
BOUNDS FOR THE DIFFERENCE BETWEEN WEIGHTED AND
INTEGRAL MEANS OF OPERATOR CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Let f be an operator convex function on I and A; B 2 SAI (H) ;
the convex set of selfadjoint operators with spectra in I: If A 6= B and f; as
an operator function, is Gâteaux di¤erentiable on

[A;B] := f(1� t)A+ tB j t 2 [0; 1]g ;
while p : [0; 1]! R is Lebesgue integrable satisfying the condition

1

�

Z �

0
g (s) ds � 1

1� �

Z 1

�
g (s) ds for all � 2 (0; 1) ;

then we have the inequalities�Z 1

0
�p (�) d� � 1

2

Z 1

0
p (�) d�

�
rfA (B �A)

�
Z 1

0
p (�) f ((1� �)A+ �B) d�

�
Z 1

0
p (�) d�

Z 1

0
f ((1� �)A+ �B) d�

�
�Z 1

0
�p (�) d� � 1

2

Z 1

0
p (�) d�

�
rfB (B �A) :

Some particular examples of interest are also given.

1. Introduction

A real valued continuous function f on an interval I is said to be operator convex
(operator concave) on I if

(1.1) f ((1� �)A+ �B) � (�) (1� �) f (A) + �f (B)
in the operator order, for all � 2 [0; 1] and for every selfadjoint operator A and B
on a Hilbert space H whose spectra are contained in I: Notice that a function f is
operator concave if �f is operator convex.
A real valued continuous function f on an interval I is said to be operator

monotone if it is monotone with respect to the operator order, i.e., A � B with
Sp (A) ;Sp (B) � I imply f (A) � f (B) :
For some fundamental results on operator convex (operator concave) and oper-

ator monotone functions, see [8] and the references therein.
As examples of such functions, we note that f (t) = tr is operator monotone on

[0;1) if and only if 0 � r � 1: The function f (t) = tr is operator convex on (0;1)
if either 1 � r � 2 or �1 � r � 0 and is operator concave on (0;1) if 0 � r � 1:
The logarithmic function f (t) = ln t is operator monotone and operator concave
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2 S. S. DRAGOMIR

on (0;1): The entropy function f (t) = �t ln t is operator concave on (0;1): The
exponential function f (t) = et is neither operator convex nor operator monotone.
In [5] we obtained among others the following Hermite-Hadamard type inequal-

ities for operator convex functions f : I ! R

(1.2) f

�
A+B

2

�
�
Z 1

0

f ((1� s)A+ sB) ds � f (A) + f (B)

2
;

where A; B are selfadjoint operators with spectra included in I:
For two distinct operators A; B 2 SAI (H) we consider the segment of selfadjoint

operators
[A;B] := f(1� t)A+ tB j t 2 [0; 1]g :

We observe that A; B 2 [A;B] and [A;B] � SAI (H) :
A continuous function g : SAI (H)! B (H) is said to be Gâteaux di¤erentiable

in A 2 SAI (H) along the direction B 2 B (H) if the following limit exists in the
strong topology of B (H)

(1.3) rgA (B) := lim
s!0

g (A+ sB)� g (A)
s

2 B (H) :

If the limit (1.3) exists for allB 2 B (H) ; then we say that f isGâteaux di¤erentiable
in A and we can write g 2 G (A) : If this is true for any A in a subset S from SAI (H)
we write that g 2 G (S) :
Let f be an operator convex function on I: For A; B 2 SAI (H) ; the class

of all selfadjoint operators with spectra in I; we consider the auxiliary function
'(A;B) : [0; 1]! SAI (H) de�ned by

(1.4) '(A;B) (t) := f ((1� t)A+ tB) :

For x 2 H we can also consider the auxiliary function '(A;B);x : [0; 1]! R de�ned
by

(1.5) '(A;B);x (t) :=
D
'(A;B) (t)x; x

E
= hf ((1� t)A+ tB)x; xi :

We have the following basic facts, see for instance :

Lemma 1. Let f be an operator convex function on I: For any A; B 2 SAI (H) ;
'(A;B) is well de�ned and convex in the operator order. For any (A;B) 2 SAI (H)
and x 2 H the function '(A;B);x is convex in the usual sense on [0; 1] :

Lemma 2. Let f be an operator convex function on I and A; B 2 SAI (H) ; with
A 6= B: If f 2 G ([A;B]) ; then the auxiliary function '(A;B) is di¤erentiable on
(0; 1) and

(1.6) '0(A;B) (t) = rf(1�t)A+tB (B �A) :

Also we have for the lateral derivative that

(1.7) '0(A;B) (0+) = rfA (B �A)

and

(1.8) '0(A;B) (1�) = rfB (B �A) :

We also have:
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Lemma 3. Let f be an operator convex function on I and A; B 2 SAI (H) ; with
A 6= B: If f 2 G ([A;B]) ; then for 0 < t1 < t2 < 1 we have
(1.9) rg(1�t1)A+t1B (B �A) � rg(1�t2)A+t2B (B �A)
in the operator order.
We also have

(1.10) rfA (B �A) � rg(1�t1)A+t1B (B �A)
and

(1.11) rg(1�t2)A+t2B (B �A) � rfB (B �A) :

In the recent paper [7], we obtained the following operator Féjer�s type inequal-
ities:

Theorem 1. Let f be an operator convex function on I and A; B 2 SAI (H) ;
with A 6= B: If f 2 G ([A;B]) and p : [0; 1] ! [0;1) is Lebesgue integrable and
symmetric, namely p (1� t) = p (t) for all t 2 [0; 1] ; then

0 �
Z 1

0

p (t) f ((1� t)A+ tB) dt�
�Z 1

0

p (t) dt

�
f

�
A+B

2

�
(1.12)

� 1

2

�Z 1

0

����t� 12
���� p (t) dt� [rfB (B �A)�rfA (B �A)] :

In particular, for p � 1 we get

0 �
Z 1

0

f ((1� t)A+ tB) dt� f
�
A+B

2

�
(1.13)

� 1

8
[rfB (B �A)�rfA (B �A)] :

We also have:

Theorem 2. Let f be an operator convex function on I and A; B 2 SAI (H) ;
with A 6= B: If f 2 G ([A;B]) and p : [0; 1] ! [0;1) is Lebesgue integrable and
symmetric, namely p (1� t) = p (t) for all t 2 [0; 1] ; then

0 �
�Z 1

0

p (t) dt

�
f (A) + f (B)

2
�
Z 1

0

p (t) f ((1� t)A+ tB) dt(1.14)

� 1

2

Z 1

0

�
1

2
�
����t� 12

����� p (t) dt [rfB (B �A)�rfA (B �A)] :
In particular, for p � 1 we get

0 � f (A) + f (B)

2
�
Z 1

0

f ((1� t)A+ tB) dt(1.15)

� 1

8
[rfB (B �A)�rfA (B �A)] :

For recent inequalities for operator convex functions see [1]-[6] and [9]-[18].
Motivated by the above results, we establish in this paper some upper and lower

bounds in the operator order for the di¤erenceZ 1

0

p (�) f ((1� �)A+ �B) d� �
Z 1

0

p (�) d�

Z 1

0

f ((1� �)A+ �B) d�
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in the case when the operator convex function f is Gâteaux di¤erentiable as a
function of selfadjoint operators and p : [0; 1]! R is a Lebesgue integrable function
such that

1

�

Z �

0

p (s) ds � 1

1� �

Z 1

�

p (s) ds for all � 2 (0; 1) :

Two particular examples of interest for f (x) = � lnx and f (x) = x�1 are also
given.

2. Main Results

We start to the following identity that is of interest in itself as well:

Lemma 4. Let f be an operator convex function on I and A; B 2 SAI (H) ; with
A 6= B: If f 2 G ([A;B]) and g : [0; 1] ! C is a Lebesgue integrable function, then
we have the equalityZ 1

0

g (�)'(A;B) (�) d� �
Z 1

0

g (�) d�

Z 1

0

'(A;B) (�) d�(2.1)

=

Z 1

0

� (1� �)
 R 1

�
g (s) ds

1� � �
R �
0
g (s) ds

�

!
'0(A;B) (�) d� :

Proof. Integrating by parts in the Bochner�s integral, we haveZ �

0

t'0(A;B) (t) dt+

Z 1

�

(t� 1)'0(A;B) (t) dt

= �'(A;B) (�)�
Z �

0

'(A;B) (t) dt� (� � 1)'(A;B) (�)�
Z 1

�

'(A;B) (t) dt

= '(A;B) (�)�
Z 1

0

'(A;B) (t) dt

that holds for all � 2 [0; 1] :
If we multiply this identity by g (�) and integrate over � in [0; 1] ; then we getZ 1

0

g (�)'(A;B) (�) d� �
Z 1

0

g (�) d�

Z 1

0

'(A;B) (t) dt(2.2)

=

Z 1

0

g (�)

�Z �

0

t'0(A;B) (t) dt

�
d� +

Z 1

0

g (�)

�Z 1

�

(t� 1)'0(A;B) (t) dt
�
d� :

Using integration by parts, we getZ 1

0

g (�)

�Z �

0

t'0(A;B) (t) dt

�
d�(2.3)

=

Z 1

0

�Z �

0

t'0(A;B) (t) dt

�
d

�Z �

0

g (s) ds

�
=

�Z �

0

g (s) ds

��Z �

0

t'0(A;B) (t) dt

�����1
0

�
Z 1

0

�Z �

0

g (s) ds

�
�'0(A;B) (�) d�
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=

�Z 1

0

g (s) ds

��Z 1

0

t'0(A;B) (t) dt

�
�
Z 1

0

�Z �

0

g (s) ds

�
�'0(A;B) (�) d�

=

Z 1

0

�Z 1

0

g (s) ds�
Z �

0

g (s) ds

�
�'0(A;B) (�) d�

=

Z 1

0

�Z 1

�

g (s) ds

�
�'0(A;B) (�) d�

and Z 1

0

g (�)

�Z 1

�

(t� 1)'0(A;B) (t) dt
�
d�(2.4)

=

Z 1

0

�Z 1

�

(t� 1)'0(A;B) (t) dt
�
d

�Z �

0

g (s) ds

�
=

�Z 1

�

(t� 1)'0(A;B) (t) dt
��Z �

0

g (s) ds

�����1
0

+

Z 1

0

�Z �

0

g (s) ds

�
(� � 1)'0(A;B) (�) d�

=

Z 1

0

�Z �

0

g (s) ds

�
(� � 1)'0(A;B) (�) d� ;

which proves the identityZ 1

0

g (�)'(A;B) (�) d� �
Z 1

0

g (�) d�

Z 1

0

'(A;B) (�) d�(2.5)

=

Z 1

0

�Z 1

�

g (s) ds

�
�'0(A;B) (�) d�

+

Z 1

0

�Z �

0

g (s) ds

�
(� � 1)'0(A;B) (�) d� :

Now, observe thatZ 1

0

�Z 1

�

g (s) ds

�
�'0(A;B) (�) d� +

Z 1

0

�Z �

0

g (s) ds

�
(� � 1)'0(A;B) (�) d�

=

Z 1

0

�

�Z 1

�

g (s) ds

�
'0(A;B) (�) d� �

Z 1

0

(1� �)
�Z �

0

g (s) ds

�
'0(A;B) (�) d�

=

Z 1

0

� (1� �)
 R 1

�
g (s) ds

1� � �
R �
0
g (s) ds

t

!
'0(A;B) (�) d�

and by (2.5) we obtain the desired equality (2.1). �
We have the following result:

Theorem 3. Let f be an operator convex function on I and A; B 2 SAI (H) ; with
A 6= B: If f 2 G ([A;B]) and p : [0; 1] ! R is a Lebesgue integrable function such
that

(2.6)
1

�

Z �

0

p (s) ds � 1

1� �

Z 1

�

p (s) ds for all � 2 (0; 1) ;
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then we have the inequalities�Z 1

0

�p (�) d� � 1
2

Z 1

0

p (�) d�

�
rfA (B �A)(2.7)

�
Z 1

0

p (�) f ((1� �)A+ �B) d� �
Z 1

0

p (�) d�

Z 1

0

f ((1� �)A+ �B) d�

�
�Z 1

0

�p (�) d� � 1
2

Z 1

0

p (�) d�

�
rfB (B �A) :

Proof. By the properties of '(A;B) from the above section, we have in the operator
order that

(2.8) '0(A;B) (1�) � '0(A;B) (�) � '0(A;B) (0+)
for all � 2 (0; 1) :
Since R 1

�
p (s) ds

1� � �
R �
0
p (s) ds

t
� 0

for all � 2 (0; 1) ; hence

� (1� �)
 R 1

�
p (s) ds

1� � �
R �
0
p (s) ds

t

!
rfB (B �A)

� � (1� �)
 R 1

�
p (s) ds

1� � �
R �
0
p (s) ds

t

!
'0(A;B) (�)

� � (1� �)
 R 1

�
p (s) ds

1� � �
R �
0
p (s) ds

t

!
rfA (B �A)

for all � 2 (0; 1) :
By taking the integral in this inequality, we getZ 1

0

� (1� �)
 R 1

�
p (s) ds

1� � �
R �
0
p (s) ds

t

!
d�rfB (B �A)(2.9)

�
Z 1

0

� (1� �)
 R 1

�
p (s) ds

1� � �
R �
0
p (s) ds

t

!
'0(A;B) (�) d�

�
Z 1

0

� (1� �)
 R 1

�
p (s) ds

1� � �
R �
0
p (s) ds

t

!
d�rfA (B �A) :

By the scalar version of the identity (2.1) we also haveZ 1

0

� (1� �)
 R 1

�
p (s) ds

1� � �
R �
0
p (s) ds

t

!
d�

=

Z 1

0

g (�) �d� �
Z 1

0

g (�) d�

Z 1

0

�d� =

Z 1

0

�p (�) d� � 1
2

Z 1

0

p (�) d�

and by employing Lemma 4 and the inequality (2.9) we obtain (2.7). �

Corollary 1. Let f be an operator convex function on I and A; B 2 SAI (H) ; with
A 6= B: If f 2 G ([A;B]) and p : [0; 1] ! R a monotonic nondecreasing function,
then we have the inequalities (2.7).
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Proof. If p : [0; 1]! R is a monotonic nondecreasing function, then

1

x

Z x

0

p (s) ds � p (x) � 1

1� x

Z 1

x

p (s) ds

for x 2 (0; 1) : Then by applying Theorem 3 we get the desired result. �

If p : [0; 1] ! R is asymmetric and Lebesgue integrable, then
R 1
0
p (s) ds = 0:

If � 2 [0; 1] then
R �
0
p (s) ds +

R 1
�
p (s) ds = 0; which implies that

R 1
�
p (s) ds =

�
R �
0
p (s) ds:

Corollary 2. Let f be an operator convex function on I and A; B 2 SAI (H) ;
with A 6= B: If f 2 G ([A;B]) and p : [0; 1]! R an asymmetric Lebesgue integrable
function such that

(2.10)
Z �

0

p (s) ds � 0 for all � 2 [0; 1] ;

or, equivalently,

(2.11) 0 �
Z 1

�

p (s) ds for all � 2 [0; 1] ;

then we have the inequalitiesZ 1

0

�p (�) d�rfA (B �A) �
Z 1

0

p (�) f ((1� �)A+ �B) d�(2.12)

�
Z 1

0

�p (�) d�rfB (B �A) :

Proof. The condition

1

�

Z �

0

p (s) ds � 1

1� �

Z 1

�

p (s) ds for all � 2 (0; 1)

is equivalent to
1

�

Z �

0

p (s) ds � � 1

1� �

Z �

0

p (s) ds

namely
1

�

Z �

0

p (s) ds+
1

1� �

Z �

0

p (s) ds � 0;

which is equivalent to (2.10).
By utilising (2.7) we derive the desired result (2.12). �
If q : [0; 1] ! R is integrable, then the function p (s) = q (s) � q (1� s) is

asymmetric. By the condition (2.10) we haveZ �

0

[q (s)� q (1� s)] ds � 0

namely

(2.13)
Z �

0

q (s) ds �
Z �

0

q (1� s) ds; � 2 [0; 1] :

If we put u = 1� s; then Z �

0

q (1� s) ds =
Z 1

1��
q (s) ds
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and we obtain

(2.14)
Z �

0

q (s) ds �
Z 1

1��
q (s) ds; � 2 [0; 1] :

We also haveZ 1

0

�p (�) d� =

Z 1

0

s [q (s)� q (1� s)] ds

=

Z 1

0

sq (s) ds�
Z 1

0

(1� s) q (s) ds

=

Z 1

0

[2s� 1] q (s) ds = 2
Z 1

0

�
s� 1

2

�
q (s) ds

and, for an integrable function f : [0; 1]! SAI (H) we haveZ 1

0

p (s) f (s) ds =

Z 1

0

[q (s)� q (1� s)] f (s) ds

=

Z 1

0

q (s) f (s) ds�
Z 1

0

q (1� s) f (s) ds

=

Z 1

0

q (s) f (s) ds�
Z 1

0

q (s) f (1� s) ds

=

Z 1

0

q (s) [f (s)� f (1� s)] ds:

We can state:

Corollary 3. Let f be an operator convex function on I and A; B 2 SAI (H) ;
with A 6= B: If f 2 G ([A;B]) and q : [0; 1]! R a Lebesgue integrable function such
that (2.13) holds, then we have the inequalities

Z 1

0

�
� � 1

2

�
q (�) d�rfA (B �A)(2.15)

� 1

2

Z 1

0

q (�) [f ((1� �)A+ �B)� f (�A+ (1� �)B)] d�

�
Z 1

0

�
� � 1

2

�
q (�) d�rfB (B �A) :

3. Some Examples

We consider the function p (�) = � ; � 2 [0; 1] : Observe that

Z 1

0

�p (�) d� � 1
2

Z 1

0

p (�) d� =

Z 1

0

�2d� � 1
2

Z 1

0

�d� =
1

12
:
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Let f be an operator convex function on I and A; B 2 SAI (H) ; with A 6= B:
If f 2 G ([A;B]), then by (2.7) we get

1

12
rfA (B �A)(3.1)

�
Z 1

0

�f ((1� �)A+ �B) d� � 1
2

Z 1

0

f ((1� �)A+ �B) d�

� 1

12
rfB (B �A) :

For n a natural number, the function p (�) =
�
� � 1

2

�2n+1
; is increasing, then

for f an operator convex function on I and A; B 2 SAI (H) ; with A 6= B and
f 2 G ([A;B]), we have by (2.7)"Z 1

0

�

�
� � 1

2

�2n+1
d� � 1

2

Z 1

0

�
� � 1

2

�2n+1
d�

#
rfA (B �A)

�
Z 1

0

�
� � 1

2

�2n+1
f ((1� �)A+ �B) d�

�
Z 1

0

�
� � 1

2

�2n+1
d�

Z 1

0

f ((1� �)A+ �B) d�

�
"Z 1

0

�

�
� � 1

2

�2n+1
d� � 1

2

Z 1

0

�
� � 1

2

�2n+1
d�

#
rfB (B �A) :

Observe that Z 1

0

�

�
� � 1

2

�2n+1
d� � 1

2

Z 1

0

�
� � 1

2

�2n+1
d�

=

Z 1

0

�
� � 1

2

��
� � 1

2

�2n+1
d� =

Z 1

0

�
� � 1

2

�2n+2
d�

=
2

2n+ 3

�
1

2

�2n+3
=

1

(2n+ 3) 22n+2

and Z 1

0

�
� � 1

2

�2n+1
d� = 0;

which gives

1

(2n+ 3) 22n+2
rfA (B �A) �

Z 1

0

�
� � 1

2

�2n+1
f ((1� �)A+ �B) d�(3.2)

� 1

(2n+ 3) 22n+2
rfB (B �A)

for f an operator convex function on I, A; B 2 SAI (H) ; with A 6= B and f 2
G ([A;B]) while n is a natural number.
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