BOUNDS FOR THE DIFFERENCE BETWEEN WEIGHTED AND
INTEGRAL MEANS OF OPERATOR CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let f be an operator convex function on I and A, B € SA; (H),
the convex set of selfadjoint operators with spectra in I. If A # B and f, as
an operator function, is Gateaux differentiable on

[A,B] :={(1-t)A+tB|te0,1]},
while p: [0,1] — R is Lebesgue integrable satisfying the condition
I 1 !
7/ g(s)dsgi/ g(s)ds for all T € (0,1),
T Jo 1—7J;

then we have the inequalities

|:/01Tp(7')d7'_%/01p(7')d7':| Via(B—A)
S/0111’7(7)10((11—@/}.1_7—B)dT

7/0 p(T)dT/O f((L=7)A+7B)dr

< [/Olrp(T)dT,%/olp(T)dT} Vis(B—A).

Some particular examples of interest are also given.

1. INTRODUCTION

A real valued continuous function f on an interval I is said to be operator convex
(operator concave) on I if

(L.1) F(A=XNA+AB) < (2)1-A)f(A)+Af(B)

in the operator order, for all A € [0,1] and for every selfadjoint operator A and B
on a Hilbert space H whose spectra are contained in I. Notice that a function f is
operator concave if —f is operator convex.

A real valued continuous function f on an interval I is said to be operator
monotone if it is monotone with respect to the operator order, i.e., A < B with
Sp(A),Sp(B) C I imply f(A) < f(B).

For some fundamental results on operator convex (operator concave) and oper-
ator monotone functions, see [8] and the references therein.

As examples of such functions, we note that f (¢t) = t" is operator monotone on
[0,00) if and only if 0 < r < 1. The function f (¢t) = ¢" is operator convex on (0, 00)
if either 1 < r <2 or —1 < r < 0 and is operator concave on (0,00) if 0 < r < 1.
The logarithmic function f (¢) = Int is operator monotone and operator concave
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on (0,00). The entropy function f (¢t) = —tInt is operator concave on (0,00). The
exponential function f (t) = e’ is neither operator convex nor operator monotone.

In [5] we obtained among others the following Hermite-Hadamard type inequal-
ities for operator convex functions f: I — R

(1.2) f<A+B)§/O F((1—8)A+sB)ds < LA (B

2 2 ’

where A, B are selfadjoint operators with spectra included in I.
For two distinct operators A, B € SA; (H) we consider the segment of selfadjoint
operators

[A,Bl:={(1-t)A+tB|te[0,1]}.
We observe that A, B € [A, B] and [A,B] C SA; (H).
A continuous function g : SA; (H) — B(H) is said to be Gdteaux differentiable

in A € SA; (H) along the direction B € B(H) if the following limit exists in the
strong topology of B (H)

(1.3) Vga(B) = lim g(A+ Si) 9@ ¢ gy,
If the limit (1.3) exists for all B € B (H), then we say that f is Géateaur differentiable
in A and we can write g € G (A) . If this is true for any A in a subset S from SA; (H)
we write that g € G (S).

Let f be an operator convex function on I. For A, B € SA;(H), the class
of all selfadjoint operators with spectra in I, we consider the auxiliary function
¢a,p) :[0,1] — SA; (H) defined by

(1.4) ©(A,B) t):=f((1-t)A+1tB).

For z € H we can also consider the auxiliary function ¢4 gy, : [0,1] — R defined
by

(15)  pame ® = (pam O za) = (F(1-) A+tB)z,z).
We have the following basic facts, see for instance :

Lemma 1. Let f be an operator convex function on I. For any A, B € SA; (H),
©a,p) is well defined and convex in the operator order. For any (A, B) € SA; (H)
and x € H the function ¢4 py,, is convez in the usual sense on [0,1].

Lemma 2. Let f be an operator convex function on I and A, B € SAr (H), with
A # B. If f € G([A, B]), then the auziliary function ¢4 gy is differentiable on
(0,1) and

(1.6) Pap) ) =Vianaps (B—A).
Also we have for the lateral derivative that

(1.7) go'(A,B) (04)=Vfa(B-A4)
and

(1.8) Plap (1=) =Vfp (B—A).

We also have:
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Lemma 3. Let [ be an operator convex function on I and A, B € SA; (H), with
A+#B. If f € G([A, B]), then for 0 <t <ty <1 we have
(1.9) Vaa-tyatuB (B —A) <Vgu_tyare,5 (B —A)

in the operator order.
We also have

(110) va (B — A) S vg(lftl)A+tlB (B — A)
and
(1.11) Via—ty)A+t.B (B-A)<Vfp(B-A4).

In the recent paper [7], we obtained the following operator Féjer’s type inequal-
1ties:
Theorem 1. Let f be an operator convex function on I and A, B € SA;(H),
with A # B. If f € G([A,B]) and p : [0,1] — [0,00) is Lebesque integrable and
symmetric, namely p (1 —t) = p(¢t) for all t € [0,1], then

(1.12) OS/OIP(t)f((l—t)AHB)dt— (/Olp(t)dt>f<A;B>
gé(/ol t—;‘p(t)dt) Vi (B—A)—Vfa(B—A).

In particular, for p =1 we get

(1.13) Og/Olf((l—t)A+tB)dt—f<A+B>

2
< (Vi (B~ A) = Vs (B~ A).
We also have:

Theorem 2. Let f be an operator convex function on I and A, B € SA;(H),
with A # B. If f € G([A,B]) and p : [0,1] — [0,00) is Lebesque integrable and
symmetric, namely p (1 —t) = p(¢t) for all t € [0,1], then

(1.14) og(/o p(t)dt)f(AH_f(B)—/Op(t)f((l—t)A+tB)dt

2
1 /1 1
< Z -
— 2/ \2
In particular, for p =1 we get

f(A);f(B)_/Olf((l—t)A—l—tB)dt

t—;Dp(t)dt[VfB(B—A)—VfA(B—A)].

(1.15) 0<

gé[VfB(B—A)—VfA(B—A)]~

For recent inequalities for operator convex functions see [1]-[6] and [9]-[18].
Motivated by the above results, we establish in this paper some upper and lower
bounds in the operator order for the difference

/0p(T)f((l—T)A-i-TB)dT—/Op(T)dT/O f((1l=7)A+7B)dr
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in the case when the operator convex function f is Gateaux differentiable as a
function of selfadjoint operators and p : [0,1] — R is a Lebesgue integrable function
such that

/ p(s) ds<7/ s)ds for all 7 € (0,1).
1

Two particular examples of interest for f(z) = —lnz and f(z) = ="' are also
given.

2. MAIN RESULTS

We start to the following identity that is of interest in itself as well:

Lemma 4. Let f be an operator convex function on I and A, B € SA; (H), with
A#B.If f € G([A,B)) and g : [0,1] — C is a Lebesgue integrable function, then
we have the equality

1 1 1
(2.1) / 0 (r) oiap (r)dr - / g(r)dr / oo (1) dr

:/0 T(1- (f 1g_ Tds - J 97(_8) dS) ‘P%A,B) (1)dr.

Proof. Integrating by parts in the Bochner’s integral, we have

T 1
/0 tl 4 (1) dt + / (b= 1) (1) dt

1

= o (7) - / s B dt— (7= 1) 9a.p (7) / o (B)di

T

1
=¢(a,p) (1) — /O Pa,p) () dt

that holds for all 7 € [0, 1] .
If we multiply this identity by ¢ (7) and integrate over 7 in [0, 1], then we get

(2.2) /Olgmso(A,B)(T)dT / r)dr /OlmB
= [ ([ tetam @) ar+ [ 9 ([ €16l @) ar

Using integration by parts, we get

23) [ oo ([ t6tam @) ar

= ([ tama)a( [ acra)
([ o6 )( [t )]

[ ([ s6is) retam ar

0
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-/ 1 ([ 91as) (7= Dt ()

which proves the identity

1 1 1
(2.5) / 0 (7)o p (r)dr - / o (r)dr / oo (1) dr

-/ 1 ( / () ds) r¢lap (r)dr
+f 1 ([ 9)ds) =16l ()

Now, observe that

/01 (/Tlg(s)ds) T¢(a,B) (T)dT‘i‘/Ol (/Jg(s)ds) (1= 1) ¢lap (T)dr
= [ ([ 90a) ctam@ar— [ -0 ([ 96105 lay (1r

~ [ ra-n (fqg(sids b gis)d8> Glap (7)dr

and by (2.5) we obtain the desired equality (2.1). O

We have the following result:

Theorem 3. Let f be an operator convex function on I and A, B € SA; (H) , with
A#B. If f € G([A, B]) and p: [0,1] — R is a Lebesgue integrable function such
that

T 1
(2.6) %/ p(s)ds < %/ p(s)ds for all T € (0,1),
0 - T
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then we have the inequalities
1 1t

(2.7) {/ Tp(T)dT—§/ p(T)dT] Vfia(B—A)
0 0

1 1 1
S/Op(T)f((l—T)A+TB)dT—/(Jp(T)dT/O f((1l=7)A+7B)dr

< {/OlTp(T)dT—;/Olp(T)dT} Vs (B A).

Proof. By the properties of ¢4 p) from the above section, we have in the operator
order that

(2.8) ¢(a,5) (17) = ¢(a.p) (T) = ¢4 5) (0+)

for all 7 € (0,1).
Since

le p(s)ds fOTp (s)ds -

— >0
1—7 t

for all 7 € (0,1), hence

1 T
T(l—71) (lepfi)_ds ko pis) ds) Vig(B—A)
>7(1-1) (fT fﬁslds o pES) ds) Plap) (T)
>7(1-7) (fflp(sids _ foTpis)d8> V/fa(B - A)

for all 7 € (0,1).
By taking the integral in this inequality, we get

(2.9) /01¢<1 —7) (j; p(s)ds _Jor(s ds) drV fz (B — A)

1—7 t

1 1 T
. p(s)ds (s)ds\ |,
- [ T<1—T><f P _ Jo o )w(A,m(T)dT

> /17'(1—7') (ffp(s)ds - ﬂpis)ds> drVfa (B~ A).
0

1—71

By the scalar version of the identity (2.1) we also have

/17(1 —7) (fT p(s)ds _ fOTp(S)dS> dr
0

1—7 t
1 1 1 1 1 1
:/ g(T)TdT—/ g(T)dT/ TdT:/ Tp(T)dT—*/ p(T)dr
0 0 0 0 2 Jo
and by employing Lemma 4 and the inequality (2.9) we obtain (2.7). O

Corollary 1. Let f be an operator convex function on I and A, B € SA; (H) , with
A+ B.If f € G([A,B]) and p : [0,1] — R a monotonic nondecreasing function,
then we have the inequalities (2.7).
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Proof. If p: [0,1] — R is a monotonic nondecreasing function, then

I I
2 ds < < d
L[ rwas<r@ <= [ pe)as
for € (0,1). Then by applying Theorem 3 we get the desired result. (I

If p: [0,1] — R is asymmetric and Lebesgue integrable, then folp(s) ds = 0.
If 7 € [0,1] then [ p(s)ds+ lep(s) ds = 0, which implies that lep(s) ds =
— o p(s)ds.

Corollary 2. Let f be an operator convex function on I and A, B € SA;(H),
with A# B. If f € G([A, B]) and p: [0,1] — R an asymmetric Lebesgue integrable
function such that

(2.10) /Tp(s) ds <0 for all T € 10,1],
0

or, equivalently,

1
(2.11) 0< / p(s)ds for all T €[0,1],

then we have the inequalities

(2.12) /0 Tp(T)dTV fa (B — A) S/o p(r)f(1—71)A+7B)dr

1
< /0 p(7) drV s (B - A).

Proof. The condition

T 1
%/0 p(s)dsgi/T p(s)ds for all T € (0,1)

1 (7 1 T
- <
~ [ ras< = [ pas

is equivalent to

namely
1 T T
~ [ p@ast = [ p@as <o,
T Jo L=7Jo
which is equivalent to (2.10).
By utilising (2.7) we derive the desired result (2.12). O

If ¢ : [0,1] — R is integrable, then the function p(s) = ¢(s) — ¢(1—s) is
asymmetric. By the condition (2.10) we have

Aﬂﬂ@—qu—@msso

namely

(2.13) /OTq(s)ds</qu(1—s)ds,76[0,1].

If we put u =1 —s, then

A}u—@wzﬂiﬂ@w
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and we obtain

(2.14) /OTq(s)ds</1_ ¢(s)ds, 7€[0,1].

We also have
/OTP(T)C”:/O sla(s) — q(1— s))ds

1 1
:/ sq(s)ds—/ (1-35)q(s)ds
0 0
1 1 1
:/ [23—1]q(s)ds:2/ (8—>q(s)ds
0 0 2
and, for an integrable function f : [0,1] — SA; (H) we have

/Op(S)f(s)dSZ/O (g () — q(1— )] f (s)ds

1 1
:/O q(S)f(S)ds—/O (1 s)f(s)ds
/q(s)f(s)ds—/o g(s) f (1 - s)ds
() 1f

0

/Oq (s) = £ (1—5)]ds.

We can state:

Corollary 3. Let f be an operator convex function on I and A, B € SA; (H
with A # B. If f € G([A,B]) and q : [0,1] — R a Lebesgue integrable function such

that (2.13) holds, then we have the inequalities

(2.15) /01 (T - ;) q(T)drV s (B — A)

3. SOME EXAMPLES

We consider the function p (7) = 7, 7 € [0, 1] . Observe that

1 1 /1 1 1 /1 1
Tp(T)dT—*/ p(T)dT:/ TQdT—*/ Tdr = —.
/0 2 Jo 0 2 Jo 12
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Let f be an operator convex function on I and A, B € SA; (H), with A # B.
If f € G([A, B]), then by (2.7) we get

(3.1) 1—12Vf,4 (B—A)
1 1
S/o Tf((l—T)A+TB)dT—§/() f(A=7)A+7B)dr
< Vs (B A).

For n a natural number, the function p (1) , is increasing, then
for f an operator convex function on I and A, B € SA;(H), with A # B and
f € G ([A, B]), we have by (2.7)

1 1 2n+1 1 1 1 2n+1
/07'<7'—2> dT—§/0 <T—2) dr
1 1 2n+1
</ (7—2) F(=r)A+rB)dr
0

—/01 <T—;>2n+1d7/01f((1—7')14—|—73)d7

1 2n+1 1 2n+1
1 1 1
< /T T— 5 dT—f/ T— = dr
0 2 2 Jo 2

Observe that
1 1 2n+1 1 1 1 2n+1
/T(T—) dT—*/ (T—) dr
0 2 2 Jo 2
1 2n+1 1 2n+2
1 1 1
La)a) e[ (e)

B 2 1 2n+3 B 1
2 +3\2 ~ (2n +3)22n+2

1 1 2n+1
/ (T — ) dr =0,
0 2

1 1 1 2n+1
— =V B—-A)< - = 1-7)A B)d
arrgmaE-n< [ (r-3) fa-nasmma
«_
~ (2n + 3) 22nt2
for f an operator convex function on I, A, B € SA; (H), with A # B and f €
G ([A, B]) while n is a natural number.

2n+1
(-3

Vfa(B—A)

Vi (B—A).

and

which gives

(3.2)

Vip(B—A)
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