SOME INEQUALITIES FOR WEIGHTED AND INTEGRAL
MEANS OF OPERATOR CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let f be an operator convex function on I and A, B € SA; (H),
the convex set of selfadjoint operators with spectra in I. If A # B and f, as
an operator function, is Gateaux differentiable on

[A,B] :={(1—-t)A+tB|tel0,1]},
while p : [0,1] — [0, 00) is Lebesgue integrable satisfying the condition

T 1
0< / p(s)ds < / p(s)ds for all T € [0,1]
0 0

and symmetric, namely p (1 —t) = p(¢) for all t € [0,1], then

_m/ol (/OTp(s)ds) (1—7)dr [V (B—A)—Via(B - A)
0

1 1 1
< [ sr-nareBar— [ fa-natrpdr
fo p(r)dr Jo o
< 1
" Jop(ndr
Some particular examples of interest are also given.

/01 (/OTp(s)ds) (1=7)dr[Vfs(B—A)—Vfa(B-A).

1. INTRODUCTION

A real valued continuous function f on an interval I is said to be operator convex
(operator concave) on I if

(1.1) FA=XNA+AB) < (2)(1 =) f(A)+Af(B)

in the operator order, for all A € [0,1] and for every selfadjoint operator A and B
on a Hilbert space H whose spectra are contained in I. Notice that a function f is
operator concave if — f is operator convex.

A real valued continuous function f on an interval I is said to be operator
monotone if it is monotone with respect to the operator order, i.e., A < B with
Sp(A),Sp(B) C I imply f(A4) < f(B).

For some fundamental results on operator convex (operator concave) and oper-
ator monotone functions, see [8] and the references therein.

As examples of such functions, we note that f (¢) =¢" is operator monotone on
[0,00) if and only if 0 < r < 1. The function f (¢t) = ¢" is operator convex on (0, c0)
if either 1 <r <2 or —1 < r < 0 and is operator concave on (0,00) if 0 < r < 1.
The logarithmic function f (¢) = Int is operator monotone and operator concave
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2 S.S. DRAGOMIR

on (0,00). The entropy function f (¢t) = —tInt is operator concave on (0,00). The
exponential function f (t) = e’ is neither operator convex nor operator monotone.

In [5] we obtained among others the following Hermite-Hadamard type inequal-
ities for operator convex functions f: I — R

1
(1.2) f(A+B)§/O F((1=s)A+sB)yds < LA HTDB)

2 2 ’

where A, B are selfadjoint operators with spectra included in I.
For two distinct operators A, B € SA; (H) we consider the segment of selfadjoint
operators

[A,Bl:={(1-t)A+tB|te[0,1]}.
We observe that A, B € [A,B] and [A,B] C SA; (H).
A continuous function g : SA; (H) — B(H) is said to be Géteaux differentiable

in A € SA; (H) along the direction B € B (H) if the following limit exists in the
strong topology of B (H)

(1.3) Vga (B) := lim

If the limit (1.3) exists for all B € B (H), then we say that f is Géateaur differentiable
in A and we can write g € G (A) . If this is true for any A in a subset S from SA; (H)
we write that g € G (S).

In the recent paper [7], we obtained the following operator Féjer’s type inequal-
1ties:

Theorem 1. Let f be an operator convex function on I and A, B € SA;(H),
with A # B. If f € G([A,B]) and p : [0,1] — [0,00) is Lebesque integrable and
symmetric, namely p (1 —t) = p (t) for all t € [0,1], then

(1.4) 0</01p(t)f((1—t)A+tB)dt—(/Olp(t)dt>f(

()

In particular, for p =1 we get

A+B>

1

5| pOdn) (91 (8= )= V14 (5 - ).

(1.5) Og/()1f((1—t)A+tB)dt—f<A;B>

< S [Vf5 (B—A) = Via (B - A).

We also have:

Theorem 2. Let f be an operator convex function on I and A, B € SA;(H),
with A # B. If f € G([A,B]) and p : [0,1] — [0,00) is Lebesgue integrable and
symmetric, namely p (1 —t) = p(t) for all t € [0,1], then

(1.6) 0§</0 p(t)dt)f(A);f(B)—/op(t)f((l—t)A+tB)dt

g;/; (é—‘t—;’)p@)dt[VfB(B—A)—VfA<B—A>].



INTEGRAL MEANS OF OPERATOR CONVEX FUNCTIONS 3

In particular, for p =1 we get

f(A)+ (B
2

(1.7) 0< )—/lf((l—t)A+tB)dt
0

< L IVI5 (B~ A) = Via(B - A).

For recent inequalities for operator convex functions see [1]-[6] and [9]-[18].
Motivated by the above results, we establish in this paper some upper and lower
bounds in the operator order for the difference

/op(T)f((l—T)A—i-TB)dT—/Op(T)dT/O f((1l—=7)A+7B)dr

in the case when the operator convex function f is Gateaux differentiable as a
function of selfadjoint operators. Two particular examples of interest for f (z) =
—Inz and f (z) = 27! are also given.

2. SOME PRELIMINARY FACTS

Let f be an operator convex function on I. For A, B € SA;(H), the class
of all selfadjoint operators with spectra in I, we consider the auxiliary function
¢a,p) : 0,1] — SA; (H) defined by

(2.1) ©(a,B) t):=f((1—-t)A+1tB).

For z € H we can also consider the auxiliary function ¢4 py,, : [0,1] — R defined
by

(2.2) PeaB)a (t) = <80(A,B) (t) z, 9E> =(f(1-t)A+tB)z,z).
We have the following basic fact:

Lemma 1. Let f be an operator convex function on I. For any A, B € SAr (H),
P (a,p) 18 well defined and convez in the operator order. For any (A, B) € SA; (H)
and x € H the function ¢4 py,, is convez in the usual sense on [0,1].

Proof. If (A,B) € SA; (H) and t € [0, 1] the convex combination (1 —t) A+ ¢B is
a selfadjoint operator with the spectrum in I showing that SA; (H) is convex in
the Banach algebra B (H) of all bounded linear operators on H. By the continuous
functional calculus of selfadjoint operator we also conclude that f ((1 —t) A+ tB)
is a selfadjoint operator with spectrum in 1.

Let A, B € SA; (H) and ty, t2 € [0,1]. If o, 8 > 0 with @ + 8 = 1, then

Pa,p) (at1 + Bta) == f((1 —aty — Bt2) A+ (at1 + Bt2) B)
=f((a+B—ati — Bta) A+ (at1 + Bt2) B)
=f(all—t1)A+t:1B]+B[(1 —t2) A+ t2B])
<af(l-t1))A+tB)+Bf((1—t2) A+t2B)
=apap) (t1) + Bea p) (t2),

which proves the convexity ¢4 py in the operator order.
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Ley A, Be SA;(H) and x € H. If t1, t2 € [0,1] and «, 8 > 0 with a + 5 = 1,
then

Pa,B)e (at1 + Bt2) = <90(A,B) (aty + Bta) $»9C>
<[0‘90(A,B) (t1) + Boa,p (t2)} 337$>
=a <<P(A,B) (t1) 90793> +5 <80(A,B) (t2) 95733>

= QP By (t1) + 8P By (t2),
which proves the convexity of ¢4 gy, on [0,1]. O

IN

Lemma 2. Let f be an operator convex function on I and A, B € SA; (H), with
A # B. If f € G([A, B]), then the auziliary function ¢4 gy is differentiable on
(0,1) and

(2.3) Pap) ) =Vianaps (B—A).
Also we have for the lateral derivative that

(2.4) gp'(A73) (0+)=Vfa(B—-A)
and

(2.5) ‘PI(A,B) (1-)=Vfs(B-A4).

Proof. Let t € (0,1) and h # 0 small enough such that ¢t + h € (0,1). Then
o E+h)— v p @)

(2.6) -
F(A—t—h)A+({t+h)B)— f((1—t)A+tB)
- h
(-t A+tB+h(B-A) ~ f(1-1)A+1B)
- .

Since f € G ([A, B]), hence by taking the limit over A — 0 in (2.6) we get

. P (t+h)—wam(t)
Pla,p) (t) = lim L St

h—0 h
oy S =D A+B+R(B—A) — f((1—t) A+1B)
_hlir%) h

= Vg(lft)AthB (B—A4),

which proves (2.7).
Also, we have

¢a,B) (h) = ¥ap) (0)
m

P(ap) (0+) =

h—0+ h

o (A=W ATRB) — f(4)
h—0+ h

o SAER(B—A) - f(4)
h—0+ h

=Vfa(B-A)

since f is assumed to be Gateaux differentiable in A. This proves (2.4).
The equality (2.5) follows in a similar way. O
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Lemma 3. Let [ be an operator convex function on I and A, B € SA; (H), with
A+#B. If f € G([A, B]), then for 0 <t <ty <1 we have

(2.7) Vya-t)a+B (B —A) <Vgu_tyate, (B —A)

in the operator order.
We also have

(2~8) Via (B - A) < Vg(l—tl)A-i-tlB (B - A)
and
(2.9) Vga-t)ates (B—A) <V fp(B—A).

Proof. Let x € H. The auxiliary function ¢4 p)., is convex in the usual sense on
[0,1] and differentiable on (0,1) and for ¢ € (0, 1)

. L)DA,B ,$(t+h)_@A7B ,w(t)
P(a,p). (1) = lim A5 A5

h—0 h

) <<P(A,B) (t+h)—ap () >
= lim T,x
(

h—0 h

<1. ap) E+h) = p () >

= 1m ZT,T
h—0 h

= <v9(1—t)A+tB (B—-A)z, 95> .

Since for 0 < t; < t2 < 1 we have by the gadient inequality for scalar convex
functions that

(a5, (1) < @lap). (t2),
then we get
(2.10) (Voa-ta+en (B = A)z,2) < (Vga—tyare, (B - A)z,z)

for all z € H, which is equivalent to the inequality (2.7) in the operator order.
Let 0 < t; < 1. By the gadient inequality for scalar convex functions we also
have

<P/(A,B)7w (0+) < <p/(A,B),a: (t1),
which, as above, implies that
(Vfa(B—A)x,2) < (Vga—tya+e, (B—A)z,x)

for all z € H, that is equivalent to the operator inequality (2.8).
The inequality (2.9) follows in a similar way. O

Corollary 1. Let f be an operator convex function on I and A, B € SA;(H),
with A # B. If f € G([A, B]), then for all t € (0,1) we have

(2.11) Vfa(B—A) <Vfa-nanup(B—A) <Vfp(B-A).
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3. MAIN RESULTS

We start to the following identity that is of interest in itself as well:

Lemma 4. Let [ be an operator convex function on I and A, B € SA; (H), with
A#B. If fe G([A,B]) and g : [0,1] — C is a Lebesgue integrable function, then
we have the equality

1 1 1
(3.1) / 0 (7)o p) (r)dr - / o (r)dr / oo (1) dr

= [ ([ 961a5) vt (r1r
+f 1 ([ 968) (= ptam (ar

Proof. Integrating by parts in the Bochner’s integral, we have

T 1
| tetam ®de+ [ ¢= 1m0
0 T
T 1
= oam (7) - / s (B dt— (7= 1) pap (7) / oo (B)dt

T

1
= oiam (1) — / oo (B)di

that holds for all 7 € [0, 1].
If we multiply this identity by ¢ (1) and integrate over 7 in [0, 1], then we get

82 [ 9@ e @ir- [ 9@rir [ v
/019(7)</0Tt90(AB) >d7+/019 (/1 1)<P/(A,B)(t)dt>d7-

Using integration by parts, we get

(3.3) /0 (7 ( / - )(t)dt> dr
/01 (/ s Oa)a( [ o)
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= ([ o) ([ tetam )
[ ([ s6as) retam ar
/
/

[

1(/019 ds—/ )ds) 4 p (T)d7
1(/19 )TsoAB()dT

(3.4) / ) (/ RUERIETN ()t ar

- (/ (t= 1) ¢l @t) ([ gas)

1
+/01 ([ a8) (=gt (ar
-/ 1 ([ 961as) (7= Dt ()

which proves the identity in (3.1). O

0

Theorem 3. Let f be an operator convex function on I and A, B € SA; (H) , with
A#B. If f€G([A, B]) and p: [0,1] — R is a Lebesgue integrable function such
that

(3.5) OS/OTP(S)dSS/O p(s)ds for all T € [0,1],

then we have the inequalities

(3.6) /0 1 < / o) ds> 1drV fa (B — A)
/01 </07p(5)d5> (1= 7)drV s (B — A)

(T)f((lT)A+TB)dT/Olp(f)dT/Olf((lT)A+TB)dT
g/ol /Tlp(s)ds)TdTVfB(B—A)

_/01 (/OTp(s)ds> (1-7)drVfa(B - A)

IN
h
3
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or, equivalently,
1 T
a0 [ a-n ([ b9V B4 s Vi@ - A)as) ir
0 0
1 1 1
—7)A dr — d —7T)A d
< [ roi=-nasemyar- [ v [ fa-n s
1 T
< [a-n ([ pa-9ViaE -2 -p:)Vin (B A)ds) ar
0 0
Proof. We have for ¢4 gy and p: [0, 1] — R a Lebesgue integrable function that

(3.8) / p(r) poap) (7) dr - / p () dr / oo () dr

-/ 1 < / () ds) (7) gy (7)
- 1 ( [ v ds) (1= 7) ¢z () dr.

By the properties of (4 p) from the above section, we have in the operator order
that

(3.9) T, (1=) 2 794, p) (T) = T¥(a 5 (0+)
and
(3.10) (L =7)¢(ap) (1-) = (1 =7)p(a,p) (1) = (1 —7) (a5 (0+)
for all 7 € (0,1).
From

/OTp(s)dSS/Olp(s)ds/OTp(s)der/Tlp(s)ds,

we get that fjp(s) ds >0 for all 7 € (0,1).
From (3.9) we get that

(/ e ) 7.5 (1)

Vv
7 N
—

>

b

O

ISH

@
N————

S

S

)

and from (3.10) that

([ peas) =116t 04 < = ([ 6)d5) (1= D) (0
( [ b ) (1= 7) Pl (1)

all 7 € (0,1).
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If we integrate these inequalities over 7 € [0, 1] and add the obtained results,
then we get

[ ([ veras) saretam aor- [ ([ p61as) 0= aretan. 0
> | 1 (/ ) ) 7z ()t~ [ 1 ([ peas) =) ptam (ar
> [ ([ r6as)rarctan, 00 - [ ([ p61as) 0= narys 1)

By using the equality (2.1) we get

(3.11) /01 (/Tlp(s) ds) TdT¢( 4 ) (0+)

1 ([ #61ds) 1= rrdrelsm 1

1

p(7) pian () dr - / p(r)dr / o (1) dr
1 1
/ p(s)ds) rdrl s (1)

1 T
[ ([ »e ds> (1= ) drgl s g (04),

and since @, p) (1=) = Vfp (B — A) and @[, p, (0+) = Vfp (B — A) hence we
obtain (3.6).
If we change the variable y = 1 — 7, then we have

/01 (/Tlp(s)ds) TdTZ/Ol (/11 p(s)ds) (1—y)dy.

-y

IN

I
S— S— —

Also by the change of variable u = 1 — s, we get

1 y
| vds= [ p-wn
1-y 0
which implies that

Al </T1p(5)ds) TdrzAl (/OTp(l—s)d5> (1—7)dr.
Therefore
1 1p(s) ds ) TdTe(4 gy (1-) = ! Tp(s) ds | (1 =7)dr¢( 4 p) (0+)
h (7o) [ ([ o)

= [ ([ pa-9as) @ -nardy 0o
[ ([ i) a-narun 00
= [0 ([ =9 etan 1) 06 e (0] ds) ar
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and

p
— /01 </0Tp(l —s) ds) (1 —7)dr¢(a p) (04)

_ /01 (/OTp(s) ds) (1=7)dr¢(ap (1-)

1 T
= [Fa=n ([ [pa -5 ean 04 - p o) 1)) as) ar
and by (3.11) we get (3.7). O
We say that the function p : [0,1] — R is symmetric on [0, 1] if
p(l—t)=p(t) forallt €[0,1].

Corollary 2. Let f be an operator convex function on I and A, B € SA; (H), with
A#B. If f € G([A B]) and p : [0,1] — R a Lebesgue integrable and symmetric
function such that the condition (8.5) holds, then we have

(3.12) — % Vip(B—A)—Vfa(B—A)

Sfolp(lr)dT/ol (/OTp(s)ds> (1-r7)dr

Vfg(B—A)—Vfa(B-A4)]
1 B 1
W/O P F(=r)A+rB)ir— [ (=7 A+rB)dr

< 1p(17)d7/01 </0Tp(5)ds) (1—7)dr

fB(B—A)=Vfa(B-A)

X

< -~ [Vfp(B—A)—Vfs(B-A).

Proof. Since p is symmetric, then p (1 — s) = p(s) for all s € [0,1] and by (3.7) we
get

/01 (/OTp(s) ds) (1—7)dr [@I(A’B) (04) = (a5 (1_)}
< /Olp(T)%D(AB) (T)dT_/Olp(T>dT/01(p(A7B) (r)dr

< [¢am 1) = ¢lan 04)] [ 1 ([ peras)a-mar,

which is equivalent to the second and third inequalities (3.12).
Since 0 < [ p(s)ds < folp(r) dr, hence

[ ([[500) o= [P [ 0= [

and the last part of (3.12) is proved. O
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Remark 1. If the function p is nonnegative and symmetric then the inequality
(8.12) holds true.

Remark 2. It is well known that, if f is a C'-function defined on an open in-
terval, then the operator function f(X) is Fréchet differentiable and the derivative
Df(A)(B) equals the Gateaux derivative V fa (B) . So for operator convex functions
f that are of class C* on I and p : [0,1] — R is a Lebesque integrable and symmetric
weight on [0,1] such that the condition (3.5) holds, we have the inequalities

(313) — 5[DF(B) (B~ A)~ Df(4) (B - A)

SW/OI ([ peas)a-nar

X [Df(B)(B—A) = Df(A)(B—A)]

1 1 1
W/O p(T)f((l—T)A—l—TB)dT—/O F((1—7)A+7B)dr

1 1 T
Sfolp(q-)dT/o </0 p(s)ds)(lT)dT
x [Df(B) (B —A)—Df(A) (B - A)]

<5 [Df(B)(B - A) - Df(A) (B - A)

M| —

for A, Be SA; (H)

If we consider the weight p : [0,1] — [0,00), p(s) = }s - %| , then

1 T 1
:/ s—ds)(l—r)dr

o \Jo 2

3 /T 1
=/ / s—ds)(l—T)dT

0 0 2
/ S—ds)(l—T)dT

3 0
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‘We have
2 /1 7-2) /5
-7 — — 1_7' def 1—7’ l—Td
[ (Gr-%)a-nar=3 ["a-nra-n
1 !
75/0 (1—-7) Td’l'—384
and
1 % 1 T
/é /0 (2—s>ds+A <s—2>ds (1-m7)dr
1 o1 1\?
_/§ <8+2<T—2> (1—-7)dr
1/t 1/t 1\? 7
Therefore

Since fol ‘T - %‘ dr = %, hence

it (1 /1</0Tp(s)ds>(1—r)d7':136.

Utilising (3.12) for symmetric weight p : [0,1] — [0,00), p(s) = |s — 5|, we get

(3.14) - 1% Vs (B—A)—Vfa(B—A)

1
<af
0

< 2 (Vi (B~ A) - Via (B - A),

1 1
T—2'f((1—T)A+TB)dT—/O f(1l=7)A+7B)dr

where f is an operator convex function on I, A, B € SA; (H), with A # B and
feG (A B]).

Consider now the symmetric function p(s) = (1 —s) s, x € [0,1]. Then

/0 p(s)ds:/a (1—S)Sd82—67 (27 —-3), 7 €10,1]

and
/01 ([ pera) arir= —é/ g
Also
[ o= [y
and

fp(lm/ ([reas)a-nir=2
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and by (3.12) we obtain

(315)  — o [Vf5 (B~ A) = Via(B - A)
1 1
SG/O (l—T)Tf((l—T)A-I-TB)dT—/O f(A=7)A+7B)dr
< 2 Vi (B-A) - V4B - A,

— 20

where f is an operator convex function on I, A, B € SA; (H), with A # B and
feG([AB]).

4. SOME EXAMPLES

The function f (z) = x~! is operator convex on (0, 00), operator Gateaux differ-
entiable and

Vfir(S)=-T7tsT!
for T, S > 0.

If p:[0,1] — R is a Lebesgue integrable and symmetric function such that the
condition (3.5) holds, then we have

(4.1) follr)/l </0Tp(s)ds) (1-7)dr

x[A7"(B—A)A™' =B ' (B-A)B™']
-
folp(T)

fo p(lf /01 (/OTP(S)dS> (1—7)dr

x[A7"(B—A)A™' =B ' (B—A)B™']

for all A, B > 0.
In particular,

IN

/p( )((1_T)A+TB)—1dT—/ (1—7)A+7B) L dr
0 0

(4.2) - 1% (A" (B-A)A'—B ' (B-A)B']

1
oo
0

< Bona - (BB,

1
T;‘((1T)A+TB)1dT/O (1—7m)A+7B) tdr

(4.3) - % [A"'(B-A)A'—B ' (B-A)B]

1 1
SG/O (1-7)7((1—7)A+7B) de/O (1—=7)A+7B) " dr
< % [A7'(B-A)A™' =B " (B-A)B™']

for all A, B > 0.
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We note that the function f(z) = —Inz is operator convex on (0,00). The In

function is operator Gateaux differentiable with the following explicit formula for
the derivative (cf. Pedersen [13, p. 155]):

(4.4) Ving (8) = / (slg +T) " S(slyg +T) " ds
0
for T, S > 0.

If we write the inequality (3.5) for —In and p : [0, 1] — R is Lebesgue integrable
and symmetric function such that the condition (3.5) holds, then we get

(4.5) _W/Ol </0Tp(s)ds>(l—7')d7'

X |:/Ooo (SlH +A)_1 (B — A) (SlH +A)_1 dS
_/ (sly+B) " (B—A) (sly + B)™" ds]
0

S/o In((1—-7)A+7B)dr

1
flld/o p(T)In((1—-71)A+7B)dr
0 T T

f (17 /1 (/oTp(s) ds) (I—7)dr
oP

X [/OOO (slg + A) "N (B — A) (sly + A)"'ds
_/000 (slg +B) " (B — A) (sly +B)1ds]

for all A, B > 0.
If we take in (4.5) p (1) = |7 — 3|, 7 € [0,1], then we get

(4.6) [ (slg + A" (B—A)(sly + A) "ds

3
16

_/O (slg + B)"" (B - A) (slH+B)1ds}
/

In((l-—7)A+7B)dr

1

3

In((1—7)A+7B)dr

< 1375 UOOO (slg+A) " (B—A)(sly + A) " ds
_ /Oo (sly+B) " (B—A)(sly + B) 'ds
0

for all A, B > 0.



(1]
2]

(3]
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