LIPSCHITZ TYPE INEQUALITIES FOR D-LOGARITHMIC
INTEGRAL TRANSFORM OF POSITIVE OPERATORS IN
HILBERT SPACES

SILVESTRU SEVER DRAGOMIR1!:2

ABSTRACT. For a continuous and positive function w(A), A > 0 and p a
positive measure on (0,00) we consider the following D-logarithmic integral
transform
o A4+T
DLog (w) (T) := / w (A) In (%) dX,
0
where the integral is assumed to exist for 1" a positive operator on a complex
Hilbert space H.
We show among others that, if A > mj >0, B > ma > 0, then
IDLog (w, 1) (B) — DLog (w, ) (A)|l

DLog(w,p)(mz)=DLog(w,p)(m1)

if my # mo,

< IB - Al e
D (w,p) (m) if mi =ma=m,
where -~ N
D)= [ P, s >0
0 +s

Some examples for integral transforms DLog (-, -) related to power function,
dilogarithmic function and exponential integral are also provided.

1. INTRODUCTION

Let B(H) be the Banach algebra of bounded linear operators on a complex
Hilbert space H. The absolute value of an operator A is the positive operator |A|
defined as |4| := (A*A)1/2.

It is known that [3] in the infinite-dimensional case the map f(A) := |A] is
not Lipschitz continuous on B (H) with the usual operator norm, i.e. there is no
constant L > 0 such that

1Al =Bl < L||A - B||
for any A, Be B(H).
However, as shown by Farforovskaya in [7], [8] and Kato in [14], the following
inequality holds

2 Al + ||B||>>
A Bl < A-B 2+10g<

for any A, B € B(H) with A # B.
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2 S. S. DRAGOMIR
If the operator norm is replaced with Hilbert-Schmidt norm ||C||, ¢ = (tr crc)t?
of an operator C, then the following inequality is true [1]

1Al = [Blll zs < V214 = Bllys

for any A, B€ B(H).

The coefficient v/2 is best possible for a general A and B. If A and B are restricted
to be selfadjoint, then the best coefficient is 1.

It has been shown in [3] that, if A is an invertible operator, then for all operators
B in a neighborhood of A we have

2 3
1141 = |BI| < a1 | A= B|| + az ]| A~ BI* + 0 (|4 - BJ*)

where

ar=[[ATH [ 1A] and > = |47+ A7 A)
An operator T is said to be positive (denoted by T > 0) if (T'z,z) > 0 for all x € H
and also an operator T is said to be strictly positive (denoted by T > 0) if T is
positive and invertible. A real valued continuous function f on (0, c0) is said to be
operator monotone if f(A) > f(B) holds for any A > B > 0. In [2] the author also
obtained the following Lipschitz type inequality

I (A) = £ (Bl < f'(a) | A - B

where f is an operator monotone function on (0,00) and A, B > a > 0.

One of the problems in perturbation theory is to find bounds for ||f (4) — f (B)]]
in terms of ||A — B|| for different classes of measurable functions f for which the
function of operator can be defined. For some results on this topic, see [4], [9] and
the references therein.

We have the following representation of operator monotone functions [15], see
for instance [5, p. 144-145]:

Theorem 1. A function f :[0,00) — R is operator monotone in [0,00) if and only
if it has the representation

A
1.1 t)=f(0)+0bt ——dp (A
(1) FO=FO 0+ [ i),
where b > 0 and a positive measure p on (0,00) such that

A

For some recent results related to operator monotone functions we refer to [10],
[11] [7] and the references therein.

We have the following integral representation for the power function when ¢ > 0,
r € (0, 1], see for instance [5, p. 145]

: co yr—1
(1.2) J—lzsmgw)/1 A
v 0 )\+S

Observe that for s > 0, s # 1, we have

/" d\ Ins 1 U+ s
= + In
0o A+s)(A+1) s—1 1-s u+1

for all u > 0.
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By taking the limit over u — oo in this equality, we derive

Ins > dX
) R e [oxas

which gives the representation for the logarithm

° dX
(1.4) Ins= (s—l)A T 0Ts)

If we integrate (1.2) over s from 0 to ¢ > 0, we get by Fubini’s theorem

o (] (L)
=L ()

giving the identity of interest

ﬂ:m/ )\Tlln< )d)\ t>0andr € (0,1].
0

™

Recall the dilogarithmic function dilog : [0,00) — R defined by

— S

¢
1
dilog (t) ::/ 1ns ds, t > 0.
1

Some particular values of interest are

0 1
Ins Ins 1
dilog (1) = 0, dilog (0) = ds = ds = —72
ilog (1) , dilog (0) /11_85 /08_1 s= T

and

1 1 1
If we integrate the identity (1.3) over s from 0 to ¢ > 0, we get by Fubini’s
theorem

t o) t oo
/ In s ds:/ </ 1 ds> 1 d/\:/ ! m(HA)dx
0 8_1 0 0 )\+S ()\+1) 0 ()\+1) )\

and since
t 1 t t
1 1 1 1 1
/ ns ds:/ ns ds+/ ns o_ 77r2—/ ns o
0 8—1 0 5—1 1 8—1 6 1 1—5

1
= 67r2 — dilog ()

then we get the identity of interest

1, . © 4+ A
—7* — dilog (¢) = | dx, t>0.
&7 ilog (t) /0 ()\+1)n< 3 ) ,t>0

Motivated by the above representations, we define the D-logarithmic transform
for a continuous and positive function w (\), A > 0 by

(1.5) DLog (w, 1) (£) = /OOO w(N)1n <AA”> du (N,
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where p is a positive measure on (0,00) and the integral (1.9) exists for all ¢ > 0.
Also, when p is the usual Lebesgue measure, then
i A+t
(1.6) DLog (w) () ;:/ w(N)In <i> d.
0

Obviously,
DLog (w, p) (t) = /000 w (A)In (1 + ;) dp (M)
- /Ooow () [In (A +£) — In (A)] dp (M)

and one can use either of these representations when is needed. _
If we use the D-logarithmic transform for the kernel wyr—1 (A) := %(m))\rfl,
r € (0,1] we have
DLog (wer-1) (t) =t", £ >0
while for the kernel w,1)-1 (A) := &5 we have

+1
(1.7) DLog (w o1 71) (t) = 17r2 —dilog (¢), t > 0.
(£+1) 6 =
In the recent paper [6] we introduced the following integral transform
“w ()
1.8 D = dp (A 0
(1.9 () (s) = [ 5 dn ). 5> 0,

for a continuous and positive function w (\), A > 0,where p is a positive measure
on (0,00) and the integral (2.3) exists for all s > 0.
For p the Lebesgue usual measure, we put

(1.9) D(w) (s) == /OOO ;"Lﬁiw, s> 0.

Several examples of integral transforms D (w, u) have also been given in [6].
If we integrate the identity (1.3) over s from 0 to ¢ > 0, we get by Fubini’s
theorem

t oo t 1
(1.10) /0 D (w, ) (s)ds := /0 </0 T Sds) w (N) du (A)
e A+t
:/ w(\) (*) i (M)
0 A
for t > 0, which provides the equality of interest
t
(1.11) DLog (w, p) (t) = / D (w,p) (s)ds, t >0,
0

provided that the integral on the right side exists for all t > 0.

2. PRELIMINARY FACTS
Start to the following identity for the logarithmic function:

Lemma 1. For all A, B > 0 we have the identity:
(21) mnB-1InA

:/00o (/01(s—l—(l—t)A—f—tB)_l(B—A)(s—i—(1—t)A+tB)_1dt) ds.
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Proof. We have from (1.4) for A, B > 0 that

(22) mB-Imd= Ooosil [(B=1)(s+B) " = (A= 1)(s+ )] ds.
Since
(B=1)(s+B) " —(A=1)(s+4)"
=B(s+B) " = A+ A = (64 B) 7 - (s+4)7)
and
B(s+B) ' —A(s+ A"
=(B+s—s)(s+B) " —(A+s—s)(s+A)"
—1—-s(s+B) ' —14s(s+A) '=s(s+A) ' —s(s+B) ",
hence

(B=1)(s+B) ' =(A-1)(s+4)""
=s(s+A) ' —s(s+B) " - ((5 +B) = (s+ A)_l)
= s+ 1) s+ = (s+B) ]

and by (2.2) we get
—InA= h s (s ! ds.
(2.3) B - InA /0 s+ )"~ (s+B)'|d

Let T, S > 0. The function f (t) = —t~! is operator monotone on (0, o), oper-
ator Gateaux differentiable and the Gateaux derivative is given by
[T +1tS) - f(T)
t

(2.4) Vfr(S) = lim [ ] =T77'ST7!

for T, S > 0.

Consider the continuous function f defined on an interval I for which the cor-
responding operator function is Gateaux differentiable on the segment [C, D] :
{(1—=t)C+tD, te€]0,1]} for C, D selfadjoint operators with spectra in I. We
consider the auxiliary function defined on [0, 1] by

.fC,D (t) ::f((]-*t)c+tD)’ te [07”

Then we have, by the properties of the Bochner integral, that

(25) f(D)-f(C)= /0 & (e (1)) dt = /0 Vfunern (D - C) .

If we write this equality for the function f (t) = —t~1! and C, D > 0, then we get
the representation

(26) Cl-Dl= /1((1—t)C+tD)1 (D—C) (1 —)C +tD) "L dt.
0
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Since, by (2.6) we have
(2.7) (s+A) "' —(s+B)"
1
:/ 5+ (1= ) A+1B) " (B—A)(s+(1—1)A+tB) " di,
0
for all s > 0, hence by (2.3) and (2.7) we get (2.1). O

Lemma 2. For all A, B > 0 we have the identity:
(2.8) DLog (w, p) (B) = DLog (w, 1) (A)

/Ooow(A) (/OOO (/01(s+>\+(1t)A+tB)1(BA)

X (s+ A+ (1 —t)A—i—tB)*ldt) ds) du (N .
Proof. For all A, B> 0 we have
(2.9) DLog (w, ) (B) — DLog (w, p) (A)
- /Ooow(x) In(A+ B) — In Al du (\) — /Ooow(A) In (A+ A) — In A dp (\)

[ e Mmo B < Alda (.

Since, by (2.1) we get
In(A+B)—In(A+ A)

:/OOO (/01(s+(1—t)(()\+A))+t()\+B))1

><(A+B—(/\+A))(s+(1—t)((A+A))+t(A+B))*1dt)ds

for all A > 0, then by multiplying with w () and integrating over p (\) we obtain

(2.10) / T IO+ B) —n (A + A)] du (V)

- (/OOO </01(s+/\+(1—t)A+tB)1(B_A)

X (s+A+(1 —t)A+tB)*1dt) ds) dp (N).
Finally, by (2.9) and (2.10) we get (2.8). O

Corollary 1. If B > A > 0, then DLog (w, i) (B) > DLog (w, ) (A), namely
DLog (w, p) () is operator monotone on (0,00) .

Proof. If B— A > 0, then by multiplying both sides with (s + A+ (1 —¢t) A+ tB)f1
we get
(s+A+(1—t)A+tB) " (B—A)(s+ A+ (1—t)A+tB) ' >0

for all t € [0,1] and s, A > 0.
If we integrate of over ¢ € [0,1] and s € [0,0) we obtain

00 1
/ </ (5+/\+(1t)A+tB)_1(BA)(s+>\+(1t)AthB)_ldt)dsZO.
0 0
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Further, if we multiply this inequality by w (A) > 0, integrate over the positive
measure p (M) and use the identity (2.8) we derive the desired inequality. O

Remark 1. Since, by (1.7),
1,
DLog (w(ul)fl) (t) = g™ dilog (t), t >0

and Dﬁog( (+1)~ 1) s operator monotone, then the function — dilog is operator

monotone on (0,00).

3. MAIN RESULTS

We have the following Lipschitz type inequality:

Theorem 2. Assume that A > mq, >0, B > my > 0, then

(3.1) [DLog (w, ) (B) — DLog (w, p) (A
DLog(w, u)(fr;iz Zlﬁog(w 1) (ma) if m1 % mo,
<|IB— Al x

D (w, p) (M) if my =mg =m.
Proof. By taking the norm in (2.8) we get
(3-2) IDLog (w, 1) (B) 73509 (w, ) (A)]|

g/o ( H( s+A+(1—t)A+tB)*1(B—A)

X (s+A+(1—t)A+tB)” dt)Hds) dp (N

s/ooow(x) (AOO (/1H(s+>\+(1—t)A+tB)_1(B—A)

X (st A+ (1—t)A+tB)” Hdt) ds) i (\)

<B4l [ we
x (/OOO (/01 H(s+A+(1—t)A+tB)1H2dt) ds)d,u()\),

for all A, B > 0.
Assume that mo > mq. Then

S+A+(1—t)A+tB> (1 —t)my +tmg + 5+ A,

for t € [0,1] and s, A > 0.
This implies that

(s+A+ (A=) A+tB) ' < (A —t)my+tma+s+ A"
and
H(s—|—/\—|—(1—t)A—|—tB)_1H2 <((A—t)ymy +tma+s+A)77
for t € [0,1] and s, A > 0.
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Therefore

(3.3) /Ooow(A) (/OOO (/01 H(s+)\+(1t)A+tB)1H2dt> ds) dp ()
§/Ooow()\) </OOO </01((1t)m1+tm2+5+)\)2dt> ds) dp (N)
miml/ooowm (/OOO (/01((1t)m1+tm2+s+/\)1

X (mg—my) (L —t)my+tma+s+N)"" dt) ds) dp (N) .
If in the identity (2.8) we take A = my, B = mg, then we get
DLog (w, p) (m2) — DLog (w, ) (ma)

= Oow()\) - 1(s—l—/\—k(l—t)Tm-5-1577”02)71(””&2—ml)
0 0 0

X (s 4+ A+ (1 —t)my +tmg) ™" dt) ds) dp (M) .
and by (3.3) we get

(3.4) /Ooow(A) (/OOQ (/01 H(s+/\+(1—t)A+tB)_1H2dt> ds) du (N

: ﬁ [DLog (w, p) (m2) = DLog (w, ) (m1)]

The case ma < mq goes in a similar way and we also obtain (3.4).
Assume that mg = m; = m. Let € > 0, then B+ € > m + ¢ > m. From (3.4) we

get
[Tom ([ ([ s rra-oarm | a)a)ac

< ———— [DLog (w, ) (m+ ) ~ DLog (w, 1) ()]

and by taking the limit over ¢ — 0+, using the continuity and differentiability of
DLog we deduce

oo ([T ([ s rra-oamim | a)a) acy

< (DLog (w, w)) (m) = D (w, 1) (m),
which proves the second part of (3.1). O
We have:

Lemma 3. Assume that function f :[0,00) — R is operator monotone in [0, 00)
and has the representation (1.1), where b > 0 and p is a positive measure on [0, 00).

Then
(3.5) DLog (¢, 1) (t) = Fy (t) — bt

provided the function

(3.6) Fy (t) := /0 Mds
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is defined for all t € (0, 00).
Proof. From (1.1) we have

(3.7) w—h/ooosikdu(A):D(&u)(S)

where £ (X) = A, A > 0.
By taking the integral over s on (0,t), we have
t 10 t
/ Mczs bt = / D (6, 1) (s) ds = DLog (¢, 1) (1)
0 0
for t > 0, and the proposition is proved. [l

Corollary 2. With the assumptions of Lemma 8 and if A>mq >0, B > mo > 0,
then

(8) 15 (B) = Fy (4) (B = 4)]
Erma) =By m) ) if iy o4 ma,
<|1B - A x
<M—b> if m1 = mg =m.
Moreover,
(3.9) |Fy (B) = Fy (A)]
Lrlma) = Br(m) if g £ ma,
<|IB - Al x
F(m)=£(0) if mp =may =m.

Proof. The inequality (3.8) follows by (3.1) for DLog (¢, 1) (t) = Fy (t) — bt, t > 0.
By the triangle inequality we have

I1Fy (B) = Fy (A)| = bl|B — Al < [|[F (B) — Fy (A) —b(B — A)||
and by (3.8) we derive (3.9). O

Remark 2. Assume that A > my > 0, B > mgo > 0. Consider the kernel
wer—1 (A) 1= %(m))\r_l, r € (0,1]. Then we have

DLog (wer—1) (t) =t", t >0
and by (3.1),

my—m7y -
mo—my Zf my 7& mz,

(3.10) [B" — A"|| < [|B — Al x
rm” if m1 = mo = m.

For the kernel w,,q)-1 (A) := 7 we have
1
DLog (w(ul)fl) (t) = 67r2 —dilog (t), t >0
and by (3.1),

dilog(m)—dilog(ms) -
prp— if my # ma,

(3.11) [dilog (B) — dilog (A)]] < | B — A]| x
w(m) if my =mg =m,
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where
miot£1, >0,
u(t) =
1, t=1.

If we take f (t) =1n(t +a), for a, t > 0, then we have

t] -1 i
Fln(t-s-a)(t) ::/ n(s+a) n(a)dsz/o 71n(f+l>ds.

0 S S a

If we change the variable uw = 2, then we get

t t/a t/a q
/ fln(f—l—l)ds:/ —ln(u—|—1)adu=/ —In(u+1)du
( a 0 0

) 8 ua U

t
= —dilog ( + 1> ,
a

4
Fln(t+a) (t) = —dilog <a + 1) , t>0.
By (3.9) we then get

1 1
dilog <B + 1) — dilog <A + 1> H
a a

dilog( L 4+1)—dilog( =2 +1)
mo—miq

which gives

(3.12) ‘

ifm1 7& ma,
<|B—A| x

In(m+a)—Ina

- if m1 = mo =m.

4. MORE EXAMPLES

If we consider the positive kernel Wexp(—q.) (A) := exp(—aX), A > 0, then, after
some calculations

/000 exp(—aX)In (A +t)d\ = % [lnt+ Fj (at) exp(at)],

for t > 0,where the ezponential integral is given by

Ei (1) ;:/ ¢ du.
t

u

For a = 1 we have
o
/ exp(—A)In (A +t)d\ =Int + E (¢) exp(t),
0
For t = 0, we derive
(o)
/ exp(—A)In (A\) dA = —,
0

where v is Euler-Mascheroni constant.
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For a > 0, by changing the variable a\ = v, then

/000 exp(—aA)In (\)dX\ = /000 exp(—v)In (%) 2d1/

1 o0
=- / [exp(—v)Inv — exp(—v) lna] dv
aJo
1 1
=~ (—y—lna) = _ma+y
a a

‘We then have
A+t

DLoG (Wexp(—ar)) (t) = /OOO exp(—aA)In (/\) du (X)
= % (In (at) + E4 (at) exp(at) + 7]

and, for a =1,

DLog (Wesp(—) () = /OOO exp(—A)In (A)\th> du (X)
=1n(¢) + Eq () exp(t) + 7.

Using Corollary 1 we conclude that the function In (t) + E; (t) exp(t) is operator
monotone on (0,00).
Observe that
1

(DLog (wcxp(_i)))/ (t) = n + E1 (t) exp(t) + Eq (t) exp(t)

% + exp(t) {El (t) — t} , 1>0.

Assume that A > mq > 0, B > my > 0, then by (3.1) we obtain:
(4.1) [In (B) + E1 (B) exp(B) — In(A) — By (A) exp(A4)]|
<|[B-A

In(ma)+FE1 (m2) exp(mz) —In(m1) —F1 (m1) exp(mi)

Mg —m1 if mi 7é ma,

—-m

L+ exp(m) [El (m) — &—| if my =my =m.

If we consider the positive kernel w(.q)-2 (A) 1= m, A >0, a > 0, then,
after some calculations

tlnt—alna7 ift;éa,

®ln(A+t a(t—a)
/ A+ +2)d)\—
o (A+a) matl ifp_ g
for t > 0.
If a =1, then
tlnt 5
/Ooln()\—l—t) o AL
DTV =
o (A+1) 1, ift=1

for ¢ > 0.



12 S.S. DRAGOMIR

For ¢t = 0, we derive

/OO In (X) d)\:hl—a
o (

A+ a)’ a
for a > 0.
Therefore
taine) it # a,
DLog (w(.4a)-2) (t) =
%, if t = a.
Fora =1,
Lt if ¢ £ 1,
DLog (w(.41y-2) (t) =
1, ift = 1.

Using Corollary 1 we conclude that the function DLog (w(AH)fz) is operator
monotone on (0,00).
Assume that 1 > A >my > 0,1 > B > mgy > 0, then by (3.1) we obtain:

(4.2) |0=B) " BB - (-4 Ama|
<|B- A4
m2im1 (mﬁlln_qlz - m%in_’rilg) if mq # ma,
X
(E%I_(;T%2)ifma=ﬂn2=7m
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