INEQUALITIES OF HERMITE-HADAMARD TYPE FOR OPERATOR CONVEX FUNCTIONS ON HERMITIAN UNITAL BANACH *-ALGEBRAS

SILVESTRU SEVER DRAGOMIR

Abstract. We establish in this paper some inequalities of Hermite-Hadamard type for operator convex functions on Hermitian unital Banach *-algebras.

1. Introduction

We need some preliminary concepts and facts about Banach *-algebras.

Let A be a unital Banach *-algebra with unit 1. An element $a \in A$ is called selfadjoint if $a^* = a$. A is called Hermitian if every selfadjoint element a in A has real spectrum $\sigma(a)$, namely $\sigma(a) \subseteq \mathbb{R}$.

We say that an element a is nonnegative and write this as $a \geq 0$ if $a^* = a$ and $\sigma(a) \subseteq [0, \infty)$. We say that a is positive and write $a > 0$ if $a \geq 0$ and $0 \notin \sigma(a)$.

Thus $a > 0$ implies that its inverse a^{-1} exists. Denote the set of all invertible elements of A by $\text{Inv}(A)$. If $a, b \in \text{Inv}(A)$, then $ab \in \text{Inv}(A)$ and $(ab)^{-1} = b^{-1}a^{-1}$.

Based on this fact, Okayasu [8], Tanahashi and Uchiyama [10] proved the following fundamental properties (see also [6]):

(i) If $a, b \in A$, then $a \geq 0, b \geq 0$ imply $a + b \geq 0$ and $\alpha \geq 0$ implies $\alpha a \geq 0$;
(ii) If $a, b \in A$, then $a > 0, b \geq 0$ imply $a + b > 0$;
(iii) If $a, b \in A$, then either $a \geq b > 0$ or $a > b \geq 0$ imply $a > 0$;
(iv) If $a > 0$, then $a^{-1} > 0$;
(v) If $c > 0$, then $0 < c < a$ if and only if $c bc < cac$, also $0 < b \leq a$ if and only if $c bc \leq cac$;
(vi) If $0 < a < 1$, then $1 < a^{-1}$;
(vii) If $0 < b < a$, then $0 < a^{-1} < b^{-1}$, also if $0 < b \leq a$, then $0 < a^{-1} \leq b^{-1}$.

Okayasu [8] showed that the L"{o}wner-Heinz inequality remains valid in a Hermitian unital Banach *-algebra with continuous involution, namely if $a, b \in A$ and $p \in [0, 1]$ then $a > b$ ($a \geq b$) implies that $a^p > b^p$ ($a^p \geq b^p$).

In order to introduce the real power of a positive element, we need the following facts [1, Theorem 41.5].

1991 Mathematics Subject Classification. 47A63, 47A30, 15A60, 26D15, 26D10.

Key words and phrases. Hermitian unital Banach *-algebra, Hermite-Hadamard type inequalities, Operator convex functions.
Let $a \in A$ and $a > 0$, then $0 \notin \sigma (a)$ and the fact that $\sigma (a)$ is a compact subset of \mathbb{C} implies that $\inf \{ z : z \in \sigma (a) \} > 0$ and $\sup \{ z : z \in \sigma (a) \} < \infty$. Choose γ to be close rectifiable curve in $\{ \Re z > 0 \}$, the right half open plane of the complex plane, such that $\sigma (a) \subseteq \text{ins} (\gamma)$, the inside of γ. Let G be an open subset of \mathbb{C} with $\sigma (a) \subset G$. If $f : G \to \mathbb{C}$ is analytic, we define an element $f (a)$ in A by

$$f (a) := \frac{1}{2\pi i} \int_{\gamma} f (z) (z - a)^{-1} \, dz,$$

where γ is a close rectifiable curve such that $\sigma (a) \subseteq \text{ins} (\gamma)$.

It is well known (see for instance [2, pp. 201-204]) that $f (a)$ does not depend on the choice of γ and the Spectral Mapping Theorem (SMT)

$$\sigma (f (a)) = f (\sigma (a))$$

holds.

For any $\alpha \in \mathbb{R}$ we define for $a \in A$ and $a > 0$, the real power

$$a^\alpha := \frac{1}{2\pi i} \int_{\gamma} z^\alpha (z - a)^{-1} \, dz,$$

where z^α is the principal α-power of z. Since A is a Banach $*$-algebra, then $a^\alpha \in A$. Moreover, since z^α is analytic in $\{ \Re z > 0 \}$, then by (SMT) we have

$$\sigma (a^\alpha) = (\sigma (a))^\alpha = \{ z^\alpha : z \in \sigma (a) \} \subset (0, \infty).$$

Following [6], we list below some important properties of real powers:

(viii) If $0 < a \in A$ and $\alpha \in \mathbb{R}$, then $a^\alpha \in A$ with $a^\alpha > 0$ and $(a^2)^{1/2} = a$, [10, Lemma 6];

(ix) If $0 < a \in A$ and $\alpha, \beta \in \mathbb{R}$, then $a^\alpha a^\beta = a^{\alpha + \beta};$

(x) If $0 < a \in A$ and $\alpha \in \mathbb{R}$, then $(a^\alpha)^{-1} = (a^{-1})^\alpha = a^{-\alpha};$

(xi) If $0 < a, b \in A$, $\alpha, \beta \in \mathbb{R}$ and $ab = ba$, then $a^\alpha b^\beta = b^\beta a^\alpha$.

Now, assume that $f (\cdot)$ is analytic in G, an open subset of \mathbb{C} and for the real interval $I \subset G$ assume that $f (z) \geq 0$ for any $z \in I$. If $u \in A$ such that $\sigma (u) \subset I$, then by (SMT) we have

$$\sigma (f (u)) = f (\sigma (u)) \subset f (I) \subset [0, \infty)$$

meaning that $f (u) \geq 0$ in the order of A.

Therefore, we can state the following fact that will be used to establish various inequalities in A, see also [3].

Lemma 1. Let $f (z)$ and $g (z)$ be analytic in G, an open subset of \mathbb{C} and for the real interval $I \subset G$, assume that $f (z) \geq g (z)$ for any $z \in I$. Then for any $u \in A$ with $\sigma (u) \subset I$ we have $f (u) \geq g (u)$ in the order of A.

For some recent inequalities in Hermitian Banach $*$-algebras, see [3], [4] and [5].

Let G be an open subset of \mathbb{C} and $I \subset G$ a real interval. If $a, b \in A$ with $\sigma (a), \sigma (b) \subset I$, then by SMT the element $(1 - t)a + tb \in A$ has the spectrum $\sigma ((1 - t)a + tb) \subset I$ for all $t \in [0, 1]$. We say that an analytic function $f (z)$ in G is operator convex on I in the Hermitian Banach $*$-algebra A if

$$f ((1 - t)a + tb) \leq (1 - t)f (a) + tf (b) \quad \text{in the order of } A \quad \text{for all } a, b \in A \text{ with } \sigma (a), \sigma (b) \subset I \text{ and all } t \in [0, 1].$$
It is well known that, if \(E \) is a Banach space and \(g : [0, 1] \to E \) is a continuous function, then \(g \) is Bochner integrable, and its Bochner integral coincides with its Riemann integral. We denote this integral as usual by \(\int_0^1 g(t) \, dt \).

By taking the integral in (1.1), then we get
\[
(1.2) \quad \int_0^1 f((1-t)a + tb) \, dt \leq \int_0^1 [(1-t)f(a) + tf(b)] \, dt = \frac{f(a) + f(b)}{2}.
\]

Since for \(c, d \in A \) with \(\sigma(c), \sigma(d) \subset I \), we have
\[
(1.3) \quad f\left(\frac{c + d}{2}\right) \leq \frac{f(c) + f(d)}{2}
\]
hence by taking \(c = (1-t)a + tb \) and \(d = ta + (1-t)b \), we get
\[
(1.4) \quad f\left(\frac{a + b}{2}\right) \leq \frac{f((1-t)a + tb) + f(ta + (1-t)b)}{2}
\]
for all \(a, b \in A \) with \(\sigma(a), \sigma(b) \subset I \) and all \(t \in [0, 1] \).

By integrating over \(t \) in (1.4) we derive
\[
f\left(\frac{a + b}{2}\right) \leq \frac{1}{2} \int_0^1 [f((1-t)a + tb) + f(ta + (1-t)b)] \, dt
\]
and since
\[
\int_0^1 f((1-t)a + tb) \, dt = \int_0^1 f(ta + (1-t)b) \, dt,
\]
hence
\[
(1.5) \quad f\left(\frac{a + b}{2}\right) \leq \int_0^1 f((1-t)a + tb) \, dt.
\]

Therefore, by (1.2) and (1.5) we obtain the Hermite-Hadamard inequality
\[
(1.6) \quad f\left(\frac{a + b}{2}\right) \leq \int_0^1 f((1-t)a + tb) \, dt \leq \frac{f(a) + f(b)}{2}
\]
for operator convex functions \(f \) on \(I \) in the Hermitian Banach *-algebra \(A \) and \(a, b \in A \) with \(\sigma(a), \sigma(b) \subset I \).

Motivated by the above results, we establish in this paper some new inequalities of Hermite-Hadamard type for operator convex functions on Hermitian unital Banach *-algebras.

2. Some Preliminary Results

We have:

Lemma 2. Let \(f(z) \) be analytic in \(G \), an open subset of \(\mathbb{C} \) and \(a, b \in A \) with \(\sigma(a) \subset G \). Then the Fréchet derivative \(Df(a)(b) \) exists and
\[
(2.1) \quad Df(a)(b) = \frac{1}{2\pi i} \int_{\gamma} f(z)(z-a)^{-1}b(z-a)^{-1} \, dz,
\]
where \(\gamma \) is a close rectifiable curve such that \(\sigma(a) \subset \text{ins}(\gamma) \subset G \).
Proof. Let $\delta > 0$ such that $\sigma (a + \varepsilon b) \subseteq G$ for $\varepsilon \in (-\delta, \delta)$. Chose γ a close rectifiable curve such that $\sigma (a), \sigma (a + \varepsilon b) \subseteq \operatorname{ins} (\gamma) \subseteq G$ for $\varepsilon \in (-\delta, \delta)$. Using the analytic functional calculus, we have

\begin{equation}
 f (a + \varepsilon b) - f (a) = \frac{1}{2\pi i} \int_{\gamma} f (z) (z - a - \varepsilon b)^{-1} \, dz - \frac{1}{2\pi i} \int_{\gamma} f (z) (z - a)^{-1} \, dz
\end{equation}

Using the resolvent identity

\begin{equation}
 (z - c)^{-1} - (z - a)^{-1} = (z - c)^{-1} (c - a) (z - a)^{-1}
\end{equation}

we also have

\begin{equation}
 \frac{1}{2\pi i} \int_{\gamma} f (z) \left[(z - a - \varepsilon b)^{-1} - (z - a)^{-1} \right] \, dz = \frac{\varepsilon}{2\pi i} \int_{\gamma} f (z) \left[(z - a - \varepsilon b)^{-1} b (z - a)^{-1} \right] \, dz.
\end{equation}

By (2.2) and (2.3) we get

\begin{equation}
 \frac{f (a + \varepsilon b) - f (a)}{\varepsilon} = \frac{1}{2\pi i} \int_{\gamma} f (z) \left[(z - a - \varepsilon b)^{-1} b (z - a)^{-1} \right] \, dz
\end{equation}

for $\varepsilon \in (-\delta, \delta), \varepsilon \neq 0$.

By taking the limit over $\varepsilon \to 0$ and using the properties of the complex integral, we obtain (2.1). \hfill \square

Corollary 1. Let $f (z)$ be analytic in G, an open convex subset of \mathbb{C} and $a, b \in A$ with $\sigma (a), \sigma (b) \subseteq G$. The auxiliary function $F_{(a, b)} : [0, 1] \to A$ defined by $F_{(a, b)} (t) := f ((1 - t) a + t b)$ is differentiable on $[0, 1]$,

\begin{equation}
 F'_{(a, b)} (t) = D f ((1 - t) a + t b) (b - a)
 = \frac{1}{2\pi i} \int_{\gamma} f (z) \left(z - (1 - t) a - t b \right)^{-1} (b - a) \left(z - (1 - t) a - t b \right)^{-1} \, dz,
\end{equation}

\begin{equation}
 F'_{(a, b)} (0^+) = D f (a) (b - a)
 = \frac{1}{2\pi i} \int_{\gamma} f (z) (z - a)^{-1} (b - a) (z - a)^{-1} \, dz,
\end{equation}

and

\begin{equation}
 F'_{(a, b)} (1^-) = D f (b) (b - a)
 = \frac{1}{2\pi i} \int_{\gamma} f (z) (z - b)^{-1} (b - a) (z - b)^{-1} \, dz,
\end{equation}

where γ is a close rectifiable curve such that $\sigma (a), \sigma (b) \subseteq \operatorname{ins} (\gamma) \subseteq G$.\\

\[\text{SILVESTRU SEVER DRAGOMIR}^{1,2}\]
Proof. Let \(t \in (0, 1) \) and \(h \neq 0 \) small enough such that \(t + h \in (0, 1) \). Then

\[
(2.8) \quad \frac{F_{(a,b)}(t+h) - F_{(a,b)}(t)}{h} = \frac{f((1-t-h)a + (t+h)b) - f((1-t)a + tb)}{h} = \frac{f((1-t)a + tb + h(b-a)) - f((1-t)a + tb)}{h}.
\]

Since \(f \) is Fréchet differentiable, hence by taking the limit over \(h \to 0 \) in (2.8) we get

\[
F'_{(a,b)}(t) = \lim_{h \to 0} \frac{F_{(a,b)}(t+h) - F_{(a,b)}(t)}{h} = \lim_{h \to 0} \frac{f((1-t)a + tb + h(b-a)) - f((1-t)a + tb)}{h} = \frac{1}{2\pi i} \int_{\gamma} f(z) (z - (1-t)a - tb)^{-1} (b - a) (z - (1-t)a - tb)^{-1} dz,
\]

which proves (2.5).

Also, we have

\[
F'_{(a,b)}(0+) = \lim_{h \to 0^+} \frac{F_{(a,b)}(h) - F_{(a,b)}(0)}{h} = \lim_{h \to 0^+} \frac{f((1-h)a + hb) - f(a)}{h} = \frac{1}{2\pi i} \int_{\gamma} f(z) (z-a)^{-1} (b-a) (z-a)^{-1} dz \quad \text{(by Lemma 2)},
\]

which proves (2.6).

The equality (2.7) goes in a similar way. \(\square \)

Theorem 1. Assume that \(f(z) \) is analytic in \(G \text{, an open subset of } \mathbb{C} \text{ and } I \subset G \text{ a real interval.} \) The function \(f(z) \) is operator convex on \(I \) in the Hermitian Banach \(*\)-algebra \(A \) if and only if for all \(a, b \in A \) with \(\sigma(a), \sigma(b) \subset I \) we have

\[
(2.9) \quad f(b) - f(a) \geq Df(a)(b-a)
\]

in the order of \(A \).

Proof. Assume that \(f(z) \) is operator convex on \(I \) and \(a, b \in A \) with \(\sigma(a), \sigma(b) \subset I \) and \(t \in (0, 1) \). Then by (1.1) we have

\[
f(a + t(b-a)) - f(a) \leq tf(b) - f(a)
\]

for \(t \in (0, 1) \), which implies that

\[
(2.10) \quad \frac{f(a + t(b-a)) - f(a)}{t} \leq f(b) - f(a)
\]

for \(t \in (0, 1) \).

Since, by Lemma 2 the Fréchet derivative \(Df(a)((b-a)) \) exists, hence by taking the limit over \(t \to 0^+ \) in (2.10) we get (2.9).
Let \(c, d \in A \) with \(\sigma (c) \subseteq I \) and \(t \in [0, 1] \). If we chose in (2.9) \(b = d \) and \(a = (1 - t) d + tc \), then we get

\[
(2.11) \quad f (d) - f ((1 - t) d + tc) \geq t D f ((1 - t) d + tc) (d - c)
\]

and if we choose \(b = c \) and \(a = (1 - t) d + tc \), then we get

\[
(2.12) \quad f (c) - f ((1 - t) d + tc) \geq (1 - t) D f ((1 - t) d + tc) (c - d).
\]

If we multiply (2.11) by \((1 - t) \) and (2.12) by \(t \) and add the obtained inequalities, we get

\[
(1 - t) f (d) + tf (c) - (1 - t) f ((1 - t) d + tc) - tf ((1 - t) d + tc)
\]

\[
\geq (1 - t) t D f ((1 - t) d + tc) (d - c) + t (1 - t) D f ((1 - t) d + tc) (c - d)
\]

namely

\[
(1 - t) f (d) + tf (c) - f ((1 - t) d + tc)
\]

\[
\geq (1 - t) t D f ((1 - t) d + tc) (d - c) - t (1 - t) D f ((1 - t) d + tc) (d - c) = 0,
\]

which proves the operator convexity of \(f \).

The above result can be used to prove the operator convexity of some simple functions.

Proposition 1. Assume that the element \(q \) is selfadjoint in \(A \). The function \(f (x) := qx^2q \) satisfies the property (2.9) for any selfadjoint element \(a, b \in A \).

Proof. We have for \(u \) selfadjoint in \(A \) that

\[
D f (a) (u) = \lim_{\varepsilon \to 0} \frac{f (a + \varepsilon u) - f (a)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{q (a + \varepsilon u)^2 q - q a^2 q}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{q (a^2 + \varepsilon au + \varepsilon^2 u^2) q - q a^2 q}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{q (\varepsilon au + \varepsilon^2 u^2) q}{\varepsilon} = q (au + ua) q.
\]

Therefore

\[
f (b) - f (a) - D f (a) (b - a)
\]

\[
= qb^2q - qa^2q - q [a (b - a) + (b - a) a] q
\]

\[
= qb^2q - qa^2q - q (ab - a^2 + ba - a^2) q
\]

\[
= qb^2q - qabq - qbaq + qa^2q = q (b - a)^2 q \geq 0
\]

for any selfadjoint element \(a, b \in A \) and the proposition is proved.

Corollary 2. The function \(f (z) = z^2 \) is operator convex on \(\mathbb{R} \) in the Hermitian Banach \(* \)-algebra \(A \).

Proposition 2. Assume that the element \(q \) is selfadjoint in \(A \). The function \(f (x) := x q x \) satisfies the property (2.9) for any selfadjoint element \(a, b \in A \).
Proof. We have for \(u \) selfadjoint in \(A \) that
\[
Df (a) (u) = \lim_{\varepsilon \to 0} \frac{f (a + \varepsilon u) - f (a)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{(aq + \varepsilon uq)(a + \varepsilon u) - aq}{\varepsilon}
\]
\[
= \lim_{\varepsilon \to 0} \frac{aq + \varepsilon uq + \varepsilon^2 uqu - aq}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{\varepsilon uqa + \varepsilon^2 uqu}{\varepsilon} = uqa + aq.
\]
Therefore
\[
f (b) - f (a) - Df (a) (b - a) = bqb - aqa - (b - a) qa - aq (b - a)
\]
\[
= bqb - aqa - b qa + aqa - aqb + aq = bqb - aqb + aq = (b - a) q (b - a) \geq 0
\]
for any selfadjoint element \(a, b \in A \) and the proposition is proved. \(\square \)

Proposition 3. Assume that the element \(q \) is selfadjoint in \(A \). The function \(f (x) := qx^{-1} q \) satisfies the property (2.9) for any positive elements \(a, b \in A \).

Proof. For \(a, b \in A \) with \(a, b > 0 \)
\[
Df (a) (b - a) = \lim_{\varepsilon \to 0^+} \frac{f (a + \varepsilon (b - a)) - f (a)}{\varepsilon} = \lim_{\varepsilon \to 0^+} \frac{q ((1 - \varepsilon) a + \varepsilon b)^{-1} q - qa^{-1} q}{\varepsilon}
\]
\[
= \lim_{\varepsilon \to 0^+} \frac{q ((1 - \varepsilon) a + \varepsilon b)^{-1} - a^{-1}}{\varepsilon} q = q \lim_{\varepsilon \to 0^+} \left[\frac{((1 - \varepsilon) a + \varepsilon b)^{-1} - a^{-1}}{\varepsilon} \right] q.
\]
We have for \(c, d > 0 \) that
\[
d^{-1} - c^{-1} = d^{-1} (c - d) c^{-1}.
\]
Therefore
\[
((1 - \varepsilon) a + \varepsilon b)^{-1} - a^{-1} = \varepsilon ((1 - \varepsilon) a + \varepsilon b)^{-1} (a - b) a^{-1}
\]
for \(\varepsilon \in (0, 1) \), and then
\[
Df (a) (b - a) = q \lim_{\varepsilon \to 0^+} \left[((1 - \varepsilon) a + \varepsilon b)^{-1} (a - b) a^{-1} \right] q = qa^{-1} (a - b) a^{-1} q
\]
for \(a, b \in A \) with \(a, b > 0 \).

Now, we have
\[
f (b) - f (a) - Df (a) (b - a) = qb^{-1} q - qa^{-1} q - qa^{-1} (a - b) a^{-1} q
\]
\[
= q (b^{-1} - a^{-1}) q - qa^{-1} (a - b) a^{-1} q
\]
\[
= qb^{-1} (a - b) a^{-1} q - qa^{-1} (a - b) a^{-1} q = (qb^{-1} - qa^{-1}) (a - b) a^{-1} q
\]
\[
= q (b^{-1} - a^{-1}) qb^{-1} (a - b) a^{-1} q = q (b^{-1} - a^{-1}) b (b^{-1} - a^{-1}) q \geq 0
\]
for \(a, b \in A \) with \(a, b > 0 \).

This proves the statement. \(\square \)
Corollary 3. The function $f(z) = z^{-1}$ is operator convex on $(0, \infty)$ in the Hermitian Banach $*$-algebra A.

We also have:

Theorem 2. Assume that $f(z)$ is analytic in G, an open subset of \mathbb{C} and $I \subset G$ a real interval. The function $f(z)$ is operator convex on I in the Hermitian Banach $*$-algebra A if and only if for all $a, b \in A$ with $\sigma(a), \sigma(b) \subset I$ we have for all $t_2, t_1 \in [0, 1]$ with $t_1 < t_2$ that

$$F_{(a,b)}^{t_2} = Df((1-t_2)a + t_2b)(b-a)$$

$$\geq f((1-t_2)a + t_2b) - f((1-t_1)a + t_1b)$$

$$\geq Df((1-t_1)a + t_1b)(b-a) = F_{(a,b)}^{t_1}.$$

We also have

$$Df((b-a) \geq F_{(a,b)}^{t_1}(t) = Df((1-t)a + tb)(b-a) \geq Df(a)(b-a)$$

for all $t \in (0,1)$.

Proof. Assume that the function $f(z)$ is operator convex on I in the Hermitian Banach $*$-algebra A.

Let $c, d \in A$ with $\sigma(c), \sigma(d) \subset I$, then by taking $b = d$ and $a = c$, we have

$$f(d) - f(c) \geq Df(c)(d-c)$$

and by taking $b = c$ and $a = d$, we have

$$f(c) - f(d) \geq Df(d)(c-d)$$

which imply the double inequality

$$Df(d)(d-c) \geq f(d) - f(c) \geq Df(c)(d-c)$$

for all $c, d \in A$ with $\sigma(c), \sigma(d) \subset I$.

Let $t_2, t_1 \in [0, 1]$ with $t_1 < t_2$ and $a, b \in A$ with $\sigma(a), \sigma(b) \subset I$. Then $\sigma((1-t_1)a + t_1b), \sigma((1-t_2)a + t_2b) \subset I$ and by (2.15) for $d = (1-t_2)a + t_2b$ and $c = (1-t_1)a + t_1b$ we get

$$Df((1-t_2)a + t_2b)((1-t_2)a + t_2b - (1-t_1)a - t_1b)$$

$$\geq f((1-t_2)a + t_2b) - f((1-t_1)a + t_1b)$$

$$\geq Df((1-t_1)a + t_1b)((1-t_2)a + t_2b - (1-t_1)a - t_1b),$$

namely

$$(t_2 - t_1)Df((1-t_2)a + t_2b)(b-a)$$

$$\geq f((1-t_2)a + t_2b) - f((1-t_1)a + t_1b)$$

$$\geq (t_2 - t_1)Df((1-t_1)a + t_1b)(b-a),$$

which implies that

$$Df((1-t_2)a + t_2b)(b-a)$$

$$\geq f((1-t_2)a + t_2b) - f((1-t_1)a + t_1b)$$

$$\geq Df((1-t_1)a + t_1b)(b-a),$$
for all $t_2, t_1 \in [0,1]$ with $t_1 < t_2$ and $a, b \in A$ with $\sigma(a), \sigma(b) \subset I$, and the inequality (2.13) is proved.

Now, if the condition (2.13) is valid, then by taking $t_1 = 0$ and $t_1 = 1$, then we get

$$Df(b)(b-a) \geq f(b) - f(a) \geq Df(a)(b-a)$$

for all $a, b \in A$ with $\sigma(a), \sigma(b) \subset I$, and by Theorem 1 it follows that $f(z)$ is operator convex on I in the Hermitian Banach \ast-algebra A.

If we take $t_1 = 0$ and $t_2 = t \in (0,1]$ in (2.13), then we get

$$Df((1-t)a+tb)(b-a) \geq Df(a)(b-a).$$

Also, if we take $t_1 = t \in [0,1)$ and $t_2 = 1$ in (2.13), then we get

$$Df(b)(b-a) \geq Df((1-t)a+tb)(b-a).$$

□

3. Reverse Hermite-Hadamard Inequalities

We have the following reverse of the first operator Hermite-Hadamard inequality:

Theorem 3. Assume that $f(z)$ is analytic in G, an open subset of C and $I \subset G$ a real interval. If the function $f(z)$ is operator convex on I in the Hermitian Banach \ast-algebra A then for all $a, b \in A$ with $\sigma(a), \sigma(b) \subset I$ we have

$$0 \leq \int_{0}^{1} f((1-t)a+tb)dt - f\left(\frac{a+b}{2}\right) \leq \frac{1}{8}[Df(b)(b-a) - Df(a)(b-a)].$$

Proof. Using integration by parts formula for the Bochner integral, we have

$$\int_{0}^{1/2} tF'_{(a,b)}(t)dt = \frac{1}{2}F_{(a,b)}\left(\frac{1}{2}\right) - \int_{0}^{1/2} F_{(a,b)}(t)dt$$

$$= \frac{1}{2}f\left(\frac{a+b}{2}\right) - \int_{0}^{1/2} f\left((1-t)a+tb\right)dt$$

and

$$\int_{1/2}^{1} (t-1) F'_{(a,b)}(t)dt = \frac{1}{2}F_{(a,b)}\left(\frac{1}{2}\right) - \int_{1/2}^{1} f\left((1-t)a+tb\right)dt$$

$$= \frac{1}{2}f\left(\frac{a+b}{2}\right) - \int_{1/2}^{1} f\left((1-t)a+tb\right)dt.$$

If we add these two equalities, we get the following identity of interest

$$\int_{0}^{1} f\left((1-t)a+tb\right)dt - f\left(\frac{a+b}{2}\right)$$

$$= \int_{1/2}^{1} (1-t) F'_{(a,b)}(t)dt - \int_{0}^{1/2} tF'_{(a,b)}(t)dt.$$

From Theorem 2 we have

$$F'_{(a,b)}(1/2) \leq F'_{(a,b)}(t) \leq F'_{(a,b)}(1-) = Df(b)(b-a), \ t \in [1/2,1)$$
and

\[Df(a)(b-a) = F'_{(a,b)}(0+) \leq F'_{(a,b)}(t) \leq F'_{(a,b)}(1/2), \quad t \in (0,1/2]. \]

This implies that

\[(1-t)F'_{(a,b)}(1/2) \leq (1-t)F'_{(a,b)}(t) \leq (1-t)Df(b)(b-a) \]

for \(t \in [1/2,1) \) and

\[-tF'_{(a,b)}(1/2) \leq -tF'_{(a,b)}(t) \leq -tDf(a)(b-a) \]

for \(t \in (0,1/2]. \)

By integrating these inequalities on the corresponding intervals, we get

\[
\frac{1}{8}F'_{(a,b)}(1/2) \leq \int_{1/2}^{1} (1-t)F'_{(a,b)}(t) dt \leq \frac{1}{8}Df(b)(b-a)
\]

and

\[
-\frac{1}{8}F'_{(a,b)}(1/2) \leq -\int_{0}^{1/2} tF'_{(a,b)}(t) dt \leq -\frac{1}{8}Df(a)(b-a).
\]

By addition, we deduce that

\[
0 \leq \int_{1/2}^{1} (1-t)F'_{(a,b)}(t) dt - \int_{0}^{1/2} tF'_{(a,b)}(t) dt \leq \frac{1}{8} [Df(b)(b-a) - Df(a)(b-a)]
\]

and by the identity (3.4) we get (3.1).

We have the following reverse of the second operator Hermite-Hadamard inequality:

Theorem 4. Assume that \(f(z) \) is analytic in \(G \), an open subset of \(\mathbb{C} \) and \(I \subset G \) a real interval. If the function \(f(z) \) is operator convex on \(I \) in the Hermitian Banach *-algebra \(A \) then for all \(a, b \in A \) with \(\sigma(a), \sigma(b) \subset I \) we have

\[
0 \leq \frac{f(a) + f(b)}{2} - \int_{0}^{1} f((1-t)a + tb) dt \leq \frac{1}{8} [Df(b)(b-a) - Df(a)(b-a)].
\]

Proof. Using integration by parts formula for the Bochner integral, we have

\[
\int_{0}^{1} \left(t - \frac{1}{2} \right) F'_{(a,b)}(t) dt = \frac{F_{(a,b)}(1) + F_{(a,b)}(0)}{2} - \int_{0}^{1} F_{(a,b)}(t)
\]

\[= \frac{f(b) + f(a)}{2} - \int_{0}^{1} f((1-t)a + tb) dt.
\]

Observe that

\[
\int_{0}^{1} \left(t - \frac{1}{2} \right) F'_{(a,b)}(t) dt
\]

\[= \int_{1/2}^{1} \left(t - \frac{1}{2} \right) F'_{(a,b)}(t) dt - \int_{0}^{1/2} \left(\frac{1}{2} - t \right) F'_{(a,b)}(t) dt.
\]
Therefore, we have the following identity of interest
\[
\frac{f(b) + f(a)}{2} - \int_0^1 f((1-t)a + tb)\,dt
= \int_{1/2}^1 \left(t - \frac{1}{2} \right) F'_{(a,b)}(t)\,dt - \int_0^{1/2} \left(\frac{1}{2} - t \right) F'_{(a,b)}(t)\,dt.
\]

From the inequality (3.5) we obtain
\[
\left(t - \frac{1}{2} \right) F'_{(a,b)}(1/2) \leq \left(t - \frac{1}{2} \right) F_{(a,b)}(t)
\leq \left(t - \frac{1}{2} \right) Df(b)(b-a), \ t \in [1/2, 1)
\]
and from (3.6)
\[
\left(\frac{1}{2} - t \right) Df(a)(b-a) \leq \left(\frac{1}{2} - t \right) F_{(a,b)}(t)
\leq \left(\frac{1}{2} - t \right) F'_{(a,b)}(1/2), \ t \in (0, 1/2],
\]
namely
\[
-\left(\frac{1}{2} - t \right) F'_{(a,b)}(1/2) \leq -\left(\frac{1}{2} - t \right) F_{(a,b)}(t)
\leq -\left(\frac{1}{2} - t \right) Df(a)(b-a), \ t \in (0, 1/2].
\]

Integrating these inequalities on the corresponding intervals, we get
\[
\frac{1}{8} F_{(a,b)}(1/2) \leq \int_{1/2}^1 \left(t - \frac{1}{2} \right) F_{(a,b)}(t)\,dt \leq \frac{1}{8} Df(b)(b-a),
\]
and
\[
-\frac{1}{8} F'_{(a,b)}(1/2) \leq -\int_0^{1/2} \left(\frac{1}{2} - t \right) F_{(a,b)}(t)\,dt \leq -\frac{1}{8} Df(a)(b-a).
\]

If we add these two inequalities, we obtain
\[
0 \leq \int_{1/2}^1 \left(t - \frac{1}{2} \right) F_{(a,b)}(t)\,dt - \int_0^{1/2} \left(\frac{1}{2} - t \right) F_{(a,b)}(t)\,dt
\leq \frac{1}{8} \left[Df(b)(b-a) - Df(a)(b-a) \right],
\]
which, by the use of identity (3.9) produces the desired result (3.7). \qed

For the function \(f(z) = z^{-1} \) we have for \(a, b > 0 \) that
\[
Df(a)(b-a) = -a^{-1}(b-a) a^{-1} \quad \text{and} \quad Df(b)(b-a) = -b^{-1}(b-a) b^{-1}.
\]

Therefore, by the inequality (3.1) we have
\[
(3.10) \quad 0 \leq \int_0^1 ((1-t)a + tb)^{-1}\,dt - \left(\frac{a + b}{2} \right)^{-1}
\leq \frac{1}{8} \left[a^{-1}(b-a) a^{-1} - b^{-1}(b-a) b^{-1} \right].
while from (3.7) we have

\[
0 \leq \frac{a^{-1} + b^{-1}}{2} - \int_0^1 ((1 - t) a + tb)^{-1} dt \\
\leq \frac{1}{8} \left[a^{-1} (b - a) a^{-1} - b^{-1} (b - a) b^{-1} \right].
\]

for \(a, b \in A \) with \(a, b > 0 \).

References

1Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

2DST-NRF Centre of Excellence, in the Mathematical and Statistical Sciences, School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa