INEQUALITIES FOR THE FORWARD DISTANCE IN METRIC SPACES

SILVESTRU SEVER DRAGOMIR 1,2

ABSTRACT. In this note we prove among others that

$$\sum_{1 \le i < j \le n} p_i p_j d(x_i, x_j)$$

$$\leq \begin{cases} \frac{1}{2} \sum_{k=1}^n p_k (1 - p_k) \sum_{k=1}^{n-1} d(x_k, x_{k+1}), \\ \frac{1}{2} \sum_{1 \le i, j \le n} p_i p_j |j - i| \max_{k=1, n-1} d(x_k, x_{k+1}), \\ \frac{1}{2} \sum_{1 \le i, j \le n} p_i p_j |j - i|^{1/p} \left[\sum_{k=1}^{n-1} d^q(x_k, x_{k+1}) \right]^{1/q}, \\ X, d) \text{ is a metric space, } x_i \in X, p_i > 0, i \in \{1, ..., n\} \text{ with } \sum_{i=1}^n p_i p_i |j - i|^{1/p} \left[\sum_{k=1}^{n-1} d^q(x_k, x_{k+1}) \right]^{1/q}, \end{cases}$$

where (X, d) is a metric space, $x_i \in X$, $p_i \ge 0$, $i \in \{1, ..., n\}$ with $\sum_{i=1}^n p_i = 1$ and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$.

1. Introduction

Let X be a nonempty set. A function $d: X \times X \to [0, \infty)$ is called a *distance* on X if the following properties are satisfied:

- (d) d(x,y) = 0 if and only if x = y;
- (dd) d(x,y) = d(y,x) for any $x,y \in X$ (the symmetry of the distance);
- (ddd) $d(x,y) \le d(x,z) + d(z,y)$ for any $x,y,z \in X$ (the triangle inequality).

The pair (X, d) is called in the literature a metric space.

Important examples of metric spaces are normed linear spaces. We recall that, a linear space E over the real or complex number field \mathbb{K} endowed with a function $\|\cdot\|: E \to [0,\infty)$, is called a *normed space* if $\|\cdot\|$, the *norm*, satisfies the properties:

- (n) ||x|| = 0 if and only if x = 0;
- (nn) $\|\alpha x\| = |\alpha| \|x\|$ for any scalar $\alpha \in \mathbb{K}$ and any vector $x \in E$;
- (nnn) $||x+y|| \le ||x|| + ||y||$ for each $x, y \in E$ (the triangle inequality).

A fundamental inequality in metric spaces, which obviously follows by the triangle inequality and mathematical induction, is the generalised triangle inequality, or the polygonal inequality which states that: for any points $x_1, x_2, ..., x_{n-1}, x_n \ (n \ge 3)$ in a metric space (X, d), we have the inequality

$$(1.1) d(x_1, x_n) \le d(x_1, x_2) + \dots + d(x_{n-1}, x_n).$$

The following result in the general setting of metric spaces holds.

²⁰⁰⁰ Mathematics Subject Classification. 54E35; 26D15.

 $Key\ words\ and\ phrases.$ Metric spaces, Normed Spaces, Inequalities for distance, Inequalities for norm.

Theorem 1. Let (X,d) be a metric space and $x_i \in X$, $p_i \ge 0$, $i \in \{1,...,n\}$ with $\sum_{i=1}^{n} p_i = 1$. Then we have the inequality

(1.2)
$$\sum_{1 \leq i \leq j \leq n} p_i p_j d(x_i, x_j) \leq \inf_{x \in X} \left[\sum_{i=1}^n p_i d(x_i, x) \right].$$

The inequality is sharp in the sense that the multiplicative constant c = 1 in front of " inf" cannot be replaced by a smaller quantity.

We have:

Corollary 1. Let (X,d) be a metric space and $x_i \in X$, $i \in \{1,...,n\}$. If there exists a closed ball of radius r > 0 centered in a point x containing all the points x_i , i.e., $x_i \in \overline{B}(x,r) := \{y \in X : d(x,y) \le r\}$, then for any $p_i \ge 0$, $i \in \{1,...,n\}$ with $\sum_{i=1}^{n} p_i = 1$ we have the inequality

(1.3)
$$\sum_{1 \le i \le j \le n} p_i p_j d\left(x_i, x_j\right) \le r.$$

The inequality (1.2) and its consequences were extended to the case of *b*-metric spaces in [4] and for natural powers of the distance in [1].

In the recent paper [2] we obtained the following refinement of the inequality (1.2):

Theorem 2. Let (X,d) be a metric space and $x_i \in X$, $p_i \geq 0$, $i \in \{1,...,n\}$ with $\sum_{i=1}^{n} p_i = 1$. Then we have the inequality (1.4)

$$\sum_{1 \le i < j \le n} p_{i} p_{j} d^{s} (x_{i}, x_{j}) \le \begin{cases} 2^{s-1} \inf_{x \in X} \left[\sum_{k=1}^{n} p_{k} (1 - p_{k}) d^{s} (x_{k}, x) \right], & s \ge 1 \\ \inf_{x \in X} \left[\sum_{k=1}^{n} p_{k} (1 - p_{k}) d^{s} (x_{k}, x) \right], & 0 < s < 1, \end{cases}$$
$$\le \frac{1}{4} \begin{cases} 2^{s-1} \inf_{x \in X} \left[\sum_{k=1}^{n} d^{s} (x_{k}, x) \right], & s \ge 1 \\ \inf_{x \in X} \left[\sum_{k=1}^{n} d^{s} (x_{k}, x) \right], & 0 < s < 1. \end{cases}$$

In this paper we establish other upper bounds for the sum $\sum_{1 \leq i < j \leq n} p_i p_j d(x_i, x_j)$ in terms of the forward distances $\sum_{k=1}^{n-1} d(x_k, x_{k+1})$, $\max_{k=1, n-1} d(x_k, x_{k+1})$ and $\left[\sum_{k=1}^{n-1} d^q(x_k, x_{k+1})\right]^{1/q}$, q > 1.

2. Results

We have the following upper bounds in terms of the forward difference:

Theorem 3. Let (X, d) be a metric space and $x_i \in X$, $p_i \ge 0$, $i \in \{1, ..., n\}$ with $\sum_{i=1}^{n} p_i = 1$. Then we have the inequality

(2.1)
$$\sum_{1 \leq i < j \leq n} p_{i} p_{j} d\left(x_{i}, x_{j}\right)$$

$$\leq \begin{cases} \frac{1}{2} \sum_{k=1}^{n} p_{k} \left(1 - p_{k}\right) \sum_{k=1}^{n-1} d\left(x_{k}, x_{k+1}\right), \\ \frac{1}{2} \sum_{1 \leq i, j \leq n} p_{i} p_{j} \left|j - i\right| \max_{k=1, n-1} d\left(x_{k}, x_{k+1}\right), \\ \frac{1}{2} \sum_{1 \leq i, j \leq n} p_{i} p_{j} \left|j - i\right|^{1/p} \left[\sum_{k=1}^{n-1} d^{q}\left(x_{k}, x_{k+1}\right)\right]^{1/q}, \end{cases}$$

for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. By the polygonal inequality we have for $1 \le i < j \le n$ that

(2.2)
$$d(x_i, x_j) \le \sum_{k=1}^{j-1} d(x_k, x_{k+1}) \le \sum_{k=1}^{n-1} d(x_k, x_{k+1}).$$

By Hölder's inequality we also have for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$,

(2.3)
$$\sum_{k=i}^{j-1} d(x_k, x_{k+1}) \le \begin{cases} (j-i) \max_{k=i, j-1} d(x_k, x_{k+1}) \\ (j-i)^{1/p} \left[\sum_{k=i}^{j-1} d^q(x_k, x_{k+1}) \right]^{1/q} \end{cases}$$
$$\le \begin{cases} (j-i) \max_{k=1, n-1} d(x_k, x_{k+1}) \\ (j-i)^{1/p} \left[\sum_{k=1}^{n-1} d^q(x_k, x_{k+1}) \right]^{1/q} \end{cases}.$$

From (2.2) we get

(2.4)
$$\sum_{1 \le i < j \le n} p_i p_j d(x_i, x_j) \le \sum_{1 \le i < j \le n} p_i p_j \sum_{k=1}^{n-1} d(x_k, x_{k+1}).$$

Since

$$\sum_{1 \le i < j \le n} p_i p_j = \frac{1}{2} \left(\sum_{1 \le i, j \le n} p_i p_j - \sum_{k=1}^n p_k^2 \right) = \frac{1}{2} \left(1 - \sum_{k=1}^n p_k^2 \right)$$
$$= \frac{1}{2} \sum_{k=1}^n p_k \left(1 - p_k \right),$$

hence by (2.4) we derive the first inequality in (2.1).

By (2.3) we get

$$\sum_{1 \le i < j \le n} p_i p_j d(x_i, x_j) \le \sum_{1 \le i < j \le n} p_i p_j (j - i) \max_{k = 1, n - 1} d(x_k, x_{k+1})$$

$$= \frac{1}{2} \sum_{1 \le i, j \le n} p_i p_j |j - i| \max_{k = 1, n - 1} d(x_k, x_{k+1})$$

and the second inequality in (2.1) is proved.

By (2.3) we also get

$$\sum_{1 \le i < j \le n} p_i p_j d(x_i, x_j) \le \sum_{1 \le i < j \le n} p_i p_j (j - i)^{1/p} \left[\sum_{k=1}^{n-1} d^q(x_k, x_{k+1}) \right]^{1/q}$$

$$= \frac{1}{2} \sum_{1 \le i, j \le n} p_i p_j |j - i|^{1/p} \left[\sum_{k=1}^{n-1} d^q(x_k, x_{k+1}) \right]^{1/q},$$

which proves the third inequality in (2.1).

Corollary 2. With the assumptions of Theorem 3 we have

(2.5)
$$\sum_{1 \le i < j \le n} p_i p_j d(x_i, x_j) \le \frac{1}{8} n \sum_{k=1}^{n-1} d(x_k, x_{k+1}).$$

Proof. Using the elementary inequality

$$ab \le \frac{1}{4} (a+b)^2, \ a,b \ge 0$$

we get

$$p_k (1 - p_k) \le \frac{1}{4} (p_k + 1 - p_k)^2 = \frac{1}{4}$$

for all $k \in \{1, ..., n\}$.

Therefore

$$\sum_{k=1}^{n} p_k (1 - p_k) \le \frac{1}{4} n$$

and by the first inequality in (2.1), we get (2.5).

Corollary 3. With the assumptions of Theorem 3 and if $p_m := \min_{k \in \{1,...,n\}} p_k > 0$, then

(2.6)
$$\sum_{1 \le i < j \le n} p_i p_j d(x_i, x_j) \le \frac{1}{2} (1 - p_m) \sum_{k=1}^{n-1} d(x_k, x_{k+1}).$$

Proof. Since

$$0 \le 1 - p_k \le 1 - p_m$$

for all $k \in \{1, ..., n\}$, hence

$$\sum_{k=1}^{n} p_k (1 - p_k) \le \sum_{k=1}^{n} p_k (1 - p_m) = 1 - p_m.$$

By utilising the first inequality in (2.1), we deduce (2.6).

Corollary 4. With the assumptions of Theorem 3 and if $p_M := \min_{k \in \{1,...,n\}} p_k < 1$, then

(2.7)
$$\sum_{1 \le i < j \le n} p_i p_j d(x_i, x_j) \le \frac{1}{2} (n-1) p_M \sum_{k=1}^{n-1} d(x_k, x_{k+1}).$$

Proof. We have

$$\sum_{k=1}^{n} p_k (1 - p_k) \le p_M \sum_{k=1}^{n} (1 - p_k) = (n-1) p_M$$

and by the first inequality in (2.1), we deduce (2.7).

Corollary 5. With the assumptions of Corollary 4 we have

(2.8)
$$\sum_{1 \le i < j \le n} p_i p_j d(x_i, x_j) \le \frac{n(n^2 - 1)}{6} p_M^2 \max_{k = 1, n - 1} d(x_k, x_{k+1}).$$

Proof. Observe that

$$\begin{split} &\sum_{1 \leq j < i \leq n} (i-j) \\ &= \sum_{1 \leq j \leq 2} (2-j) + \sum_{1 \leq j \leq 3} (3-j) + \ldots + \sum_{1 \leq j \leq n} (n-j) \\ &= 2 \cdot 2 - (1+2) + 3 \cdot 3 - (1+2+3) + \ldots + n \cdot n - (1+2+\ldots+n) \\ &= 1^2 + 2^2 + \ldots + n^2 - 1 - (1+2) - (1+2+3) - \ldots - (1+2+\ldots+n) \\ &= \sum_{k=1}^n k^2 - \sum_{k=1}^n \frac{k \left(k+1\right)}{2} = \frac{1}{2} \left(\sum_{k=1}^n k^2 - \sum_{k=1}^n k\right) = \frac{n \left(n^2 - 1\right)}{6}. \end{split}$$

Since

$$\sum_{1 \le i, j \le n} p_i p_j |j - i| \le p_M^2 \sum_{1 \le i, j \le n} |j - i| = 2p_M^2 \sum_{1 \le j < i \le n} (i - j) = 2p_M^2 \frac{n(n^2 - 1)}{6}$$
$$= p_M^2 \frac{n(n^2 - 1)}{3},$$

hence by the second inequality in (2.1) we get (2.8).

Corollary 6. With the assumptions of Theorem 3 we have

$$(2.9) \quad \sum_{1 \le i < j \le n} p_i p_j d(x_i, x_j) \le \frac{1}{2} \left(\sum_{1 \le i, j \le n} p_i p_j |j - i| \right)^{1/p} \left[\sum_{k=1}^{n-1} d^q(x_k, x_{k+1}) \right]^{1/q}$$

for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. In particular, for p = q = 2, we have

$$(2.10) \sum_{1 \le i < j \le n} p_i p_j d(x_i, x_j) \le \frac{1}{2} \left(\sum_{1 \le i, j \le n} p_i p_j |j - i| \right)^{1/2} \left[\sum_{k=1}^{n-1} d^2(x_k, x_{k+1}) \right]^{1/2}.$$

Proof. By the concavity of function $f(t) = t^{1/p}$, p > 1 and by Jensen's inequality we have

$$\frac{\sum_{1 \le i, j \le n} p_i p_j |j - i|^{1/p}}{\sum_{1 \le i, j \le n} p_i p_j} \le \left(\frac{\sum_{1 \le i, j \le n} p_i p_j |j - i|}{\sum_{1 \le i, j \le n} p_i p_j}\right)^{1/p}$$

and since $\sum_{1 \leq i,j \leq n} p_i p_j = 1$, hence

$$\sum_{1 \le i, j \le n} p_i p_j |j - i|^{1/p} \le \left(\sum_{1 \le i, j \le n} p_i p_j |j - i|\right)^{1/p}.$$

By utilising the third inequality in (2.1) we get (2.10).

Remark 1. If $p_M := \min_{k \in \{1,...,n\}} p_k < 1$, then by (2.9) we derive

$$(2.11) \sum_{1 \le i < j \le n} p_i p_j d(x_i, x_j) \le \frac{1}{2 \cdot 3^{1/p}} \left[n \left(n^2 - 1 \right) \right]^{1/p} p_M^{2/p} \left[\sum_{k=1}^{n-1} d^q \left(x_k, x_{k+1} \right) \right]^{1/q}$$

and from (2.10)

$$(2.12) \sum_{1 \le i < j \le n} p_i p_j d(x_i, x_j) \le \frac{1}{2 \cdot 3^{1/2}} \left[n \left(n^2 - 1 \right) \right]^{1/2} p_M \left[\sum_{k=1}^{n-1} d^2(x_k, x_{k+1}) \right]^{1/2}.$$

We also have:

Corollary 7. With the assumptions of Theorem 3 we have

(2.13)
$$\sum_{1 \le i < j \le n} p_i p_j d(x_i, x_j)$$

$$\leq \frac{1}{2} \left(\sum_{1 < i, j < n} p_i p_j |j - i| \right)^{1/p} \left[\sum_{k=1}^n p_k (1 - p_k) \sum_{k=1}^{n-1} d^q (x_k, x_{k+1}) \right]^{1/q}$$

for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. In particular, for p = q = 2,

(2.14)
$$\sum_{1 \leq i < j \leq n} p_i p_j d(x_i, x_j)$$

$$\leq \frac{1}{2} \left(\sum_{1 \leq i, j \leq n} p_i p_j |j - i| \right)^{1/2} \left[\sum_{k=1}^n p_k (1 - p_k) \sum_{k=1}^{n-1} d^2(x_k, x_{k+1}) \right]^{1/2}.$$

Proof. By Jensen's inequality we also have

$$\frac{\sum_{1 \le i < j \le n} p_i p_j |j - i|^{1/p}}{\sum_{1 \le i < j \le n} p_i p_j} \le \left(\frac{\sum_{1 \le i < j \le n} p_i p_j |j - i|}{\sum_{1 \le i < j \le n} p_i p_j}\right)^{1/p}$$

namely

$$(2.15) \sum_{1 \le i < j \le n} p_i p_j |j - i|^{1/p} \le \left(\sum_{1 \le i < j \le n} p_i p_j \right)^{1 - 1/p} \left(\sum_{1 \le i < j \le n} p_i p_j |j - i| \right)^{1/p}$$

$$= \left(\sum_{1 \le i < j \le n} p_i p_j \right)^{1/q} \left(\sum_{1 \le i < j \le n} p_i p_j |j - i| \right)^{1/p}$$

for p > 1.

Observe that

$$\sum_{1 \le i < j \le n} p_i p_j = \frac{1}{2} \sum_{k=1}^n p_k (1 - p_k),$$

$$\sum_{1 \le i < j \le n} p_i p_j |j - i|^{1/p} = \frac{1}{2} \sum_{1 \le i, j \le n} p_i p_j |j - i|^{1/p}$$

and

$$\sum_{1 \leq i < j \leq n} p_i p_j \left| j - i \right| = \frac{1}{2} \sum_{1 \leq i, j \leq n} p_i p_j \left| j - i \right|.$$

By (2.15) we derive

$$\frac{1}{2} \sum_{1 \le i,j \le n} p_i p_j |j - i|^{1/p} \le \left(\frac{1}{2} \sum_{k=1}^n p_k (1 - p_k)\right)^{1/q} \left(\frac{1}{2} \sum_{1 \le i,j \le n} p_i p_j |j - i|\right)^{1/p} \\
= \left(\frac{1}{2}\right)^{1/q+1/p} \left(\sum_{k=1}^n p_k (1 - p_k)\right)^{1/q} \left(\sum_{1 \le i,j \le n} p_i p_j |j - i|\right)^{1/p} \\
= \frac{1}{2} \left(\sum_{k=1}^n p_k (1 - p_k)\right)^{1/q} \left(\sum_{1 \le i,j \le n} p_i p_j |j - i|\right)^{1/p}$$

namely

$$\sum_{1 \le i,j \le n} p_i p_j |j-i|^{1/p} \le \left(\sum_{k=1}^n p_k (1-p_k)\right)^{1/q} \left(\sum_{1 \le i,j \le n} p_i p_j |j-i|\right)^{1/p}.$$

By making use of the third inequality in (2.1), we derive (2.13).

Remark 2. If $p_M := \min_{k \in \{1, \dots, n\}} p_k < 1$, then by (2.13) we derive

(2.16)
$$\sum_{1 \leq i < j \leq n} p_{i} p_{j} d(x_{i}, x_{j})$$

$$\leq \frac{1}{2 \cdot 3^{1/p}} (n - 1) \left[n (n + 1) \right]^{1/p} p_{M}^{1+1/p} \left[\sum_{k=1}^{n-1} d^{q}(x_{k}, x_{k+1}) \right]^{1/q}$$

for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$ and, in particular,

(2.17)
$$\sum_{1 \leq i < j \leq n} p_i p_j d(x_i, x_j)$$

$$\leq \frac{1}{2 \cdot 3^{1/p}} (n-1) \left[n (n+1) \right]^{1/2} p_M^{3/2} \left[\sum_{k=1}^{n-1} d^2 (x_k, x_{k+1}) \right]^{1/2}$$

3. Applications

If $(E, ||\cdot||)$ is a normed linear space and $x_i \in E, i \in \{1, ..., n\}, p_i \ge 0 \ (i \in \{1, ..., n\})$ with $\sum_{i=1}^{n} p_i = 1$, then by (2.1) we have the inequalities

(3.1)
$$\sum_{1 \leq i < j \leq n} p_{i} p_{j} \|x_{i} - x_{j}\|$$

$$\leq \begin{cases} \frac{1}{2} \sum_{k=1}^{n} p_{k} (1 - p_{k}) \sum_{k=1}^{n-1} \|x_{k} - x_{k+1}\|, \\ \frac{1}{2} \sum_{1 \leq i, j \leq n} p_{i} p_{j} |j - i| \max_{k=1, n-1} \|x_{k} - x_{k+1}\|, \\ \frac{1}{2} \sum_{1 \leq i, j \leq n} p_{i} p_{j} |j - i|^{1/p} \left[\sum_{k=1}^{n-1} \|x_{k} - x_{k+1}\|^{q} \right]^{1/q}. \end{cases}$$

We also have the uniform bound

(3.2)
$$\sum_{1 \le i \le j \le n} p_i p_j \|x_i - x_j\| \le \frac{1}{8} n \sum_{k=1}^{n-1} \|x_k - x_{k+1}\|.$$

If $p_m := \min_{k \in \{1,...,n\}} p_k > 0$, then

(3.3)
$$\sum_{1 \le i \le j \le n} p_i p_j \|x_i - x_j\| \le \frac{1}{2} (1 - p_m) \sum_{k=1}^{n-1} \|x_k - x_{k+1}\|,$$

while, if $p_M := \min_{k \in \{1,...,n\}} p_k < 1$, then

(3.4)
$$\sum_{1 \le i < j \le n} p_i p_j \|x_i - x_j\| \le \frac{1}{2} (n-1) p_M \sum_{k=1}^{n-1} \|x_k - x_{k+1}\|$$

and

(3.5)
$$\sum_{1 \le i \le j \le n} p_i p_j \|x_i - x_j\| \le \frac{n(n^2 - 1)}{6} p_M^2 \max_{k = 1, n - 1} \|x_k - x_{k+1}\|.$$

For p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, we have

$$(3.6) \sum_{1 \le i < j \le n} p_i p_j \|x_i - x_j\| \le \frac{1}{2} \left(\sum_{1 \le i, j \le n} p_i p_j |j - i| \right)^{1/p} \left[\sum_{k=1}^{n-1} \|x_k - x_{k+1}\|^q \right]^{1/q}$$

and, in particular, for p = q = 2, we derive

(3.7)
$$\sum_{1 \leq i < j \leq n} p_i p_j \|x_i - x_j\|$$

$$\leq \frac{1}{2} \left(\sum_{1 \leq i, j \leq n} p_i p_j |j - i| \right)^{1/2} \left[\sum_{k=1}^{n-1} \|x_k - x_{k+1}\|^2 \right]^{1/2}.$$

Moreover, if p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, we have

(3.8)
$$\sum_{1 \le i < j \le n} p_i p_j \|x_i - x_j\| \le \frac{\left[n\left(n^2 - 1\right)\right]^{1/p}}{2 \cdot 3^{1/p}} p_M^{2/p} \left[\sum_{k=1}^{n-1} \|x_k - x_{k+1}\|^q\right]^{1/q}$$

and the Euclidian case

(3.9)
$$\sum_{1 \le i \le j \le n} p_i p_j \|x_i - x_j\| \le \frac{\left[n\left(n^2 - 1\right)\right]^{1/2}}{2 \cdot 3^{1/2}} p_M \left[\sum_{k=1}^{n-1} \|x_k - x_{k+1}\|^2\right]^{1/2}.$$

Finally, for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$,

(3.10)
$$\sum_{1 \le i < j \le n} p_i p_j \|x_i - x_j\|$$

$$\leq \frac{1}{2} \left(\sum_{1 \le i, j \le n} p_i p_j |j - i| \right)^{1/p} \left[\sum_{k=1}^n p_k (1 - p_k) \sum_{k=1}^{n-1} \|x_k - x_{k+1}\|^q \right]^{1/q}.$$

In particular, for p = q = 2,

(3.11)
$$\sum_{1 \leq i < j \leq n} p_i p_j \|x_i - x_j\|$$

$$\leq \frac{1}{2} \left(\sum_{1 \leq i, j \leq n} p_i p_j |j - i| \right)^{1/2} \left[\sum_{k=1}^n p_k (1 - p_k) \sum_{k=1}^{n-1} \|x_k - x_{k+1}\|^2 \right]^{1/2}.$$

If $p_M := \min_{k \in \{1,...,n\}} p_k < 1$, then

(3.12)
$$\sum_{1 \le i < j \le n} p_i p_j \|x_i - x_j\|$$

$$\leq \frac{1}{2 \cdot 3^{1/p}} (n-1) \left[n (n+1) \right]^{1/p} p_M^{1+1/p} \left[\sum_{k=1}^{n-1} \|x_k - x_{k+1}\|^q \right]^{1/q}$$

for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$ and, in particular,

(3.13)
$$\sum_{1 \le i < j \le n} p_i p_j \|x_i - x_j\|$$

$$\leq \frac{1}{2 \cdot 3^{1/p}} (n-1) \left[n (n+1) \right]^{1/2} p_M^{3/2} \left[\sum_{k=1}^{n-1} \|x_k - x_{k+1}\|^2 \right]^{1/2}.$$

References

- [1] H. Aydi, B. Samet, On some metric inequalities and applications, Preprint, 2020.
- [2] S. S. Dragomir, Refined inequalities for the distance in metric spaces, Preprint RGMIA Res. Rep. Coll. 23 (2020), Art. 119, 7pp. [Online https://rgmia.org/papers/v23/v23a119.pdf].
- [3] S. S. Dragomir, A. C. Goşa, An inequality in metric spaces. J. Indones. Math. Soc. 11 (2005), no. 1, 33–38.
- [4] E. Karapınar, M. Noorwali, Dragomir and Goşa type inequalities on b-metric spaces. J. Inequal. Appl. 2019, Paper No. 29, 7 pp.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E ext{-}mail\ address: sever.dragomir@vu.edu.au}$

 URL : http://rgmia.org/dragomir

 2 DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, & Applied Mathematics, University of the Witwatersrand,, Johannesburg, South Africa.