
COMPARING WEIGHTED AND INTEGRAL MEANS FOR
CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Let f be a convex function on I and a; b 2 I with a < b: If
p : [a; b]! [0;1) is Lebesgue integrable and symmetric, namely p (b+ a� t) =
p (t) for all t 2 [a; b] ; then we show in this paper among others that����� 1R b

a p (x) dx

Z b

a
p (x) f (x) dx� 1

b� a

Z b

a
f (x) dx

�����
� 1

2

"
f 0� (b)� f 0+ (a)

b� a

#
1R b

a p (x) dx

Z b

a
p (x) (x� a)2 dx:

Some examples are given as well.

1. Introduction

The following inequality holds for any convex function f de�ned on R

(1.1) f

�
a+ b

2

�
� 1

b� a

Z b

a

f(t)dt � f(a) + f(b)

2
; a; b 2 R, a < b:

It was �rstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [8]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite�s result.
E. F. Beckenbach, a leading expert on the history and the theory of convex

functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In
1974, D. S. Mitrinovíc found Hermite�s note in Mathesis [8]. Since (1.1) was known
as Hadamard�s inequality, the inequality is now commonly referred as the Hermite-
Hadamard inequality. For a monograph devoted to this result see [6]. Reverses of
the Hermite-Hadamard inequality are provided in [2] and [3]. The recent survey
paper [4] provides other related results.
In 1906, Fejér [7], while studying trigonometric polynomials, obtained inequali-

ties which generalize that of Hermite & Hadamard:

Theorem 1. Consider the integral
R b
a
f (t) p (t) dt, where f is a convex function in

the interval (a; b) and p is a positive function in the same interval such that

p (a+ t) = p (b� t) ; 0 � t � 1

2
(b� a) ;

i.e., y = p (t) is a symmetric curve with respect to the straight line which contains
the point

�
1
2 (a+ b) ; 0

�
and is normal to the t-axis. Under those conditions the
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following inequalities are valid:

(1.2) f

�
a+ b

2

�
� 1R b

a
p (t) dt

Z b

a

f (t) p (t) dt � f (a) + f (b)

2
:

If f is concave on (a; b), then the inequalities reverse in (1.2)

In the recent paper [5] we obtained the following re�nement and reverse of Féjer�s
�rst inequality:

Theorem 2. Let f be a convex function on I and a; b 2 I; with a < b: If p :
[a; b] ! [0;1) is Lebesgue integrable and symmetric, namely p (b+ a� t) = p (t)
for all t 2 [a; b] ; then

0 � 1

2

1R b
a
p (t) dt

Z b

a

����t� a+ b2
���� p (t) dt �f 0+�a+ b2

�
� f 0�

�
a+ b

2

��
(1.3)

� 1R b
a
p (t) dt

Z b

a

p (t) f (t) dt� f
�
a+ b

2

�

� 1

2

1R b
a
p (t) dt

Z b

a

����t� a+ b2
���� p (t) dt �f 0� (b)� f 0+ (a)� :

In the same paper [5] we also obtained the corresponding result for the second
Féjer�s inequality:

Theorem 3. Let f be a convex function on I and a; b 2 I; with a < b: If p :
[a; b] ! [0;1) is Lebesgue integrable and symmetric, namely p (b+ a� t) = p (t)
for all t 2 [a; b] ; then

0 � 1

2

1R b
a
p (t) dt

Z b

a

�
1

2
(b� a)�

����t� a+ b2
����� p (t) dt(1.4)

�
�
f 0+

�
a+ b

2

�
� f 0�

�
a+ b

2

��
� f (a) + f (b)

2
� 1R b

a
p (t) dt

Z b

a

p (t) f (t) dt

� 1

2

1R b
a
p (t) dt

Z b

a

�
1

2
(b� a)�

����t� a+ b2
����� p (t) dt

�
�
f 0� (b)� f 0+ (a)

�
:

Motivated by the above results, in this paper we compare the weighted integral
mean

1R b
a
p (x) dx

Z b

a

p (x) f (x) dx

with the integral mean
1

b� a

Z b

a

f (x) dx

in the case of convex functions f : [a; b]! R and integrable and nonnegative wight
p. The case of symmetric weights p on [a; b] is also analyzed. Some examples are
given as well.
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2. The Main Results

We have the following equality:

Lemma 1. Let f : [a; b]! C be an absolutely continuous function on the interval
[a; b] and g : [a; b]! C a Lebesgue integrable function, then

(b� a)
Z b

a

g (x) f (x) dx�
Z b

a

f (x) dx

Z b

a

g (x) dx(2.1)

=

Z b

a

g (x)

�Z x

a

(t� a) f 0 (t) dt
�
dx+

Z b

a

g (x)

 Z b

x

(t� b) f 0 (t) dt
!
dx:

Proof. We start to the Montgomery identity for an absolutely continuous function
f : [a; b]! R

f (x) (b� a)�
Z b

a

f (t) dt =

Z x

a

(t� a) f 0 (t) dt+
Z b

x

(t� b) f 0 (t) dt

that holds for all x 2 [a; b] :
If we multiply this identity by g (x) and integrate over x in [a; b] ; then we get

(b� a)
Z b

a

g (x) f (x) dx�
Z b

a

f (t) dt

Z b

a

g (x) dx(2.2)

=

Z b

a

g (x)

�Z x

a

(t� a) f 0 (t) dt
�
dx+

Z b

a

g (x)

 Z b

x

(t� b) f 0 (t) dt
!
dx;

which proves the desired identity (2.1). �

Theorem 4. If f : [a; b]! R is convex and p : [a; b]! [0;1) is Lebesgue integrable,
then

1

2

1

(b� a)
R b
a
p (x) dx

Z b

a

p (x)
n
f 0+ (a) (x� a)

2 � f 0� (b) (b� x)
2
o
dx(2.3)

� 1

2

1

(b� a)
R b
a
p (x) dx

�
Z b

a

p (x)
n
(x� a)2�(f ; a; x)� (b� x)2�(f ;x; b)

o
dx

� 1R b
a
p (x) dx

Z b

a

p (x) f (x) dx� 1

b� a

Z b

a

f (x) dx;

where �(f ;�; �) is the divided di¤erence, namely

�(f ;�; �) =
f (�)� f (�)

�� � :

Proof. Since f is convex, then f 0 exists everywhere on [a; b] except a countable num-
ber of points and is nondecreasing, then by µCeby�ev�s inequality for synchronous
functions, we haveZ x

a

(t� a) f 0 (t) dt � 1

x� a

Z x

a

(t� a) dt
Z x

a

f 0 (t) dt

=
1

2
(x� a) [f (x)� f (a)]
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and Z b

x

(t� b) f 0 (t) dt � 1

b� x

Z b

x

(t� b) dt [f (b)� f (x)]

= �1
2
(b� x) [f (b)� f (x)]

for x 2 (a; b) :
These imply thatZ b

a

p (x)

�Z x

a

(t� a) f 0 (t) dt
�
dx � 1

2

Z b

a

p (x) (x� a) [f (x)� f (a)] dx

and Z b

a

p (x)

 Z b

x

(t� b) f 0 (t) dt
!
dx � �1

2

Z b

a

p (x) (b� x) [f (b)� f (x)] dx:

If we add these inequalities, then we getZ b

a

p (x)

�Z x

a

(t� a) f 0 (t) dt
�
dx+

Z b

a

p (x)

 Z b

x

(t� b) f 0 (t) dt
!
dx

� 1

2

Z b

a

p (x) (x� a) [f (x)� f (a)] dx� 1
2

Z b

a

p (x) (b� x) [f (b)� f (x)] dx

=
1

2

Z b

a

p (x) f(x� a) [f (x)� f (a)]� (b� x) [f (b)� f (x)]g dx

=
1

2

Z b

a

p (x)

�
(x� a)2 f (x)� f (a)

x� a � (b� x)2 f (b)� f (x)
b� x

�
dx

=
1

2

Z b

a

p (x)
n
(x� a)2�(f ; a; x)� (b� x)2�(f ;x; b)

o
dx:

By using the �rst identity in (2.1) for g = p; we get the second inequality in (2.3).
By the convexity of f we have

�(f ; a; x) � f 0+ (a) and f 0� (b) � �(f ;x; b) ;

which proves the �rst inequality in (2.3). �

In the following we provide another direct proof of the inequality between the
�rst and last term in (2.3) and a reverse inequality as well.

Theorem 5. If f : [a; b]! R is convex and p : [a; b]! [0;1) is Lebesgue integrable,
then

1

2

1

(b� a)
R b
a
p (x) dx

Z b

a

p (x)
n
f 0+ (a) (x� a)

2 � f 0� (b) (b� x)
2
o
dx(2.4)

� 1R b
a
p (x) dx

Z b

a

p (x) f (x) dx� 1

b� a

Z b

a

f (x) dx

� 1R b
a
p (x) dx

Z b

a

p (x) f 0 (x)

�
x� a+ b

2

�
dx:
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We also have

1R b
a
p (x) dx

Z b

a

p (x) f (x) dx� 1

b� a

Z b

a

f (x) dx(2.5)

� 1

2

1

(b� a)
R b
a
p (x) dx

Z b

a

p (x)
h
f 0� (b) (x� a)

2 � f 0+ (a) (b� x)
2
i
dx:

Proof. Using the convexity of f we get

f 0� (x)

Z x

a

(t� a) dt �
Z x

a

(t� a) f 0 (t) dt � f 0+ (a)
Z x

a

(t� a) dt

and

f 0� (b)

Z b

x

(b� t) dt �
Z b

x

(b� t) f 0 (t) dt � f 0+ (x)
Z b

x

(b� t) dt

namely
1

2
f 0� (x) (x� a)

2 �
Z x

a

(t� a) f 0 (t) dt � 1

2
f 0+ (a) (x� a)

2

and
1

2
f 0� (b) (b� x)

2 �
Z b

x

(b� t) f 0 (t) dt � 1

2
f 0+ (x) (b� x)

2

for x 2 (a; b) :
These imply that

1

2

Z b

a

p (x) f 0� (x) (x� a)
2
dx

�
Z b

a

p (x)

�Z x

a

(t� a) f 0 (t) dt
�
dx � 1

2
f 0+ (a)

Z b

a

p (x) (x� a)2 dx

and

� 1
2

Z b

a

p (x) f 0+ (x) (b� x)
2
dx

� �
Z b

a

p (x)

 Z b

x

(b� t) f 0 (t) dt
!
dx � �1

2
f 0� (b)

Z b

a

p (x) (b� x)2 dx

and, by addition

1

2

Z b

a

p (x) f 0� (x) (x� a)
2
dx� 1

2

Z b

a

p (x) f 0+ (x) (b� x)
2
dx(2.6)

�
Z b

a

p (x)

�Z x

a

(t� a) f 0 (t) dt
�
dx�

Z b

a

p (x)

 Z b

x

(b� t) f 0 (t) dt
!
dx

� 1

2
f 0+ (a)

Z b

a

p (x) (x� a)2 dx� 1
2
f 0� (b)

Z b

a

p (x) (b� x)2 dx

=
1

2

Z b

a

p (x)
n
f 0+ (a) (x� a)

2
dx� f 0� (b) (b� x)

2
o
dx:



6 S. S. DRAGOMIR

Since f 0� (x) = f
0
+ (x) for every x 2 (a; b) except a countable number of points, we

can write f 0 (x) for either f 0� (x) or f
0
+ (x) : Then

1

2

Z b

a

p (x) f 0� (x) (x� a)
2
dx� 1

2

Z b

a

p (x) f 0+ (x) (b� x)
2
dx

=
1

2

Z b

a

p (x) f 0 (x)
h
(x� a)2 � (b� x)2

i
dx

= (b� a)
Z b

a

p (x) f 0 (x)

�
x� a+ b

2

�
dx:

By making use of the �rst identity in (2.1) for g = f and the inequality (2.6) we
get the second inequality in (2.4).
By the convexity of f we also haveZ b

a

p (x) f 0� (x) (x� a)
2
dx � f 0� (b)

Z b

a

p (x) (x� a)2 dx

and

f 0+ (a)

Z b

a

p (x) (b� x)2 dx �
Z b

a

p (x) f 0+ (x) (b� x)
2
dx:

These imply that

1

2

Z b

a

p (x) f 0� (x) (x� a)
2
dx� 1

2

Z b

a

p (x) f 0+ (x) (b� x)
2
dx

� 1

2
f 0� (b)

Z b

a

p (x) (x� a)2 dx� 1
2
f 0+ (a)

Z b

a

p (x) (b� x)2 dx

and by (2.6) we get �

Corollary 1. If f : [a; b]! R is convex and p : [a; b]! [0;1) is Lebesgue integrable
and symmetric, namely p (a+ b� x) = p (x) for all x 2 [a; b] ; then

1

2

�
f 0+ (a)� f 0� (b)

b� a

�
1R b

a
p (x) dx

Z b

a

p (x) (x� a)2 dx(2.7)

� 1R b
a
p (x) dx

Z b

a

p (x) f (x) dx� 1

b� a

Z b

a

f (x) dx

� 1

2

�
f 0� (b)� f 0+ (a)

� 1R b
a
p (x) dx

Z b

a

p (x)

����x� a+ b2
���� dx:

We also have

1R b
a
p (x) dx

Z b

a

p (x) f (x) dx� 1

b� a

Z b

a

f (x) dx(2.8)

� 1

2

�
f 0� (b)� f 0+ (a)

b� a

�
1R b

a
p (x) dx

Z b

a

p (x) (x� a)2 dx:
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Proof. We have

Z b

a

p (x)
n
f 0+ (a) (x� a)

2 � f 0� (b) (b� x)
2
o
dx

= f 0+ (a)

Z b

a

p (x) (x� a)2 dx� f 0� (b)
Z b

a

p (x) (b� x)2 dx

= f 0+ (a)

Z b

a

p (x) (x� a)2 dx� f 0� (b)
Z b

a

p (a+ b� y) (y � a)2 dy

= f 0+ (a)

Z b

a

p (x) (x� a)2 dx� f 0� (b)
Z b

a

p (x) (x� a)2 dx

=
�
f 0+ (a)� f 0� (b)

� Z b

a

p (x) (x� a)2 dx;

which proves the �rst inequality in (2.7).
Also,

Z b

a

p (x) f 0 (x)

�
x� a+ b

2

�
dx

=
1

2

Z b

a

p (x) f 0 (x)

�
x� a+ b

2

�
dx+

1

2

Z b

a

p (x) f 0 (x)

�
x� a+ b

2

�
dx

=
1

2

Z b

a

p (x) f 0 (x)

�
x� a+ b

2

�
dx

+
1

2

Z b

a

p (a+ b� y) f 0 (a+ b� y)
�
a+ b

2
� y
�
dy

=
1

2

Z b

a

p (x) f 0 (x)

�
x� a+ b

2

�
dx

� 1
2

Z b

a

p (x) f 0 (a+ b� x)
�
x� a+ b

2

�
dx

=
1

2

Z b

a

p (x) [f 0 (x)� f 0 (a+ b� x)]
�
x� a+ b

2

�
dx:

By the µCeby�ev�s weighted inequality for synchronous functions, since both f 0 (x)
and g (x) := x� a+b

2 are nondecreasing, hence

Z b

a

p (x) f 0 (x)

�
x� a+ b

2

�
dx

� 1R b
a
p (x)

Z b

a

p (x) f 0 (x) dx

Z b

a

p (x)

�
x� a+ b

2

�
dx = 0

since the function p (x)
�
x� a+b

2

�
is asymmetric on [a; b] :
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Therefore

0 �
Z b

a

p (x) f 0 (x)

�
x� a+ b

2

�
dx =

�����
Z b

a

p (x) f 0 (x)

�
x� a+ b

2

�
dx

�����
=
1

2

�����
Z b

a

p (x) [f 0 (x)� f 0 (a+ b� x)]
�
x� a+ b

2

�
dx

�����
� 1

2

Z b

a

p (x) jf 0 (x)� f 0 (a+ b� x)j
����x� a+ b2

���� dx
� 1

2

�
f 0� (b)� f 0+ (a)

� Z b

a

p (x)

����x� a+ b2
���� dx;

which proves the second part of (2.7).
Now, observe that by the symmetry of p we haveZ b

a

p (x) (b� x)2 dx =
Z b

a

p (a+ b� y) (y � a)2 dy =
Z b

a

p (x) (x� a)2 dx;

which gives that

f 0� (b)

Z b

a

p (x) (x� a)2 dx� f 0+ (a)
Z b

a

p (x) (b� x)2 dx

= f 0� (b)

Z b

a

p (x) (x� a)2 dx� f 0+ (a)
Z b

a

p (x) (x� a)2 dx

=
�
f 0� (b)� f 0+ (a)

� Z b

a

p (x) (x� a)2 dx

and by (2.5) we get (2.8). �

By utilising the �rst inequality in (2.7) and the inequality (2.8) we can state the
following result as well:

Corollary 2. If f : [a; b]! R is convex and p : [a; b]! [0;1) is Lebesgue integrable
and symmetric, then����� 1R b

a
p (x) dx

Z b

a

p (x) f (x) dx� 1

b� a

Z b

a

f (x) dx

�����(2.9)

� 1

2

�
f 0� (b)� f 0+ (a)

b� a

�
1R b

a
p (x) dx

Z b

a

p (x) (x� a)2 dx:

3. Some Examples

We consider the symmetric weight p (x) =
��x� a+b

2

�� ; x 2 [a; b] : We haveZ b

a

p (x) dx =

Z b

a

����x� a+ b2
���� dx = 1

4
(b� a)2 ;Z b

a

p (x) (x� a)2 dx =
Z b

a

����x� a+ b2
���� (x� a)2 dx = 3

32
(b� a)4

and Z b

a

p (x)

����x� a+ b2
���� dx = Z b

a

�
x� a+ b

2

�2
dx =

1

12
(b� a)3 :
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By the inequality (2.7) for the convex function f : [a; b]! R we have

� 3

16
(b� a)

�
f 0� (b)� f 0+ (a)

�
(3.1)

� 4

(b� a)2
Z b

a

����x� a+ b2
���� f (x) dx� 1

b� a

Z b

a

f (x) dx

� 1

6

�
f 0� (b)� f 0+ (a)

�
(b� a) ;

while from (2.9) we get����� 4

(b� a)2
Z b

a

����x� a+ b2
���� f (x) dx� 1

b� a

Z b

a

f (x) dx

�����(3.2)

� 3

16
(b� a)

�
f 0� (b)� f 0+ (a)

�
:

The second inequality in (3.1) is better than the corresponding inequality in
(3.2).
Consider the symmetric weight p (x) = (b� x) (x� a) ; x 2 [a; b] : We haveZ b

a

p (x) dx =

Z b

a

(b� x) (x� a) dx = 1

6
(b� a)3 ;

Z b

a

p (x) (x� a)2 dx =
Z b

a

(b� x) (x� a)3 dx = 1

20
(b� a)5

and Z b

a

p (x)

����x� a+ b2
���� dx = Z b

a

(b� x) (x� a)
����x� a+ b2

���� dx = 1

32
(b� a)4 :

By the inequality (2.7) for the convex function f : [a; b]! R we have

� 3

20

�
f 0� (b)� f 0+ (a)

�
(b� a)(3.3)

� 6

(b� a)3
Z b

a

(b� x) (x� a) f (x) dx� 1

b� a

Z b

a

f (x) dx

�
�
f 0� (b)� f 0+ (a)

� 3
32
(b� a) ;

while from (2.9) we get����� 6

(b� a)3
Z b

a

(b� x) (x� a) f (x) dx� 1

b� a

Z b

a

f (x) dx

�����(3.4)

� 3

20

�
f 0� (b)� f 0+ (a)

�
(b� a) :

The second inequality in (3.3) is better than the corresponding inequality in (3.4).
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