INEQUALITIES FOR THE FORWARD DISTANCE IN METRIC
SPACES
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ABSTRACT. In this note we prove among others that
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where (X, d) is a metric space, z; € X, p; > 0,4 € {1,...,n} with >0 ;p; =1
andp,q>1with%+%:1.

1. INTRODUCTION

Let X be a nonempty set. A function d : X x X — [0,00) is called a distance

on X if the following properties are satisfied:
(d) d(z,y) =0 if and only if z = y;

(dd) d(z,y) = d(y,x) for any z,y € X (the symmetry of the distance);

(ddd) d(z,y) < d(x,z)+ d(z,y) for any z,y,z € X (the triangle inequality).

The pair (X, d) is called in the literature a metric space.

Important examples of metric spaces are normed linear spaces. We recall that,
a linear space E over the real or complex number field K endowed with a function
II]l : E — [0, 00), is called a normed space if ||-|| , the norm, satisfies the properties:

(n) ||z|| = 0 if and only if z = 0;
(nn) ||az|| = || ||z|| for any scalar a € K and any vector = € E;
(nnn) ||z +y| < ||z|]| + ||yl for each x,y € E (the triangle inequality).

A fundamental inequality in metric spaces, which obviously follows by the trian-
gle inequality and mathematical induction, is the generalised triangle inequality, or
the polygonal inequality which states that: for any points z1, za, ..., Tp—1, Z, (n > 3)
in a metric space (X, d), we have the inequality

(1.1) d(z1,2,) < d(@1,22) + .. + d(Tp—1,%p)

The following result in the general setting of metric spaces holds.
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Theorem 1. Let (X,d) be a metric space and x; € X, p; > 0, i € {1,...,n} with
Sorpi = 1. Then we have the inequality

(1.2) Y. pipgd (i) < nf lzpz‘d(%x)] :
i=1

1<i<j<n
The inequality is sharp in the sense that the multiplicative constant ¢ = 1 in front
of "inf " cannot be replaced by a smaller quantity.

We have:
Corollary 1. Let (X, d) be a metric space and x; € X, i € {1,...,n}. If there exists
a closed ball of radius v > 0 centered in a point x containing all the points x;, i.e.,
x; € B(z,r) :={y € X : d(z,y) < r}, then for any p; > 0, i € {1,...,n} with
Yoi i pi = 1 we have the inequality
(1.3) Z pipjd (s, z5) <.
1<i<j<n

The inequality (1.2) and its consequences were extended to the case of b-metric
spaces in [4] and for natural powers of the distance in [1].
In the recent paper [2] we obtained the following refinement of the inequality
(1.2):
Theorem 2. Let (X,d) be a metric space and z; € X, p; > 0, i € {1,...,n} with
i pi = 1. Then we have the inequality
(1.4)
25 Vinfoex [Yop_ ok (1 — pr) d° (g, )], s> 1
> pipid® (i, ;) < .
1<i<j<n infrex D gy pe (1 —pi)d® (zx, )], 0<s <1,
25 Vinfoex [Yop_, & (zg, )], s>1
S —
Y infaex [0, df (ar, 7)), 0<s < 1.
In this paper we establish other upper bounds for the sum Zl<i<j<n pip;d (s, ;)

in terms of the forward distances Zz;ll d(Tk, Tr+1),, MaX=1n—1d(Tk, Tp11) and
1/q
-1
[ZZ:l df (xk7xk+1) ,q> 1
2. REsULTS

We have the following upper bounds in terms of the forward difference:
Theorem 3. Let (X,d) be a metric space and x; € X, p; > 0, i € {1,...,n} with
i pi = 1. Then we have the inequality
(21) Z p,-pjd(aji,xj)

1<i<j<n
3 nm ok (L= pi) Y02y d (@, Tyr)

% Zlgi,jgn pipj | — il maxp=1,n—1d(Tk, Th+1),

IN

1/4q
. .1 —1
%Zgi,jgnpipj lj — il /P [ Z:l d? (T, Tht1) )
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forp,g>1 wzth;—ka—l.

Proof. By the polygonal inequality we have for 1 < i < j < n that

j—1 n—1
(2.2) d(z;,xj) < d(zg,xpe1) < Zd(.’ljk7mk+1).
k=i k=1

By Holder’s inequality we also have for p, ¢ > 1 with % + % =1,

-1 (j —i) manzi,j_ld(xk,wa'_l)
(2.3) > d(k, wpa) < » e
k=i (=)' [0 d7 (o, mis)]

(4 — i) maxg—1n—1d(Tr, Tpt1)

<
- n— 1/q
(G —a)'"” {Zk:i d? (wkaxlﬂrl)} :
From (2.2) we get
n—1
(2.4) Z pip;d (wi,x5) < Z Pibj Z d (g, Tht1) -
1<i<j<n 1<i<j<n k=1

Since

—_

SN opmi=< | Y. pipi— Y i . 1= i
2 k 2 k=1
-1 —

1<i<j<n 1<i,j<n
1 n
= 521%(1 —Pk),
k=1

hence by (2.4) we derive the first inequality in (2.1).
By (2.3) we get

Z pip;d (i, z5) < Z pip; (j —1) max d(ak, 1)

1<i<j<n 1<i<j<n

1 .
=5 > pipjli—il max d (k)
1<i,j<n o

and the second inequality in (2.1) is proved.
By (2.3) we also get

n—1 1/q
Z pipjd (2, ;) < Z pipj (J — i)l/p lz d? (xk,$k+1)1

1<i<j<n 1<i<j<n k=1
1 n—1 1/q
_ . al/p
=5 > pipsli — il [Z d? ($k7$k+1)] :
1<i,j<n k=1

which proves the third inequality in (2.1).
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Corollary 2. With the assumptions of Theorem 3 we have
1 n—1
(2.5) Z pip;d (z;, ;) < 3" Z d (T, Tr1) -
1<i<j<n k=1
Proof. Using the elementary inequality
1 2
ab < Z(a-i-b) , a,b>0
we get
1 , 1
pr(l=pr) < 2 (e +1-pr)" =

for all k € {1,...,n}.
Therefore

n 1
D ope(l—pp) < 1"
k=1

and by the first inequality in (2.1), we get (2.5).

O

Corollary 3. With the assumptions of Theorem 3 and if py, := mingc(1,.. n) Pk >

0, then
1 n—1
(2.6) Z pip;d (xi, x5) < 3 (1—pm) Zd(l'ka-rk--',-l)-
1<i<j<n k=1

Proof. Since
0 < 1_pk < l_p'rn
for all k € {1,...,n}, hence

n n
Zpk (1 _pk) < Zpk (1 _p’m) =1 — Pm-
k=1 k=1

By utilising the first inequality in (2.1), we deduce (2.6).

Corollary 4. With the assumptions of Theorem 3 and if ppr = minge g
1, then

n—1
1
(2.7) > pipgd(wi,zy) < 5 (n=1)par > d (@, wria)-
1<i<j<n k=1

Proof. We have
S k(U —pe) <purd (L—pr)=(n—1)pu
k=1 k=1

and by the first inequality in (2.1), we deduce (2.7).

Corollary 5. With the assumptions of Corollary 4 we have

2 _
(2.8) g pip;id (x;,25) < Mp%\/[ max d (T, Tri1) -
J $ = 6 k=1n—1 ’

1<i<j<n

.....
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Proof. Observe that

> (i-4)

1<j<i<n
= > @=-H+ D B=hH+.+ > (n—1)

1<5<2 1<5<3 1<j<n
=2-2-(14+2)+3-3-(14+2+3)+...+n-n—(1+2+...4+n)
:12+22+...+n2—1—(1+2)—(1+2+3)—...—(1+2—|—...+n)

Eerteae )

Since
n(n? -1
Sopipili—il<py >, li—il=2h >, (i—j) —2pﬁ4(6)
1<i,j<n 1<i,5<n 1<j<i<n
5 T (n2 — 1)
= pﬂ/[fv
hence by the second inequality in (2.1) we get (2.8). O
Corollary 6. With the assumptions of Theorem 3 we have
) 1/p 1 1/q
(2.9) Z pipjd (zi, ;) < 3 Z pipj |7 — il [Z d? (ﬂ%xkﬂ)]
1<i<j<n 1<i,j<n k=1
forp, g>1 with%—i—%:l.
In particular, for p=q =2, we have
) 1/2 1 1/2
(210) Y pipid (zi, ;) < 3 > pipili -l lz 4’ (xk,ﬂﬁkﬂ)] .
1<i<j<n 1<i,j<n k=1

Proof. By the concavity of function f (t) = t'/?, p > 1 and by Jensen’s inequality
we have

Zlgm’gn pipj ZlSiJSnpipj

and since ZlSiJSH pip; = 1, hence

.1 .o\ Up
Z1§i,j§npipj 7 — i /P Zlgihjgnpipj lj — 1l
<

1/p
STopili—ilP <Y piwli—il
1<i,j<n 1<i,j<n
By utilising the third inequality in (2.1) we get (2.10). O

Remark 1. If pa := mingeqi,.. ) pr < 1, then by (2.9) we derive

—_

1/q
(2.11) Z pipjd (z;,xj) < 5 31/ [n (n2 1/1) 2/p lz d? (zy, Ths1 ]

1<i<j<n
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and from (2.10)

B 1/2
1 n—1
(212) Z pip]d(l'l,{ﬂj) < 5. 31/2 [n (n2 _ 1)] 1/2pM [Z d2 (xk7$k+1)‘| .
1<i<j<n k=1

We also have:

Corollary 7. With the assumptions of Theorem 3 we have

1<i<j<n
, p o el 1/q
<3 > pipli— il lZPk (1—pr) ) _d (ﬂﬁk,xkﬂ)]
1<i,j<n k=1 k=1
forp, qg>1 with%Jr%:l.
In particular, for p=q =2,
(2.14) Z pipjd (a:i, $j)
1<i<j<n
1/2 n n—1 1/2
1 .
< 3 Z pip; 17 — 1 [Zpk (1 —pr) Z d? (mkaxk+1)] -
1<i,j<n k=1 k=1

Proof. By Jensen’s inequality we also have

.1 ..\ I/p
S icicjenPibs 1 —il7 _ (Zlgmgnpipj lj — Z|>

Zl§i<j§n piPj Zl§i<j§n Pibj
namely
1-1/p 1/p
. 1 . .
215) > pipili =P < > piws > pipsli—il
1<i<j<n 1<i<j<n 1<i<j<n
1/q 1/p
= > i > pipjli—il
1<i<j<n 1<i<j<n
for p > 1.

Observe that

> ppi= %Zpk (1 —px),
k=1

1<i<j<n

. a1 1 . a1
> wli—il" =5 Y pipli il

1<i<j<n 1<i,j<n

oo, 1 .
. ppili—il=5 Y ppsli—il.

1<i<j<n 1<i,j<n

and
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By (2.15) we derive

1/p

n 1/q
1 1 .
5 2Pk (1 —Pk)> 5 Z pip; | — 1l

1 .o
5 >, pipili—d" < <
1<i,j<n k=1 1<i,j<n
1\ Vati/p [ n 1 e
= <2> (Zpk (1 —pk)> > pipili— il
k=1 1<i,j<n
n 1/q 1/p
1 .
=3 ( Pk(lpk)> Z pipj 7 — i
k=1 1<i,j<n
namely
n 1/q 1/p
> pipili—il? < (Zpk (l—pk)) > pipili—il
1<i,j<n k=1 1<i,j<n
By making use of the third inequality in (2.1), we derive (2.13). O

Remark 2. If pys := mingeqi,.. o) Pk < 1, then by (2.18) we derive

(2'16) Z pipjd(xi,wj)
1<i<j<n
1 n—1 1/q
< 2.31/p (n—1)[n(n+ 1)]1/pp}J1/p lz d? (xk,mkﬂ)]
k=1

for p, ¢ > 1 with zl) + % =1 and, in particular,

(2~17) Z pipjd(l‘i,xj)
1<i<j<n
1 n—1 1/2
= 2.31/p (n—1)[n(n+ 1)]1/2 P?\//IQ [Z d? (:Ek,gckﬂ)]
k=1

3. APPLICATIONS

If (E,||-|) is a normed linear space and z; € E,i € {1,...,n},p; > 0(i € {1,...,n})
with 3", p; = 1, then by (2.1) we have the inequalities

(3.1) > i llwi — )

1<i<j<n

1
32 ok (L =) S0y Mk — 2|l

3 Di<ijon PiPj 17 — il maxp=1 1 |2k — Tpiall,

IN

1/q
. a1 —1
Y Y icijenpipi 1§ =il [ 02 low = aall?]
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‘We also have the uniform bound

n—1

1
(3.2) So i s =l < 503 ok — il
1<i<j<n k=1
If p,, = minge(1,... 0} Pk > 0, then
1 n—1
(33 > pwglla - ayll < 5 (0= ) Y ok~ il
1<i<j<n k=1
while, if pas := mingegy,. ny pr < 1, then
1 n—1
(3.4) pipjllzi — 5]l < 5 (n =1 par ) ok — rga |
2
1<i<j<n k=1
and
n (n2 — 1) 9
(3.5) Z pipj i = 25l < ———p}s RJmax zx — 2l -
1<i<j<n
Forp,q>1with%+%:1,wehave
1 1/p n—1 1/q
60 5 pmle-ni<h( X wnbei)  |Siacnar]
1<i<j<n 1<i,j<n k=1
and, in particular, for p = ¢ = 2, we derive
(3.7) > vy llwi— |
1<i<j<n
. 1/2 o1 1/2
. 2
<s| 3 pmili-il [Z [E—— ] .
1<i,j<n k=1

Moreover, if p, ¢ > 1 with % + % =1, we have

1/ n— 1/q
T [n (712 - 1)} ! 2/p . - q
(3.8) ST pwi i — il < 2P | ek — 2|

a9l
1<i<j<n 2.34/p 1
and the Euclidian case
1/2
n(n2 —1)]"? ke
(3.9) > pipjllas — ) < WPM > llak —aeal®|
1<i<j<n k=1

Finally, for p, ¢ > 1 with 5 + ¢ = 1,

(3.10) Y v llwi -]
1<i<j<n
X Up o 1 1/q
<3 > pipili— il [Zpk L =pr) Y llow — $k+1||q] .
1<ij<n k=1 k=1



INEQUALITIES FOR THE FORWARD DISTANCE IN METRIC SPACES 9

In particular, for p = q¢ = 2,
(3.11) > pipjllwi — )
1<i<j<n

1/2
/ n n—1 1/2

> pipjli— il > ook (1=pr) Y ok — 2|l
k=1

1<i,j<n k=1

<

| —

If pas = mingeqy,... n) Pk < 1, then

(3.12) > v llai
1<i<j<n
1 n—1 1/q
1/p 1+1/p q
< garp (= D+ DI ey ;1 [
for p, ¢ > 1 with % + % =1 and, in particular,
(3.13) > pivillei —
1<i<j<n
1 n—1 1/2
1/2 3/2 2
< 53 (= D+ DI py; > ek =z

k=1
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