BOUNDS FOR THE DIFFERENCE BETWEEN WEIGHTED AND
INTEGRAL MEANS OF CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. Let f : [a,b] — R be convex and p : [a,b] — R a Lebesgue inte-
grable function such that

1 1t
/ p(s)ds < / p(s)ds for all € (a,b).
rT—a /g b—x J,

Then we have the inequalities

71 (@ [/:zpu)dx—“%”/:p(x)dw}
g/abp(mf(x)dwﬁ/abf(z)dx/abp(a:)dx
< fL(b) {/aba:p(z)dat— GTH/abp(x)dm}.

Some examples are also given.

1. INTRODUCTION

The following inequality holds for any convex function f defined on R

b

(1.1) f<a+b>gl/ f(t)dtgif(awrf(b), a, bER, a<b.
2 b—a J, 2

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [8]).

But this result was nowhere mentioned in the mathematical literature and was not

widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In
1974, D. S. Mitrinovié¢ found Hermite’s note in Mathesis [8]. Since (1.1) was known
as Hadamard’s inequality, the inequality is now commonly referred as the Hermite-
Hadamard inequality. For a monograph devoted to this result see [6]. Reverses of
the Hermite-Hadamard inequality are provided in [2] and [3]. The recent survey
paper [4] provides other related results.

In 1906, Fejér [7], while studying trigonometric polynomials, obtained inequali-
ties which generalize that of Hermite & Hadamard:

Theorem 1. Consider the integral f; f (&) p(t)dt, where f is a convex function in
the interval (a,b) and p is a positive function in the same interval such that

pla+t)=p(-1)), OStS%(b—a),
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e, y=mp (t) 18 a symmetric curve with respect to the straight line which contains
the point ( (a+0b), 0) and is normal to the t-azis. Under those conditions the
following inequalities are valid:

a+b 1 ’ fla)+ f(b)
a1 (f5) < g T s T

If f is concave on (a,b), then the inequalities reverse in (1.2)

In the recent paper [5] we obtained the following refinement and reverse of Féjer’s
first inequality:

Theorem 2. Let f be a convex function on I and a, b € I, with a < b. If p :
[a,b] — [0,00) is Lebesgue integrable and symmetric, namely p (b+a—1t) = p(t)

for allt € [a,b], then
1 1 b a+b , [a+b , [a+b
W vssmaal - rorls (457) - (57)

. ’ a+b
<f:l7(t)dt/ap(t)f()dt f< 2 )
’ a
;f pl(t)dt/ - ;rb‘p(t)dt[f’_(b)f“a)].

In the same paper [5] we also obtained the corresponding result for the second
Féjer’s inequality:

Theorem 3. Let f be a convex function on I and a, b € I, with a < b. If p :
[a,b] — [0,00) is Lebesgue integrable and symmetric, namely p (b+a—1t) = p(t)
for allt € [a,b], then

(1.4) 0<1b1/ab[;(b—a)—‘t—a;rbup(t)dt

X
kﬁ
+\
Q
+
S
N———
|
™
7 N
s
| 4
(wpl
N———
| IR |

IN

chptna | oo
X [f,( )_f+( )]

Motivated by the above results, in this paper we establish upper and lower
bounds for the difference

LZUf(@—/f m/ p (@) de

in the case of convex functions f : [a,b] — R and integrable wight p satisfying the
condition

/ p(s) ds<7/ s)ds for all x € (a,b).

Tr—a
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The case of monotonic nondecreasing weights p on [a,b] is also analyzed. Some
examples are given as well.

2. MAIN RESULTS

We start with the following identity:

Lemma 1. Let f : [a,b] — C be an absolutely continuous function on the interval
[a,b] and g : [a,b] — C a Lebesgue integrable function, then we have the equality

(2.1) <b—a>/:g(x>f<x>dx—/bf<x>dx/abg(x>dx

b S S N S S
:/ (x—a)(b— (f 9(s)d f“g()d>f'(z)d:c.

— T r—a

Proof. We start to the Montgomery identity for an absolutely continuous function
fila,b] = R

. (b—a)—/ f(t)dt:/z(t—a)f’(t)dt—k/ (t—b) f (1) dt

that holds for all z € [a, b].
If we multiply this identity by ¢ () and integrate over z in [a, ], then we get

(2.2) (b—a)/ da:—/f dt/ (2) da
=/abg<m>(/a (t—a)f()d)dx+[ ()(/:(t—b)f’(t)dt>dw-

Using integration by parts, we get

23) [ow ([ a-ar @)
[ ([ o-arae(fone)
([ e-aroa) ([ swa) b
/ab ([ aeas)@-a)s @)as

:</ab(t—a)f’(t)dt> (/abg@ds)
_/ab </jg(s)d8> (@ —a) f' (x) de
_/ab (/abg(s)ds—/jg(s)d8> (z—a)f () dz
/ab (/xbg(s)ds> (x —a) f' () dx

a
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(2.4) / ’ (@) ( / i) f’(t)dt) do
:/ab </:(t—b)f’(t)dt>d(/:g(s)ds)
= (/:(t—b)f’(t)dt) (/:g(s)ds) b

+/ab (/:g@)ds) (2= b) f (x) da
=/: (/:g<s>ds) (e~ b) f' (2) do.

Therefore

(b—a)/abg(x)f(a:)dx—/abf(t)dt/abg(x)dx
:/ab</:g<>ds>< o) f >dw—/ab(/;g<>ds)<b 2) f (@) do

b S ’ S)as
:/(x—a)(b (fg 0)d fag()d>f’(x)dz

T r—a
and the identity (2.1) is proved. O

We have:

Theorem 4. Let f : [a,b] — R be conver and p : [a,b] — R a Lebesgue integrable
function such that

T b
(2.5) xia/ ()dsgbi / (s)ds for all x € (a,b).

Then we have the inequalities

f+()[/ab p(e)do ;b/pmdzl
g/ d:cf /f dz/
gfL(b)Vab <>dx“;”/ap<z>d:c]-

(2.6)
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Proof. Since f is convex, then f! (a) < f'(x) < f’ (b) for almost every x € [a,b].

By the condition (2.5) we get

’ s [Tp(s)ds
(2.7) fjr(a)/ (z —a)(b— (f p( xd _fap()d )dx

Tr—a

b b s)as N Ss)as
</ (xa><bx>< 20000 _ J, ple)d )f'(m)dz

' ’ S “p(s)ds
<r [ @-ap-: <me 5)d f“””)m

T r—a

Observe that, for f () = x in Lemma 1 we have

b Iipas _ [pae

(z—a)(b— ( - )dx
/ b b b

(b—a) / p(x xdac—/ xdx j p(z

(b—a) [/bp ) xdx —a;b/abp(x)dx],

while for g = p we get

Tr—a

—(ba)/abp(:c)f(x)d:c/abf(x)dm/abp(x)d:c.

y (2.7) we then get (2.6).

b s “p(s)ds
/(:cfa)(b—z (fp s)d f“p()d>f’(x)dm

O

Corollary 1. Let f : [a,b] — R be convex and p : [a,b] — R a monotonic nonde-

creasing function, then we have the inequalities

(2 fi(a)l/ab <>dx—a‘2”/bp<x>dx]
S/abp(w)f w——/f dm/ () do
<) Vabmp(g;)dx—“;b/a p(x)dx].

Proof. If p : [a,b] — R is a monotonic nondecreasing function, then

1 /:P(S)d8<p(x) < bix/wbp(s)ds

r—a

for « € (a,b). Then by applying Theorem 4 we get the desired result (2.8).

O
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Corollary 2. Let f : [a,b] — R be convexr and monotonic nondecreasing and
p: [a,b] = R a monotonic nondecreasing function, then we have the inequalities

(2.9 0< £ () [/ <>dw—“§”/p<m>dx]

gLZUf M———/f m/ p (@) de
< . (b) l/abwp(m)d:c— “‘2”’/& p(ac)da:] .

Iffp Ydz > 0, then

1 b a+b
2.10 0< dr —
(210) f+()[f;p($) / p () —

ot | 70w [

, b a+b
<7 lfp / p(r)de -

Proof. Since f is nondecreasing convex, hence f’, (a) > 0. Also, by the Cebysev’ s
inequality for synchronous functions we have

b b
/xp(a:)dx—a;—b/p(m)dsz.

By employing (2.8) we derive (2.9). O

We say that the function p : [a,b] — R is asymmetric if
pla+b—2)=—p(z) for all x € [a,b].

Ifp:a,b] — Ris asymmetric and Lebesgue integrable, then f b p(s)ds=0.If z €
[a,b] then [ p(s ds—l—f p(s)ds = 0, which implies that f p(s)ds=—["p(s

Corollary 3. Let f : [a,b] — R be convex and p : [a,b] — R an asymmetric
Lebesgue integrable function such that

(2.11) /zp(s) ds <0 for all x € [a,b],

or, equivalently '

(2.12) 0< /bp(s) ds for all x € [a,b],

then we have the inequalities '

ew " ep (@) de < / @) f (x) e < 71 (8 / p (a) e

Proof. The condition

x b
! / p(s)ds < 5 ! / p(s)ds for all x € (a,b)
a —T Jg

r—a
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1 1
<
x_a/ap(S)ds_ b_gj/ap(S)dS

! / p(s)ds + —— mp(s)dsso,

T—a b—=x

is equivalent to

namely

which is equivalent to (2.11).
By utilising (2.6) we derive the desired result (2.13). O

If ¢ : [a,b] — R is integrable, then the function p(s) = ¢(s) —g(a+b—s) is
asymmetric. By the condition (2.11) we have

/z[Q(S)—q(a—i—b—s)]dsSO

namely

(2.14) /Iq(s)dsg/wq(a—kb—s)ds,xe[a,b].

If we put u=a+b— s, then

T b
/ q(a+b—s)ds:/ q(s)ds
a at+b—z
and we obtain

T b
(2.15) / q(s)ds < / q(s)ds, x € [a,b].

We also have

and

We can state:
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Corollary 4. Let f : [a,b] — R be conver and q : [a,b] — R a Lebesgue integrable
function such that (2.14) holds, then we have the inequalities

e s [ (-G awas [ iwe
<o [ (=) awas

[f(x)— fla+b—2)], z € [a,}].

where

3. SOME EXAMPLES

We consider the function p (z) = z, © € [a,b] . Observe that

b b b b
/xp(l‘)dx—a; /P(x)dx:/:n2dx—a;r /xdz

b% 4+ ab+a? a+b\>

Let f: [a,b] — R be convex, then by (2.9) we get

a+b
2

f@yde < L o) (0
[ r@ie< o=’ 0.

2n+1
)"

b
(3.1) %(b—a)?’f;(a)g/ of (@) dz —

For n a natural number, the function p (z) = (3: — , is increasing, then

for f : [a,b] — R a convex function, we have by (2.9)

b 2n+1 b 2n+1
+0b a+b a+b
< f! _aro - —
0< £ (a) l/a x(a: 5 ) dx > /. (m 5 ) dx]
b 2n+1 b b 2n+1

a+b 1 a+b

< _ = _

_/a (m 5 ) f(x)de bia/af(x)dx/a (a: 5 ) dx
b b 2n+1 b b b 2n+1

Sf'_(b)[/J”(:c—a;L ) dx—a;r / (z—a;r ) dz| .

Observe that
b _a+b 2n+1d _a+b b _a+b 2n+1d
’ z |z 5 T 5 ; T 5 T

b a+ b a+ b 2n+1 b a+ b 2n+2
= T — T — dr = T — dx
o 2 2 a 2

B 2 b —a 2n+3 B (b _ a)Qn,+3
2 +3 ~ (2n+ 3) 2242

2
b 2n+1
b
/ (za; ) dz =0,

and
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which gives

2n+3 b 2n+1
(3:2) Oﬁfi(a)%ﬁ/ (w_a—;—b) f(z)dx

(2n+3)
2n+3
< /! b ( a’)
< f20) (2n + 3) 22n+2
for f : [a,b] — R a convex function and n a natural number.
Consider the function p(z) = —1 for z € [a,b] C (0,00). Then p is increasing

on [a,b] and by (2.9) we get

/(o a+b/ /abdx
<t [ [ 18
<11 (0) ‘Lg”/abcf—/abdx_,

which is equivalent to

£l (a) [“"2”’ (Inb—1na) — (b—a)

Sia/abf(x)da:(lnb—lna)—_/abf(;)

< fL(b) [a—i—b (Inb—1Ina) — (b—a)} ,
namely
(3-3) [ (a ) [A(a,b) = L(a,b)]
/ o 1 /b f @)
b —a "~ Inb—Ina e T
(a,b) = L (a,b)],
where A (a,b) = a;rb is the arithmetic mean and L (a,b) = —=f— is the logarithmic

mean of the positive numbers a < b.
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