
SOME INEQUALITIES FOR WEIGHTED AND INTEGRAL
MEANS OF CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Let f : [a; b] ! R be convex and p : [a; b] ! R a Lebesgue inte-
grable and symmetric function such that the condition

0 �
Z x

a
p (s) ds �

Z b

a
p (s) ds for all x 2 [a; b]

holds. We show in this paper among others that����� 1R b
a p (x) dx

Z b

a
p (x) f (x) dx� 1

b� a

Z b

a
f (x) dx

�����
�
f 0� (b)� f 0+ (a)

b� a
1R b

a p (x) dx

Z b

a

�Z x

a
p (s) ds

�
(b� x) dx

� 1

2

�
f 0� (b)� f 0+ (a)

�
(b� a) :

Some examples are also given.

1. Introduction

The following inequality holds for any convex function f de�ned on R

(1.1) f

�
a+ b

2

�
� 1

b� a

Z b

a

f(t)dt � f(a) + f(b)

2
; a; b 2 R, a < b:

It was �rstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [8]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite�s result.
E. F. Beckenbach, a leading expert on the history and the theory of convex

functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In
1974, D. S. Mitrinovíc found Hermite�s note in Mathesis [8]. Since (1.1) was known
as Hadamard�s inequality, the inequality is now commonly referred as the Hermite-
Hadamard inequality. For a monograph devoted to this result see [6]. Reverses of
the Hermite-Hadamard inequality are provided in [2] and [3]. The recent survey
paper [4] provides other related results.
In 1906, Fejér [7], while studying trigonometric polynomials, obtained inequali-

ties which generalize that of Hermite & Hadamard:

Theorem 1. Consider the integral
R b
a
f (t) p (t) dt, where f is a convex function in

the interval (a; b) and p is a positive function in the same interval such that

p (a+ t) = p (b� t) ; 0 � t � 1

2
(b� a) ;
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i.e., y = p (t) is a symmetric curve with respect to the straight line which contains
the point

�
1
2 (a+ b) ; 0

�
and is normal to the t-axis. Under those conditions the

following inequalities are valid:

(1.2) f

�
a+ b

2

�
� 1R b

a
p (t) dt

Z b

a

f (t) p (t) dt � f (a) + f (b)

2
:

If f is concave on (a; b), then the inequalities reverse in (1.2)

In the recent paper [5] we obtained the following re�nement and reverse of Féjer�s
�rst inequality:

Theorem 2. Let f be a convex function on I and a; b 2 I; with a < b: If p :
[a; b] ! [0;1) is Lebesgue integrable and symmetric, namely p (b+ a� t) = p (t)
for all t 2 [a; b] ; then

0 � 1

2

1R b
a
p (t) dt

Z b

a

����t� a+ b2
���� p (t) dt �f 0+�a+ b2

�
� f 0�

�
a+ b

2

��
(1.3)

� 1R b
a
p (t) dt

Z b

a

p (t) f (t) dt� f
�
a+ b

2

�

� 1

2

1R b
a
p (t) dt

Z b

a

����t� a+ b2
���� p (t) dt �f 0� (b)� f 0+ (a)� :

In the same paper [5] we also obtained the corresponding result for the second
Féjer�s inequality:

Theorem 3. Let f be a convex function on I and a; b 2 I; with a < b: If p :
[a; b] ! [0;1) is Lebesgue integrable and symmetric, namely p (b+ a� t) = p (t)
for all t 2 [a; b] ; then

0 � 1

2

1R b
a
p (t) dt

Z b

a

�
1

2
(b� a)�

����t� a+ b2
����� p (t) dt(1.4)

�
�
f 0+

�
a+ b

2

�
� f 0�

�
a+ b

2

��
� f (a) + f (b)

2
� 1R b

a
p (t) dt

Z b

a

p (t) f (t) dt

� 1

2

1R b
a
p (t) dt

Z b

a

�
1

2
(b� a)�

����t� a+ b2
����� p (t) dt

�
�
f 0� (b)� f 0+ (a)

�
:

Motivated by the above results, in this paper we compare the weighted integral
mean

1R b
a
p (x) dx

Z b

a

p (x) f (x) dx

with the integral mean

1

b� a

Z b

a

f (x) dx
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in the case of convex functions f : [a; b] ! R and integrable wight p satisfying the
condition

0 �
Z x

a

p (s) ds �
Z b

a

p (s) ds for all x 2 [a; b] :

The case of symmetric weights p on [a; b] is also analyzed. Some examples are given
as well.

2. The Results

We start to the following identity that is of interest in itself as well:

Lemma 1. Let f : [a; b]! C be an absolutely continuous function on the interval
[a; b] and g : [a; b]! C a Lebesgue integrable function, then we have the equalities

(b� a)
Z b

a

g (x) f (x) dx�
Z b

a

f (x) dx

Z b

a

g (x) dx(2.1)

=

Z b

a

 Z b

x

g (s) ds

!
(x� a) f 0 (x) dx+

Z b

a

�Z x

a

g (s) ds

�
(x� b) f 0 (x) dx:

Proof. We start to the Montgomery identity for an absolutely continuous function
f : [a; b]! R

f (x) (b� a)�
Z b

a

f (t) dt =

Z x

a

(t� a) f 0 (t) dt+
Z b

x

(t� b) f 0 (t) dt

that holds for all x 2 [a; b] :
If we multiply this identity by g (x) and integrate over x in [a; b] ; then we get

(b� a)
Z b

a

g (x) f (x) dx�
Z b

a

f (t) dt

Z b

a

g (x) dx(2.2)

=

Z b

a

g (x)

�Z x

a

(t� a) f 0 (t) dt
�
dx+

Z b

a

g (x)

 Z b

x

(t� b) f 0 (t) dt
!
dx:

Using integration by parts, we getZ b

a

g (x)

�Z x

a

(t� a) f 0 (t) dt
�
dx(2.3)

=

Z b

a

�Z x

a

(t� a) f 0 (t) dt
�
d

�Z x

a

g (s) ds

�
=

�Z x

a

(t� a) f 0 (t) dt
��Z x

a

g (s) ds

�����b
a

�
Z b

a

�Z x

a

g (s) ds

�
(x� a) f 0 (x) dx
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=

 Z b

a

(t� a) f 0 (t) dt
! Z b

a

g (s) ds

!

�
Z b

a

�Z x

a

g (s) ds

�
(x� a) f 0 (x) dx

=

Z b

a

 Z b

a

g (s) ds�
Z x

a

g (s) ds

!
(x� a) f 0 (x) dx

=

Z b

a

 Z b

x

g (s) ds

!
(x� a) f 0 (x) dx

and

Z b

a

g (x)

 Z b

x

(t� b) f 0 (t) dt
!
dx(2.4)

=

Z b

a

 Z b

x

(t� b) f 0 (t) dt
!
d

�Z x

a

g (s) ds

�

=

 Z b

x

(t� b) f 0 (t) dt
!�Z x

a

g (s) ds

������
b

a

+

Z b

a

�Z x

a

g (s) ds

�
(x� b) f 0 (x) dx

=

Z b

a

�Z x

a

g (s) ds

�
(x� b) f 0 (x) dx;

which proves the second identity on (2.1). �

Theorem 4. Let f : [a; b] ! R be convex and p : [a; b] ! R a Lebesgue integrable
function such that

(2.5) 0 �
Z x

a

p (s) ds �
Z b

a

p (s) ds for all x 2 [a; b] :

Then we have the inequalities

f 0+ (a)

Z b

a

 Z b

x

p (s) ds

!
(x� a) dx� f 0� (b)

Z b

a

�Z x

a

p (s) ds

�
(b� x) dx(2.6)

� (b� a)
Z b

a

p (x) f (x) dx�
Z b

a

f (x) dx

Z b

a

p (x) dx

� f 0� (b)
Z b

a

 Z b

x

p (s) ds

!
(x� a) dx� f 0+ (a)

Z b

a

�Z x

a

p (s) ds

�
(b� x)
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or, equivalently,Z b

a

�Z x

a

�
f 0+ (a) p (a+ b� s)� f 0� (b) p (s)

�
ds

�
(b� x) dx(2.7)

� (b� a)
Z b

a

p (x) f (x) dx�
Z b

a

f (x) dx

Z b

a

p (x) dx

�
Z b

a

�Z x

a

�
f 0� (b) p (a+ b� s)� f 0+ (a) p (s)

�
ds

�
(b� x) dx:

Proof. We have for f convex and p : [a; b]! R a Lebesgue integrable function that

(b� a)
Z b

a

p (x) f (x) dx�
Z b

a

f (x) dx

Z b

a

p (x) dx(2.8)

=

Z b

a

 Z b

x

p (s) ds

!
(x� a) f 0 (x) dx�

Z b

a

�Z x

a

p (s) ds

�
(b� x) f 0 (x) dx:

By the convexity of f we have that

(2.9) (x� a) f 0� (b) � (x� a) f 0 (x) � (x� a) f 0+ (a)

and

(2.10) (b� x) f 0� (b) � (b� x) f 0 (x) � (b� x) f 0+ (a)

for all x 2 (a; b) :
From Z x

a

p (s) ds �
Z b

a

p (s) ds =

Z x

a

p (s) ds+

Z b

x

p (s) ds;

which implies that
R b
x
p (s) ds � 0 for all x 2 (a; b) :

From (2.9) we get that Z b

x

p (s) ds

!
(x� a) f 0� (b) �

 Z b

x

p (s) ds

!
(x� a) f 0 (x)

�
 Z b

x

p (s) ds

!
(x� a) f 0+ (a)

and from (2.10) that

�
�Z x

a

p (s) ds

�
(b� x) f 0+ (a) � �

�Z x

a

p (s) ds

�
(b� x) f 0 (x)

� �
�Z x

a

p (s) ds

�
(b� x) f 0� (b)

all x 2 (a; b) :
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If we integrate these inequalities over x 2 [a; b] and add the obtained results, we
get

f 0� (b)

Z b

a

 Z b

x

p (s) ds

!
(x� a) dx� f 0+ (a)

Z b

a

�Z x

a

p (s) ds

�
(b� x)

�
Z b

a

 Z b

x

p (s) ds

!
(x� a) f 0 (x) dx�

Z b

a

�Z x

a

p (s) ds

�
(b� x) f 0 (x) dx

� f 0+ (a)
Z b

a

 Z b

x

p (s) ds

!
(x� a) dx� f 0� (b)

Z b

a

�Z x

a

p (s) ds

�
(b� x) dx:

By using the equality (2.1) we get

f 0+ (a)

Z b

a

 Z b

x

p (s) ds

!
(x� a) dx� f 0� (b)

Z b

a

�Z x

a

p (s) ds

�
(b� x) dx(2.11)

� (b� a)
Z b

a

p (x) f (x) dx�
Z b

a

f (x) dx

Z b

a

p (x) dx

� f 0� (b)
Z b

a

 Z b

x

p (s) ds

!
(x� a) dx� f 0+ (a)

Z b

a

�Z x

a

p (s) ds

�
(b� x) ;

namely (2.6).
If we change the variable y = a+ b� x; then we haveZ b

a

 Z b

x

p (s) ds

!
(x� a) dx =

Z b

a

 Z b

a+b�y
p (s) ds

!
(b� y) dy:

Also by the change of variable u = a+ b� s; we getZ b

a+b�y
p (s) ds =

Z y

a

p (a+ b� u) du;

which implies thatZ b

a

 Z b

x

p (s) ds

!
(x� a) dx =

Z b

a

�Z x

a

p (a+ b� s) ds
�
(b� x) dx:

Therefore

f 0� (b)

Z b

a

 Z b

x

p (s) ds

!
(x� a) dx� f 0+ (a)

Z b

a

�Z x

a

p (s) ds

�
(b� x)

= f 0� (b)

Z b

a

�Z x

a

p (a+ b� s) ds
�
(b� x) dx

� f 0+ (a)
Z b

a

�Z x

a

p (s) ds

�
(b� x) dx

=

Z b

a

�Z x

a

�
f 0� (b) p (a+ b� s)� f 0+ (a) p (s)

�
ds

�
(b� x) dx
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and

f 0+ (a)

Z b

a

 Z b

x

p (s) ds

!
(x� a) dx� f 0� (b)

Z b

a

�Z x

a

p (s) ds

�
(b� x) dx

= f 0+ (a)

Z b

a

�Z x

a

p (a+ b� s) ds
�
(b� x) dx

� f 0� (b)
Z b

a

�Z x

a

p (s) ds

�
(b� x) dx

=

Z b

a

�Z x

a

�
f 0+ (a) p (a+ b� s)� f 0� (b) p (s)

�
ds

�
(b� x) dx;

and by (2.11) we get (2.7). �

We say that the function p : [a; b]! R is symmetric on [a; b] if

p (a+ b� t) = p (t) for all t 2 [a; b] :

Corollary 1. Let f : [a; b]! R be convex and p : [a; b]! R a Lebesgue integrable
and symmetric function such that the condition (2.5) holds. Then we have����� 1R b

a
p (x) dx

Z b

a

p (x) f (x) dx� 1

b� a

Z b

a

f (x) dx

�����(2.12)

�
f 0� (b)� f 0+ (a)

b� a
1R b

a
p (x) dx

Z b

a

�Z x

a

p (s) ds

�
(b� x) dx

� 1

2

�
f 0� (b)� f 0+ (a)

�
(b� a) :

Proof. Since p is symmetric, then p (a+ b� s) = p (s) for all s 2 [a; b] and by (2.7)
we get �

f 0+ (a)� f 0� (b)
� Z b

a

�Z x

a

p (s) ds

�
(b� x) dx

� (b� a)
Z b

a

p (x) f (x) dx�
Z b

a

f (x) dx

Z b

a

p (x) dx

�
�
f 0� (b)� f 0+ (a)

� Z b

a

�Z x

a

p (s) ds

�
(b� x) dx;

which is equivalent to the �rst part of (2.12).
Since 0 �

R x
a
p (s) ds �

R b
a
p (x) dx; henceZ b

a

�Z x

a

p (s) ds

�
(b� x) dx �

Z b

a

p (x) dx

Z b

a

(b� x) dx

=
1

2
(b� a)2

Z b

a

p (x) dx

and the last part of (2.12) is proved. �

Remark 1. If the function p is nonnegative and symmetric then the inequality
(2.12) holds true.
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3. Some Examples

If we consider the weight p : [a; b]! [0;1); p (x) =
��x� a+b

2

�� ; thenZ b

a

�Z x

a

p (s) ds

�
(b� x) dx

=

Z b

a

�Z x

a

����s� a+ b2
���� ds� (b� x) dx

=

Z a+b
2

a

�Z x

a

����s� a+ b2
���� ds� (b� x) dx

+

Z b

a+b
2

�Z x

a

����s� a+ b2
���� ds� (b� x) dx

=

Z a+b
2

a

�Z x

a

�
a+ b

2
� s
�
ds

�
(b� x) dx

+

Z b

a+b
2

 Z a+b
2

a

�
a+ b

2
� s
�
ds+

Z x

a+b
2

�
s� a+ b

2

�!
(b� x) dx

=

Z a+b
2

a

�
a+ b

2
(x� a)� x

2 � a2
2

�
(b� x) dx

+

Z b

a+b
2

 Z a+b
2

a

�
a+ b

2
� s
�
ds+

Z x

a+b
2

�
s� a+ b

2

�
ds

!
(b� x) dx:

We have Z a+b
2

a

�
a+ b

2
(x� a)� x

2 � a2
2

�
(b� x) dx

=
1

2

Z a+b
2

a

(b� x) (x� a) (a+ b� x� a) dx

=
1

2

Z a+b
2

a

(b� x)2 (x� a) dx = 11

384
(b� a)4

and Z b

a+b
2

 Z a+b
2

a

�
a+ b

2
� s
�
ds+

Z x

a+b
2

�
s� a+ b

2

�
ds

!
(b� x) dx

=

Z b

a+b
2

 
1

8
(b� a)2 + 1

2

�
x� a+ b

2

�2!
(b� x) dx

=
1

8
(b� a)2

Z b

a+b
2

(b� x) dx+ 1
2

Z b

a+b
2

�
x� a+ b

2

�2
(b� x) dx

=
7

384
(b� a)4 :

Therefore Z b

a

�Z x

a

p (s) ds

�
(b� x) dx = 3

64
(b� a)4 :
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Since
R b
a

��x� a+b
2

�� dx = 1
4 (b� a)

2
; hence

1R b
a
p (x) dx

Z b

a

�Z x

a

p (s) ds

�
(b� x) dx = 3

16
(b� a)2 :

By utilising (2.12) we get����� 4

(b� a)2
Z b

a

����x� a+ b2
���� f (x) dx� 1

b� a

Z b

a

f (x) dx

�����(3.1)

� 3

16
(b� a)

�
f 0� (b)� f 0+ (a)

�
;

where f is a convex function on [a; b] :
Consider now the symmetric function p (x) = (b� x) (x� a) ; x 2 [a; b] : ThenZ x

a

p (s) ds =

Z x

a

(b� s) (s� a) ds = �1
6
(x� a)2 (2x� 3b+ a) ; x 2 [a; b]

and Z b

a

�Z x

a

p (s) ds

�
(b� x) dx = �1

6

Z b

a

(x� a)2 (2x� 3b+ a) (b� x) dx

=
1

40
(b� a)5 :

Also Z b

a

p (x) dx =

Z b

a

(b� x) (x� a) dx = 1

6
(b� a)3

and
1R b

a
p (x) dx

Z b

a

�Z x

a

p (s) ds

�
(b� x) dx = 3

20
(b� a)2

and by (2.12) we obtain����� 6

(b� a)3
Z b

a

(b� x) (x� a) f (x) dx� 1

b� a

Z b

a

f (x) dx

�����(3.2)

� 3

20
(b� a)

�
f 0� (b)� f 0+ (a)

�
;

where f is a convex function on [a; b] :
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