+b , [a+Db , [a+Db
(13) 0<2fp()dt/ = ’p(t)dt{ﬁ( 2 >_f( 2 )]
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In the same paper [5] we also obtained the corresponding result for the second
Féjer’s inequality:

Theorem 3. Let f be a convex function on I and a, b € I, with a < b. If p :
[a,b] — [0,00) is Lebesgue integrable and symmetric, namely p(b+a —t) = p(t)
for allt € [a,b], then

(1.4) o<;W/ab[;(b_a)—‘t_a;rbup(t)dt
(25 (43
< f(a)—;f(b) N f:pl(t)dt /abp(t)f(t)dt

S AN

x [f2(6) = fi (a)] -

Motivated by the above results, in this paper we compare the weighted integral
mean

b
ﬁménmlz%@f@Mx

—a/f ) dx

in the case of convex functions f : [a,b] — R and integrable and nonnegative wight
p. The case of symmetric weights p on [a,b] is also analyzed. Some examples are
given as well.

with the integral mean
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2. THE MAIN RESULTS
We have the following equality:

Lemma 1. Let f : [a,b] — C be an absolutely continuous function on the interval
[a,b] and g : [a,b] — C a Lebesgue integrable function, then

(2.1 <b—a>/:g<x>f<x>dx—/abfmdx/abg(x)dw
:/abg(:c) (f(t-@f’(t)dt)da:+/:g(x) (/:(t—b)f’(t)dt> da.

Proof. We start to the Montgomery identity for an absolutely continuous function
fia,b) = R

b T b
x (b—a)—/ f(t)dt:/ (t—a)f’(t)dt+/ (t—10)f (t)dt

that holds for all € [a, b].
If we multiply this identity by ¢ () and integrate over z in [a, ], then we get

(2.2) (bfa)/ dxf/ ft dt/ (z)dx
/:g@c) </j(ta)f’(t)dt> dz+/abg<x> (/:(tb)f’(t)dt> dr,

which proves the desired identity (2.1). O
Theorem 4. If f : [a,b] — R is convez and p : [a,b] — [0,00) is Lebesgue integrable,
then
(23) g /bp(x){f’ (@) @~ a)* — . (0) (b~ 2)* } d
. b + —
2(b )fap(ac)dx a
} 1
=2 (b—a) [ p(x

gW/abm ) [ (o dz——/ fo

where A (f; o, ) is the divided difference, namely

fle)—f(B)
A(f;a,p) = ———=.
(Fron) = L=
Proof. Since f is convex, then f’ exists everywhere on [a, b] except a countable num-
ber of points and is nondecreasing, then by Cebysev’s inequality for synchronous
functions, we have

/:(t—a)f’(t)dtz xia/j(t—a)dt/:f’(t)dt

=—(x—a)[f(x)— f(a)]
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and

for z € (a,b).
These imply that

[ ([ ¢-ar@u)a= [ p@e e - @l

and

[ r@) (/ (t—b)f'(t)dt)dxz—;/ p(@) (b= 2) [ (1)~ ] (@) d.

If we add these inequalities, then we get

/abp(”f) (/:(t—a)f’(t)dt> dx+/abp(x) (/:(t—b)f'(t)dt> dx

b 1 b
[ r@@-alf@ - f@ldo =3 [ p@ b2 6~ @)ds

%

b
[ r@ -l @) -1 @) - -2 1F 0) - f @)} do
' r)—Jla 2 —f(z
[rofe-ap LDy LO-T@,

r—a — T

N~ N~ N

1

- g/abp(”f) {@=a?A(fi0,2) - (0—2)° A(f52,0) } do.

By using the first identity in (2.1) for g = p, we get the second inequality in (2.3).
By the convexity of f we have

A(fia,z) = fL (a) and fL (b)) = A(f;2,b),
which proves the first inequality in (2.3). O

In the following we provide another direct proof of the inequality between the
first and last term in (2.3) and a reverse inequality as well.

Theorem 5. If f : [a,b] — R is convex andp : [a,b] — [0,00) is Lebesgue integrable,
then

1

Jip

b
(24) sulro{t@e-o - oe-2)a

1
2(b-a)
1 b I
Sf;p(@dx/ap(x)f(x)d‘”‘b—a/a f (&) do

Lot
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We also have

1 b 1 b
@9 g [0 s [
b
%H flp /W) £ 0) (@ =a)® = £} (a) b~ 2)°] da.

Proof. Using the convexity of f we get

f@ [ -awz [e-asoaz e [ e-a

and
b b b
£ [ e-viz [ @-0f©dzr@ [ oo

namely

ACICEE RV IUTEE VAR
and

b

O b= = [ o= Odt>5f @) 0-a)

for x € (a,b).

These imply that

b
3 [ r@ @@=

Z/pr(x) (/j(t—a)f’(t)dt) dx > %fﬁr (a)/abp(x)(x_a)de

b
~3 [ @ @) -

b b b
>~ [ p) (/ <b—t>f’<t>dt)dxz—;f'<b>/ p(a) (b o) do

and, by addition

and

b b
> 5@ [ 2@ @@= 51 0) [ p@) (b-o)ds
1
>
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Since f' (z) = f! (x) for every x € (a,b) except a countable number of points, we
can write f’(z) for either f’ (x) or f) (x). Then

b b
3 [ r@ 7 @@-ade=5 [ 9@ £ @) -0 ds

= ;/abp(x)f’ (z) [(m—a)Q—(b—x)Q} dx
Z(b—a)/abp(w)f'(x) (x— a—2|—b> dz.

By making use of the first identity in (2.1) for ¢ = f and the inequality (2.6) we
get the second inequality in (2.4).
By the convexity of f we also have

b b
/p(w)f’_ (w)(w—a)Qdmsf’_(b)/ p(@) (@ - a)? d
and

b b
£y (@) / p(@) (b—2) do < / p(@) [ (@) (b— ) da.

These imply that

b b
5 [ PO @@ -0 de— 3 [ @) fi0) 6-2)da
b b
<0 [ p@ -0 5@ [ p@) b de
and by (2.6) we get O

Corollary 1. If f : [a,b] — R is convex and p : [a,b] — [0, 00) is Lebesgue integrable
and symmetric, namely p(a+b—x) = p(x) for all x € [a,b], then

fi(a) = fL (b)} 1
b—a f;p(x)d:c

2.7) % { /abp(x) (z — a)? dz

We also have

1 b I
2. f;p(x)dx/a p@) f @)= [ @
OS]
§2[ )] f;p@dm/ap(”““)(x 2 de.
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Proof. We have

b

[r@f{fi @@=~ oe-o}d
b b

=f’+(a)/ p(x)(m—afdm—f:w)/ p(@) (b - 2)? da
b b

=f’+(a)/ p(w)(w—afdx—f:(b)/ pla+b—y)(y—a)dy
b b

=f’+(a)/ p(x)(x—a)2dw—fi(b)/ p(@) (z - a)* da
a b . a

— [/ (@) — 1 ()] / p(@) (@ — a)? da,

which proves the first inequality in (2.7).

Also,
[rerr@ (-
:;/abp(x)f'(x) (:c—“;rb)d +;/abp(w)f’(w)( —a;rb>d$
=3 [r@rw (- e
+;/abp<a+b—y>f’<a+b—y>(2”— )dy
s [ r@r@ (o)
—;/:p(a:>f’<a+b—w)( —T)dw
s [r@rw - e (- 5w

By the Cebysev’s weighted inequality for synchronous functions, since both f’ (z)
and g (z) := z — “E® are nondecreasing, hence

L e

since the function p (z) (z — %) is asymmetric on [a, b] .
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Therefore
OS/:p(x)f’(w) (05" ) o= /abmx)f’(x)(z“;b)dz
5[ @-raro-n(s- ) @
<3 [r@ir@-rero-al- 5w
o -r@] [ el

which proves the second part of (2.7).
Now, observe that by the symmetry of p we have

b b b
/p<x><bfz>2dz:/p<a+bfy><y—a>2dy:/ p () (z — a)? d,

which gives that
b b
Fo [ p@ -0t i@ [ 2@ 6
b b
—1'0) [ p@ -0 L@ [ p@) -0 de

b
— [0~ £ @] [ p) @0 de
and by (2.5) we get (2.8). 0

By utilising the first inequality in (2.7) and the inequality (2.8) we can state the
following result as well:

Corollary 2. If f : [a,b] — R is convex and p : [a,b] — [0, 00) is Lebesgue integrable
and symmetric, then

flf p) f (@ dx*i/f

LB - @] 1 S o da
<3 |[E5L f;p@)dx/ap”( ) da.

3. SOME EXAMPLES

(2.9)

We consider the symmetric weight p (z) = |z — %£2|, & € [a,b]. We have

/abp(x)dx—/ab x
/:p(x)(x—afdm:/ab x

b b 2
a+b B a+b 1 3
/ap(m)‘x ) ‘dm/a <JL‘ ) ) dx = % (b—a)”.

a+b

'da:—4(ba)2,

ath (:1c—a)2dgﬁ:i(b—a)4

and
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By the inequality (2.7) for the convex function f : [a,b] — R we have

(3.1) ~ 2 -0 [f ) - f, (@)

4 b a+b 1 b
(3.2) (b—a)Z/a T — 5 'f( )d ~3 a/ﬂf(:c)dx
< o b= a) [f.0) - £ ()]

The second inequality in (3.1) is better than the corresponding inequality in
(3.2).
Consider the symmetric weight p(z) = (b—z) (x — a), x € [a,b]. We have

b b
/p(m)dx:/ (b—x)(m—a)d:t:%(b—a)s,

and

b b
/p(:c)(:c—a)de:/ (b—z)(:z:fa)?’d:v:i(b—a)5
a+b 1

/abp(xwa;b‘dx/ab(bx)(za) P

By the inequality (2.7) for the convex function f : [a,b] — R we have

(b—a)'.

T —

I

33 L0 @]0-a)
6 b 1 b
S(ba)g,/a(b—x)(m—a)f(x)dm—b_a/af(x)dx

<[f ()~ £ (a)] 332 (b—a),
while from (2.9) we get

6 b 1t
(3.4) (ba)g/a (bfx)(a:fa)f(:c)dmfb_a/a f(z)dx
< 2 [L0) - fL @] (00

The second inequality in (3.3) is better than the corresponding inequality in (3.4).
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