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Abstract. We establish in this paper some lower and upper bounds for Jensen�s
gap in the general setting of Hermitian unital Banach �-algebra, analytic con-
vex functions and positive normalized linear functionals. Some examples for
power function and logarithm are also provided.

1. Introduction

We need some preliminary concepts and facts about Banach �-algebras.
Let A be a unital Banach �-algebra with unit 1. An element a 2 A is called

selfadjoint if a� = a: A is called Hermitian if every selfadjoint element a in A has
real spectrum � (a) ; namely � (a) � R.
We say that an element a is nonnegative and write this as a � 0 if a� = a and

� (a) � [0;1) : We say that a is positive and write a > 0 if a � 0 and 0 =2 � (a) :
Thus a > 0 implies that its inverse a�1 exists. Denote the set of all invertible
elements of A by Inv (A) : If a; b 2 Inv (A) ; then ab 2 Inv (A) and (ab)�1 = b�1a�1:
Also, saying that a � b means that a � b � 0 and, similarly a > b means that
a� b > 0:
The Shirali-Ford theorem asserts that if A is a unital Banach �-algebra [9] (see

also [1, Theorem 41.5]), then

(SF) a�a � 0 for every a 2 A:
Based on this fact, Okayasu [8], Tanahashi and Uchiyama [10] proved the following
fundamental properties (see also [6]):

(i) If a; b 2 A; then a � 0; b � 0 imply a+ b � 0 and � � 0 implies �a � 0;
(ii) If a; b 2 A; then a > 0; b � 0 imply a+ b > 0;
(iii) If a; b 2 A; then either a � b > 0 or a > b � 0 imply a > 0;
(iv) If a > 0; then a�1 > 0;
(v) If c > 0; then 0 < b < a if and only if cbc < cac; also 0 < b � a if and only

if cbc � cac;
(vi) If 0 < a < 1; then 1 < a�1;
(vii) If 0 < b < a; then 0 < a�1 < b�1; also if 0 < b � a; then 0 < a�1 � b�1:

Okayasu [8] showed that the Löwner-Heinz inequality remains valid in a Her-
mitian unital Banach �-algebra with continuous involution, namely if a; b 2 A and
p 2 [0; 1] then a > b (a � b) implies that ap > bp (ap � bp) :
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In order to introduce the real power of a positive element, we need the following
facts [1, Theorem 41.5].
Let a 2 A and a > 0; then 0 =2 � (a) and the fact that � (a) is a compact subset

of C implies that inffz : z 2 � (a)g > 0 and supfz : z 2 � (a)g < 1: Choose 
 to
be close recti�able curve in fRe z > 0g; the right half open plane of the complex
plane, such that � (a) � ins (
) ; the inside of 
: Let G be an open subset of C with
� (a) � G: If f : G! C is analytic, we de�ne an element f (a) in A by

f (a) :=
1

2�i

Z



f (z) (z � a)�1 dz:

It is well known (see for instance [2, pp. 201-204]) that f (a) does not depend on
the choice of 
 and the Spectral Mapping Theorem (SMT)

� (f (a)) = f (� (a))

holds.
For any � 2 R we de�ne for a 2 A and a > 0; the real power

a� :=
1

2�i

Z



z� (z � a)�1 dz;

where z� is the principal �-power of z: Since A is a Banach �-algebra, then a� 2 A:
Moreover, since z� is analytic in fRe z > 0g; then by (SMT) we have

� (a�) = (� (a))
�
= fz� : z 2 � (a)g � (0;1) :

Following [6], we list below some important properties of real powers:

(viii) If 0 < a 2 A and � 2 R, then a� 2 A with a� > 0 and
�
a2
�1=2

= a; [10,
Lemma 6];

(ix) If 0 < a 2 A and �; � 2 R, then a�a� = a�+� ;

(x) If 0 < a 2 A and � 2 R, then (a�)�1 =
�
a�1

��
= a��;

(xi) If 0 < a; b 2 A, �; � 2 R and ab = ba; then a�b� = b�a�:

Now, assume that f (�) is analytic in G, an open subset of C and for the real
interval I � G assume that f (z) � 0 for any z 2 I: If u 2 A such that � (u) � I;
then by (SMT) we have

� (f (u)) = f (� (u)) � f (I) � [0;1)
meaning that f (u) � 0 in the order of A:
Therefore, we can state the following fact that will be used to establish various

inequalities in A; see also [4].

Lemma 1. Let f (z) and g (z) be analytic in G, an open subset of C and for the
real interval I � G; assume that f (z) � g (z) for any z 2 I: Then for any u 2 A
with � (u) � I we have f (u) � g (u) in the order of A:

De�nition 1. Assume that A is a Hermitian unital Banach �-algebra. A linear
functional  : A ! C is positive if for a � 0 we have  (a) � 0: We say that it is
normalized if  (1) = 1:

We observe that the positive linear functional  preserves the order relation,
namely if a � b then  (a) �  (b) and if � � a � � with �; � real numbers, then
� �  (a) � �:
In the recent paper [5] we obtained between others the following results:
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Theorem 1. Let f (z) be analytic in G, an open subset of C and the real interval
I � G: If f is convex (in the usual sense) on the interval I and  : A ! C is a
positive normalized linear functional on A; then for any selfadjoint element c 2 A
with � (c) � I, we have the Jensen type inequalities

(1.1) 0 �  (f (c))� f ( (c)) �  (cf 0 (c))�  (c) (f 0 (c)) :

Motivated by the above results, we establish in this paper some new lower and
upper bounds for Jensen�s gap in the general setting of Hermitian unital Banach �-
algebra, analytic convex functions and positive normalized linear functionals. Some
examples for power function and logarithm are also provided.

2. Functional Properties

We denote by P1 (A) the set of all linear, positive functionals de�ned on A
with the property that, if ' 2 P1 (A) ; then ' (1) > 0: If '; ! 2 P1 (A) then
'+ ! 2 P1 (A) and for all � > 0 we have �' 2 P1 (A) :
We de�ne the order relation " � "on P1 (A) by ' � ! i¤ '� ! 2 P1 (A) :
Let f (z) be analytic in G, an open subset of C and the real interval I � G: If f

is convex on the interval I and ' 2 P1 (A) ; then for any selfadjoint element c 2 A
with � (c) � I, we have by (1.1) that

(2.1) f

�
' (c)

' (1)

�
� ' (f (c))

' (1)
:

With the above assumptions for f and c; we de�ne the functional J (f; c; �) :
P1 (A)! [0;1) by

J (f; c; ') := ' (f (c))� ' (1) f
�
' (c)

' (1)

�
� 0:

We have

Theorem 2. Let f (z) be analytic in G, an open subset of C and the real interval
I � G: Assume that f is convex on the interval I and c 2 A is a selfadjoint element
with � (c) � I.

(i) If '; ! 2 P1 (A) ; then

(2.2) J (f; c; '+ !) � J (f; c; ') + J (f; c; !) � 0;

namely J (f; c; �) is superadditive on P1 (A) :
(ii) If '; ! 2 P1 (A) with ' � !; then

(2.3) J (f; c; ') � J (f; c; !) � 0;

namely J (f; c; �) is monotonic nondecreasing on P1 (A) :

Proof. (i) If '; ! 2 P1 (A) ; then by the convexity of f we have

('+ !) (1) f

�
('+ !) (c)

('+ !) (1)

�
= (' (1) + ! (1)) f

�
' (c) + ! (c)

' (1) + ! (1)

�
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= (' (1) + ! (1)) f

0@' (1) '(c)'(1) + ! (1)
!(c)
!(1)

' (1) + ! (1)

1A
� (' (1) + ! (1))

' (1) f
�
'(c)
'(1)

�
+ ! (1) f

�
!(c)
!(1)

�
' (1) + ! (1)

= ' (1) f

�
' (c)

' (1)

�
+ ! (1) f

�
! (c)

! (1)

�
:

Therefore

J (f; c; '+ !) = ('+ !) (f (c))� ('+ !) (1) f
�
('+ !) (c)

('+ !) (1)

�
� ' (f (c)) + w (f (c))� ' (1) f

�
' (c)

' (1)

�
� ! (1) f

�
! (c)

! (1)

�
= ' (f (c))� ' (1) f

�
' (c)

' (1)

�
+ w (f (c))� ! (1) f

�
! (c)

! (1)

�
= J (f; c; ') + J (f; c; !)

and the inequality (2.2) is proved.
(ii) If ' � !; then � := '� ! 2 P1 (A) : By (2.2) we get

J (f; c; ') = J (f; c; �+ !) � J (f; c; �) + J (f; c; !) ;
which implies that

J (f; c; ')� J (f; c; !) � J (f; c; �) = J (f; c; '� !) � 0
and the inequality (2.3) is proved. �

Corollary 1. With the assumptions of Theorem 2 for f and c and if there exists
the constants 0 < m < M <1 such that M! � ' � m!; then

(2.4) MJ (f; c; !) � J (f; c; ') � mJ (f; c; !) � 0:

Proof. From (2.3) we get

J (f; c;M!) � J (f; c; ') � J (f; c;m!)
and since J (f; c;M!) = MJ (f; c; !) and J (f; c;m!) = mJ (f; c; !) ; hence we
obtain (2.4). �

Let X be a linear space. A subset C � X is called a convex cone in X provided
the following conditions hold:

(i) x; y 2 C imply x+ y 2 C;
(ii) x 2 C; � � 0 imply �x 2 C:
A functional h : C ! R is called superadditive on C if

(iii) h (x+ y) � h (x) + h (y) for any x; y 2 C
and nonnegative (strictly positive) on C if, it satis�es

(iv) h (x) � (>) 0 for each x 2 C:
The functional h is s-positive homogeneous on C; for a given s > 0; if

(v) h (�x) = �sh (x) for any � � 0 and x 2 C:
In the paper [3] we obtained the following result for superadditive functions:
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Lemma 2. Let C be a convex cone in the linear space X and v : C ! (0;1) an
additive functional on C: If h : C ! [0;1) is a superadditive functional on C and
p � 1 then the composite functional
(2.5) 	p : C ! [0;1) ;	p (x) = v1�

1
p (x)h (x)

is superadditive on C:

Corollary 2. Assume that X;C and v are as in Theorem 2. If h : C ! [0;1) is
a superadditive functional on C and p; q � 1 then the two parameters functional

(2.6) 	p;q : C ! [0;1) ;	p;q (x) = vq(1�
1
p ) (x)hq (x)

is superadditive on C:

Remark 1. If we consider the functional  p (x) := vp�1 (x)hp (x) then for p � 1
and h : C ! [0;1) a superadditive functional on C; the functional  p is also
superadditive on C:

Corollary 3. Let f (z) be analytic in G, an open subset of C and the real interval
I � G: Assume that f is convex on the interval I and c 2 A is a selfadjoint element
with � (c) � I. For p; q � 1 we de�ne the functional Jp;q (f; c; �) : P1 (A)! [0;1)
by

(2.7) Jp;q (f; c; ') := [' (1)]q(1�
1
p )
�
' (f (c))� ' (1) f

�
' (c)

' (1)

��q
:

Then Jp;q (f; c; �) is superadditive on P1 (A) :

The proof follows by Corollary 2 by choosing

v (') = ' (1) and h (') = J (f; c; ') = ' (f (c))� ' (1) f
�
' (c)

' (1)

�
:

We also observe that for p � 1

(2.8) Jp (f; c; ') := [' (1)]p�1
�
' (f (c))� ' (1) f

�
' (c)

' (1)

��p
and

(2.9) Jp;1 (f; c; ') := [' (1)]1�
1
p

�
' (f (c))� ' (1) f

�
' (c)

' (1)

��
are superadditive on P1 (A) :

3. Lower and Upper Bounds

We have:

Theorem 3. Let f (z) be analytic in G, an open subset of C and convex on the
real interval I � G and  : A! C is a positive normalized linear functional on A:
For any selfadjoint element c 2 A with � (c) � I;

0 �
�
inf
z2�I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds
�
 
h
(c� t)2

i
(3.1)

�  (f (c))� f 0 (t) ( (c)� t)� f (t)

�
 
sup
z2�I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds
!
 
h
(c� t)2

i
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for all t 2 �I:
In particular, we have

0 �
�
inf
z2�I

Z 1

0

f 00 ((1� s) (c) + sz) (1� s) ds
�h

 
�
c2
�
� ( (c))2

i
(3.2)

�  (f (c))� f ( (c))

�
 
sup
z2�I

Z 1

0

f 00 ((1� s) (c) + sz) (1� s) ds
!h

 
�
c2
�
� ( (c))2

i
:

Proof. Using Taylor�s representation with the integral remainder we can write the
following identity

(3.3) f (z) =
nX
k=0

1

k!
f (k) (t) (z � t)k + 1

n!

Z z

t

f (n+1) (s) (z � s)n ds

for any z; t 2 �I; the interior of I:
For any integrable function h on an interval and any distinct numbers c; d in

that interval, we have, by the change of variable s = (1� s) c+ sd; s 2 [0; 1] thatZ d

c

h (s) ds = (d� c)
Z 1

0

h ((1� s) c+ sd) ds:

Therefore, Z z

t

f (n+1) (s) (z � s)n ds

= (z � t)
Z 1

0

f (n+1) ((1� s) t+ sz) (z � (1� s) t� sz)n ds

= (z � t)n+1
Z 1

0

f (n+1) ((1� s) t+ sz) (1� s)n ds:

The identity (3.3) can then be written as

f (z) =
nX
k=0

1

k!
f (k) (t) (z � t)k(3.4)

+
1

n!
(z � t)n+1

Z 1

0

f (n+1) ((1� s) t+ sz) (1� s)n ds:

For n = 1 we get

(3.5) f (z) = f (t) + (z � t) f 0 (t) + (z � t)2
Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds

for any z; t 2 �I:
Since

0 � inf
z2�I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds �
Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds

� sup
z2�I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds;
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hence

0 �
�
inf
z2�I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds
�
(z � t)2(3.6)

� f (z)� f (t)� (z � t) f 0 (t)

�
 
sup
z2�I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds
!
(z � t)2 ;

for any z; t 2 �I:
Fix t 2 I. Using Lemma 1 and the inequality (3.7) we obtain for the element

c 2 A with � (c) � I the following inequality in the order of A

0 �
�
inf
z2�I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds
�
(c� t)2

� f (c)� f (t)� (c� t) f 0 (t)

�
 
sup
z2�I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds
!
(c� t)2 ;

for any t 2 �I:
If we take in this inequality the functional  we get (3.1).
If we take in (3.1) t =  (c), then we get

0 �
�
inf
z2�I

Z 1

0

f 00 ((1� s) (c) + sz) (1� s) ds
�
 
h
(c�  (c))2

i
(3.7)

�  (f (c))� f ( (c))

�
 
sup
z2�I

Z 1

0

f 00 ((1� s) (c) + sz) (1� s) ds
!
 
h
(c�  (c))2

i
:

Since

 
h
(c�  (c))2

i
=  

�
c2 � 2 (c) c+ ( (c))2

�
=  

�
c2
�
� 2 ( (c))2 + ( (c))2 =  

�
c2
�
� ( (c))2 ;

hence by (3.7) we get (3.2). �
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Corollary 4. With the assumptions of Theorem 3 and, if, in addition,  (f 0 (c)) 6=
0 with t =

 (cf 0(c))
 (f 0(c)) 2 �I; then we have

0 �
�
inf
z2�I

Z 1

0

f 00
�
(1� s)  (cf

0 (c))

 (f 0 (c))
+ sz

�
(1� s) ds

�
(3.8)

�  
"�

c�  (cf 0 (c))

 (f 0 (c))

�2#

�  (f (c))� f 0
�
 (cf 0 (c))

 (f 0 (c))

��
 (c)�  (cf 0 (c))

 (f 0 (c))

�
� f

�
 (cf 0 (c))

 (f 0 (c))

�
�
 
sup
z2�I

Z 1

0

f 00
�
(1� s)  (cf

0 (c))

 (f 0 (c))
+ sz

�
(1� s) ds

!

�  
"�

c�  (cf 0 (c))

 (f 0 (c))

�2#
:

Corollary 5. For any selfadjoint element c 2 A with � (c) � [m;M ] � I; we have

0 �
�
inf
z2�I

Z 1

0

f 00
�
(1� s) m+M

2
+ sz

�
(1� s) ds

�
 

"�
c� m+M

2

�2#
(3.9)

�  (f (c))� f 0
�
m+M

2

��
 (c)� m+M

2

�
� f

�
m+M

2

�
�
 
sup
z2�I

Z 1

0

f 00
�
(1� s) m+M

2
+ sz

�
(1� s) ds

!
 

"�
c� m+M

2

�2#

� 1

4
(M �m)2

 
sup
z2�I

Z 1

0

f 00
�
(1� s) m+M

2
+ sz

�
(1� s) ds

!
:

We also have:

Theorem 4. Let f (z) be analytic in G, an open subset of C and convex on the
real interval I � G and  : A! C is a positive normalized linear functional on A:
For any selfadjoint element c 2 A with � (c) � [m;M ] � I; we have

0 � 1

2
inf

(z;t)2�I��I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds(3.10)

�
(
1

12
(M �m)2 +  

"�
c� m+M

2

�2#)

� 1

2

�
 (f (c)) +

(M �  (c)) f (M) +  (c) f (m)
M �m

�
� 1

M �m

Z M

m

f (t) dt

� 1

2
sup

(z;t)2�I��I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds

�
(
1

12
(M �m)2 +  

"�
c� m+M

2

�2#)
:
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Proof. We have, by (3.6), on taking the integral mean over t 2 [m;M ] that

0 � 1

M �m

Z M

m

�
inf
z2�I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds
�
(z � t)2 dt(3.11)

� f (z)� 1

M �m

Z M

m

f (t) dt� 1

M �m

Z M

m

(z � t) f 0 (t) dt

� 1

M �m

Z M

m

 
sup
z2�I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds
!
(z � t)2 dt

for all z 2 �I:
Now, observe that 

inf
(z;t)2�I��I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds
!

1

M �m

Z M

m

(z � t)2 dt

� 1

M �m

Z M

m

�
inf
z2�I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds
�
(z � t)2 dt

and

1

M �m

Z M

m

 
sup
z2�I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds
!
(z � t)2 dt

�
 

sup
(z;t)2�I��I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds
!

1

M �m

Z M

m

(z � t)2 dt

for all z 2 �I:
Also,

1

M �m

Z M

m

(z � t)2 dt = (M � z)3 + (z �m)3

3 (M �m)

=
1

3

h
(z �m)2 + (M � z)2 � (z �m) (M � z)

i
=
1

3

"
1

4
(M �m)2 + 3

�
z � m+M

2

�2#

=
1

12
(M �m)2 +

�
z � m+M

2

�2
and

1

M �m

Z M

m

(z � t) f 0 (t) dt

=
1

M �m

"
(z � t) f (t)jMm +

Z M

m

f (t) dt

#

=
1

M �m

"Z M

m

f (t) dt� (M � z) f (M)� (z �m) f (m)
#

=
1

M �m

Z M

m

f (t) dt� (M � z) f (M) + (z �m) f (m)
M �m

for all z 2 [m;M ] :
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By (3.11) we then get

0 � inf
(z;t)2�I��I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds

�
"
1

12
(M �m)2 +

�
z � m+M

2

�2#

� f (z)� 1

M �m

Z M

m

f (t) dt

� 1

M �m

Z M

m

f (t) dt+
(M � z) f (M) + (z �m) f (m)

M �m

� sup
(z;t)2�I��I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds

�
"
1

12
(M �m)2 +

�
z � m+M

2

�2#
;

which is equivalent to

0 � 1

2
inf

(z;t)2�I��I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds(3.12)

�
"
1

12
(M �m)2 +

�
z � m+M

2

�2#

� 1

2

�
f (z) +

(M � z) f (M) + (z �m) f (m)
M �m

�
� 1

M �m

Z M

m

f (t) dt

� 1

2
sup

(z;t)2�I��I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds

�
"
1

12
(M �m)2 +

�
z � m+M

2

�2#
;

for z 2 [m;M ] :
Using Lemma 1 and the inequality (3.12) we obtain for the element c 2 A with

� (c) � [m;M ] the following inequality in the order of A

0 � 1

2
inf

(z;t)2�I��I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds(3.13)

�
"
1

12
(M �m)2 +

�
c� m+M

2

�2#

� 1

2

�
f (c) +

(M � c) f (M) + (c�m) f (m)
M �m

�
� 1

M �m

Z M

m

f (t) dt

� 1

2
sup

(z;t)2�I��I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds

�
"
1

12
(M �m)2 +

�
c� m+M

2

�2#
:
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If we take the functional  on (3.13), then we get (3.10). �

Corollary 6. With the assumptions of Theorem 4 we have

0 � 1

24
(M �m)2 inf

(z;t)2�I��I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds(3.14)

� 1

2

�
 (f (c)) +

(M �  (c)) f (M) +  (c) f (m)
M �m

�
� 1

M �m

Z M

m

f (t) dt

� 1

6
(M �m)2 sup

(z;t)2�I��I

Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds:

The proof follows by (3.10) on observing that

0 �  

"�
c� m+M

2

�2#
� 1

4
(M �m)2 :

Remark 2. If there exists the constants 0 < 
 < � <1 such that 
 � f 00 (x) � �
for almost every x 2 �I; then by (3.1) and (3.2) we get

(3.15) 0 � 1

2

 
h
(c� t)2

i
�  (f (c))� f 0 (t) ( (c)� t)� f (t) � 1

2
� 
h
(c� t)2

i
for all t 2 �I:
In particular, we have

(3.16) 0 � 1

2


h
 
�
c2
�
� ( (c))2

i
�  (f (c))�f ( (c)) � 1

2
�
h
 
�
c2
�
� ( (c))2

i
:

From (3.8) we get

0 � 1

2

 

"�
c�  (cf 0 (c))

 (f 0 (c))

�2#
(3.17)

�  (f (c))� f 0
�
 (cf 0 (c))

 (f 0 (c))

��
 (c)�  (cf 0 (c))

 (f 0 (c))

�
� f

�
 (cf 0 (c))

 (f 0 (c))

�
� 1

2
� 

"�
c�  (cf 0 (c))

 (f 0 (c))

�2#
;

while from (3.9) we get

0 � 1

2

 

"�
c� m+M

2

�2#
(3.18)

�  (f (c))� f 0
�
m+M

2

��
 (c)� m+M

2

�
� f

�
m+M

2

�
� 1

2
� 

"�
c� m+M

2

�2#
� 1

8
(M �m)2 �:
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From (3.10) we obtain

0 � 1

4



(
1

12
(M �m)2 +  

"�
c� m+M

2

�2#)
(3.19)

� 1

2

�
 (f (c)) +

(M �  (c)) f (M) +  (c) f (m)
M �m

�
� 1

M �m

Z M

m

f (t) dt

� 1

4
�

(
1

12
(M �m)2 +  

"�
c� m+M

2

�2#)
;

while from (3.14) we have

0 � 1

48

 (M �m)2(3.20)

� 1

2

�
 (f (c)) +

(M �  (c)) f (M) +  (c) f (m)
M �m

�
� 1

M �m

Z M

m

f (t) dt

� 1

12
� (M �m)2 :

We observe that from (3.17) we get the simpler reverse of Slater�s inequality

(3.21) (0 �) f
�
 (cf 0 (c))

 (f 0 (c))

�
�  (f (c)) � f 0

�
 (cf 0 (c))

 (f 0 (c))

��
 (cf 0 (c))

 (f 0 (c))
�  (c)

�
:

Theorem 5. Let f be analytic in G, an open subset of C and convex on the real
interval I � G,  : A ! C be a positive normalized linear functional on A and
c 2 A a selfadjoint element with � (c) � I: If f 00 is monotonic nondecreasing on
[m;M ] � �I; then

0 � 1

t�m

�
f 0 (t)� f (t)� f (m)

t�m

�
 
h
(c� t)2

i
(3.22)

�  (f (c))� f (t)� ( (c)� t) f 0 (t)

� 1

M � t

�
f (M)� f (t)

M � t � f 0 (t)
�
 
h
(c� t)2

i
for t 2 (m;M) :
If f 00 is monotonic nonincreasing on [m;M ] � �I; then

0 � 1

M � t

�
f (M)� f (t)

M � t � f 0 (t)
�
 
h
(c� t)2

i
(3.23)

�  (f (c))� f (t)� ( (c)� t) f 0 (t)

� 1

t�m

�
f 0 (t)� f (t)� f (m)

t�m

�
 
h
(c� t)2

i
for t 2 (m;M) :



LOWER AND UPPER BOUNDS FOR JENSEN�S GAP 13

Proof. If f 00 is monotonic nondecreasing on [m;M ] � �I; then

f (z)� f (t)� (z � t) f 0 (t) = (z � t)2
Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds(3.24)

� (z � t)2
Z 1

0

f 00 ((1� s) t+ sm) (1� s) ds

and

f (z)� f (t)� (z � t) f 0 (t) = (z � t)2
Z 1

0

f 00 ((1� s) t+ sz) (1� s) ds(3.25)

� (z � t)2
Z 1

0

f 00 ((1� s) t+ sM) (1� s) ds:

First, observe that for u; v 2 [m;M ] with u 6= v we haveZ 1

0

f 00 ((1� s) v + su) (1� s) ds

=
1

u� v

Z 1

0

(1� s) d (f 0 ((1� s) v + su))

=
1

u� v

�
(1� s) f 0 ((1� s) v + su)j10 +

Z 1

0

f 0 ((1� s) v + su) ds
�

=
1

u� v

�
�f 0 (v) +

Z 1

0

f 0 ((1� s) v + su) ds
�

=
1

v � u

�
f 0 (v)�

Z 1

0

f 0 ((1� s) v + su) ds
�

=
1

v � u

�
f 0 (v)� f (v)� f (u)

v � u

�
:

Using this equality, we haveZ 1

0

f 00 ((1� s) t+ sm) (1� s) ds = 1

t�m

�
f 0 (t)� f (t)� f (m)

t�m

�
and Z 1

0

f 00 ((1� s) t+ sM) (1� s) ds = 1

t�M

�
f 0 (t)� f (t)� f (M)

t�M

�
=

1

M � t

�
f (M)� f (t)

M � t � f 0 (t)
�
:

Then by (3.24) and (3.25) we get

1

t�m

�
f 0 (t)� f (t)� f (m)

t�m

�
(z � t)2(3.26)

� f (z)� f (t)� (z � t) f 0 (t)

� 1

M � t

�
f (M)� f (t)

M � t � f 0 (t)
�
(z � t)2

for all t 2 (m;M) and z 2 I:
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Fix t 2 (m;M). Using Lemma 1 and the inequality (3.26) we obtain for the
element c 2 A with � (c) � I the following inequality in the order of A

1

t�m

�
f 0 (t)� f (t)� f (m)

t�m

�
(c� t)2(3.27)

� f (c)� f (t)� (c� t) f 0 (t)

� 1

M � t

�
f (M)� f (t)

M � t � f 0 (t)
�
(c� t)2

for all t 2 (m;M) :
Taking the functional  in the inequality (3.27) we get (3.22). �

Corollary 7. With the assumptions of Theorem 5 and if  (c) 2 (m;M) ; then

0 � 1

 (c)�m

�
f 0 ( (c))� f ( (c))� f (m)

 (c)�m

�h
 
�
c2
�
� ( (c))2

i
(3.28)

�  (f (c))� f ( (c))

� 1

M �  (c)

�
f (M)� f ( (c))

M �  (c) � f 0 ( (c))
�h

 
�
c2
�
� ( (c))2

i
if f 00 is monotonic nondecreasing on [m;M ] and

0 � 1

M �  (c)

�
f (M)� f ( (c))

M �  (c) � f 0 ( (c))
�h

 
�
c2
�
� ( (c))2

i
(3.29)

�  (f (c))� f ( (c))

� 1

 (c)�m

�
f 0 ( (c))� f ( (c))� f (m)

 (c)�m

�h
 
�
c2
�
� ( (c))2

i
if f 00 is monotonic nonincreasing on [m;M ] :

Corollary 8. With the assumptions of Theorem 5 and if  (f 0 (c)) 6= 0 with
 (cf 0(c))
 (f 0(c)) 2 (m;M) ; then

0 � 1
 (cf 0(c))
 (f 0(c)) �m

8>><>>:f 0
�
 (cf 0 (c))

 (f 0 (c))

�
�
f

�
 (cf 0(c))
 (f 0(c))

�
� f (m)

 (cf 0(c))
 (f 0(c)) �m

9>>=>>;(3.30)

�  
"�

c�  (cf 0 (c))

 (f 0 (c))

�2#

�  (f (c))� f
�
 (cf 0 (c))

 (f 0 (c))

�
�
�
 (c)�  (cf 0 (c))

 (f 0 (c))

�
f 0
�
 (cf 0 (c))

 (f 0 (c))

�

� 1

M �  (cf 0(c))
 (f 0(c))

8>><>>:
f (M)� f

�
 (cf 0(c))
 (f 0(c))

�
M �  (cf 0(c))

 (f 0(c))

� f 0
�
 (cf 0 (c))

 (f 0 (c))

�9>>=>>;
�  

"�
c�  (cf 0 (c))

 (f 0 (c))

�2#
if f 00 is monotonic nondecreasing on [m;M ].
The case of monotonic nonincreasing functions is similar.



LOWER AND UPPER BOUNDS FOR JENSEN�S GAP 15

4. Some Examples

In this section we provide some simple inequalities that can be derived from the
above results by taking particular examples of convex functions such as: power func-
tion, exponential and logarithm. They generalize several known results obtained
for selfadjoint operators in Hilbert spaces.
For p � 1; consider the power function fp : (0;1) ! (0;1) ; fp (x) = xp which

is analytic and convex on (0;1) and 0 < c 2 A:
We de�ne Jp (f; c; �) : P1 (A)! [0;1) by

Jp (f; c; ') := ' (cp)� [' (1)]p�1 [' (c)]p :

By Theorem 2, the functional Jp (f; c; �) is superadditive on P1 (A) and if there
exists the constants 0 < m < M < 1 such that M! � ' and ' �m! 2 P1 (A)
with !; ' 2 P1 (A) then by Corollary 1

M
n
! (cp)� [! (1)]p�1 [! (c)]p

o
� ' (cp)� [' (1)]p�1 [' (c)]p(4.1)

� m
n
! (cp)� [! (1)]p�1 [! (c)]p

o
� 0:

Since f 00p (t) = p (p� 1) tp�2; t > 0 then

kp := p (p� 1)

8<: Mp�2 for p 2 (1; 2)

mp�2 for p 2 [2;1)
(4.2)

� f 00p (t) � Kp := p (p� 1)

8<: mp�2 for p 2 (1; 2)

Mp�2 for p 2 [2;1)

for any t 2 [m;M ] :
Assume that 0 < c 2 A and there exist the constants 0 < m < M such that

� (c) � [m;M ] : By Remark 2 we get

(4.3) 0 � 1

2
kp 

h
(c� t)2

i
�  (cp)� ptp�1 ( (c)� t)� tp � 1

2
Kp 

h
(c� t)2

i
for all t 2 (m;M) :
In particular, we have

(4.4) 0 � 1

2
kp

h
 
�
c2
�
� ( (c))2

i
�  (cp)� ( (c))p � 1

2
Kp

h
 
�
c2
�
� ( (c))2

i
and

0 � 1

2
kp 

"�
c�  (cp)

 (cp�1)

�2#
(4.5)

�  (cp)� p
�

 (cp)

 (cp�1)

�p�1�
 (c)�  (cp)

 (cp�1)

�
�
�

 (cp)

 (cp�1)

�p
� 1

2
Kp 

"�
c�  (cp)

 (cp�1)

�2#
:
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Also

0 � 1

2
kp 

"�
c� m+M

2

�2#
(4.6)

�  (cp)� p
�
m+M

2

�p�1�
 (c)� m+M

2

�
�
�
m+M

2

�p
� 1

2
Kp 

"�
c� m+M

2

�2#
� 1

8
(M �m)2Kp:

We have

0 � 1

4
kp

(
1

12
(M �m)2 +  

"�
c� m+M

2

�2#)
(4.7)

� 1

2

�
 (cp) +

(M �  (c))Mp +  (c)mp

M �m

�
� Mp+1 �mp+1

(p+ 1) (M �m)

� 1

4
Kp

(
1

12
(M �m)2 +  

"�
c� m+M

2

�2#)
;

and

0 � 1

48
kp (M �m)2(4.8)

� 1

2

�
 (cp) +

(M �  (c))Mp +  (c)mp

M �m

�
� Mp+1 �mp+1

(p+ 1) (M �m)

� 1

12
Kp (M �m)2 :

The case of logarithmic function is also of interest. We take the function f (t) =
� ln t and 0 < c 2 A: De�ne Jln (f; c; �) : P1 (A)! [0;1) by

(4.9) Jln (f; c; ') := ' (1) ln

�
' (c)

' (1)

�
� ' (ln c) � 0:

By Theorem 2, the functional Jln (f; c; �) is superadditive on P1 (A) and if there
exists the constants 0 < m < M < 1 such that M! � ' and ' �m! 2 P1 (A)
with !; ' 2 P1 (A) then by Corollary 1 we obtain

M

�
! (1) ln

�
! (c)

! (1)

�
� ! (ln c)p

�
� ' (1) ln

�
' (c)

' (1)

�
� ' (ln c)(4.10)

� m

�
! (1) ln

�
! (c)

! (1)

�
� ! (ln c)p

�
� 0:

Moreover, we have f 00 (t) = 1
t2 : Therefore for t 2 [m;M ] � (0;1) we get
1

M2
� f 00 (t) � 1

m2
:

By using Remark 2 we get

(4.11) 0 � 1

2M2
 
h
(c� t)2

i
� ln (t)�  (ln c) + 1

t
( (c)� t) � 1

2m2
 
h
(c� t)2

i
for all t 2 (m;M) :
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In particular, we obtain

0 � 1

2M2

h
 
�
c2
�
� ( (c))2

i
� ln ( (c))�  (ln c)(4.12)

� 1

2m2

h
 
�
c2
�
� ( (c))2

i
and

0 � 1

2M2
 

"�
c� 1

 (c�1)

�2#
(4.13)

�  
�
c�1
��

 (c)� 1

 (c�1)

�
� ln

�
 
�
c�1
��
�  (ln c)

� 1

2m2
 

"�
c� 1

 (c�1)

�2#
:

Also

0 � 1

2M2
 

"�
c� m+M

2

�2#
(4.14)

�
�
m+M

2

��1�
 (c)� m+M

2

�
+ ln

�
m+M

2

�
�  (ln c)

� 1

2m2
 

"�
c� m+M

2

�2#
� 1

8

�
M

m
� 1
�2

:

We �nally have

0 � 1

4M2

(
1

12
(M �m)2 +  

"�
c� m+M

2

�2#)
(4.15)

� M lnM �m lnm�M +m

M �m

� 1
2

�
 (ln c) +

(M �  (c)) lnM +  (c) lnm

M �m

�
� 1

4m2

(
1

12
(M �m)2 +  

"�
c� m+M

2

�2#)
;

and

0 � 1

48

�
1� m

M

�2
(4.16)

� M lnM �m lnm�M +m

M �m

� 1
2

�
 (ln c) +

(M �  (c)) lnM +  (c) lnm

M �m

�
� 1

12

�
M

m
� 1
�2

:
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