INTEGRAL INEQUALITIES OF GRUSS TYPE FOR OPERATOR
CONVEX FUNCTIONS ON HERMITIAN UNITAL BANACH
*~ALGEBRAS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we provide lower and upper bounds, or so called
Griiss type inequalities, in the order of the Hermitian Banach *-algebra A for
the Cebysev’s difference

1 1 1
/Op(T)f((l—T)aJrrb)dr—/O pde/O F( =) at7b)dr

in the case that f(z) is analytic in G, an open subset of C, I C G is a real
interval and the function f (z) is operator convex on I while p:[0,1] - Risa
Lebesgue integrable function such that

T 1
OS/ p(s)dsg/ p(s)ds for all 7 € [0,1],
0 0

and a, b € A with o (a), o (b) C I.

1. INTRODUCTION

We need some preliminary concepts and facts about Banach x-algebras.

Let A be a unital Banach *-algebra with unit 1. An element a € A is called
selfadjoint if a* = a. A is called Hermitian if every selfadjoint element a in A has
real spectrum o (a), namely o (a) C R.

We say that an element a is nonnegative and write this as a > 0 if a* = a and
o (a) C [0,00). We say that a is positive and write a > 0 if a > 0 and 0 ¢ o (a).
Thus @ > 0 implies that its inverse a~! exists. Denote the set of all invertible
elements of A by Inv (A). If a,b € Inv (A) , then ab € Inv (A) and (ab) " = b~1a" 1.
Also, saying that a > b means that a« — b > 0 and, similarly ¢ > b means that
a—0b>0.

The Shirali-Ford theorem asserts that if A is a unital Banach x-algebra [11] (see
also [1, Theorem 41.5]), then

(SF) a*a > 0 for every a € A.

Based on this fact, Okayasu [10], Tanahashi and Uchiyama [12] proved the following
fundamental properties (see also [8]):
(i) If a, b€ A, then a > 0, b > 0 imply a+ b > 0 and « > 0 implies aa > 0;
(ii) If a, b € A, then a > 0, b > 0 imply a + b > 0;
(iii) If a, b € A, then either a > b >0 or a > b > 0 imply a > 0;
(iv) If a > 0, then a=! > 0;
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(v) If ¢ > 0, then 0 < b < a if and only if cbe < cac, also 0 < b < a if and only
if cbe < cac;

(vi) f0 <a <1, then 1 <a™}

(vii) f0<b<a,then0<a ! <b ! alsoif 0<b<a,then0<a ! <b L

Okayasu [10] showed that the Lowner-Heinz inequality remains valid in a Her-
mitian unital Banach x-algebra with continuous involution, namely if a, b € A and
p € [0,1] then a > b (a > b) implies that a? > bP (aP > bP).

In order to introduce the real power of a positive element, we need the following
facts [1, Theorem 41.5].

Let a € A and a > 0, then 0 ¢ o (a) and the fact that o (a) is a compact subset
of C implies that inf{z : z € o (a)} > 0 and sup{z : z € 0 (a)} < co. Choose v to
be close rectifiable curve in {Rez > 0}, the right half open plane of the complex
plane, such that o (a) C ins (v), the inside of . Let G be an open subset of C with
o(a) CG. If f: G — C is analytic, we define an element f (a) in A by

fa) = - /f<z> (- ) de,

T 2mi
where v is a close rectifiable curve such that o (a) C ins (7).
It is well known (see for instance [2, pp. 201-204]) that f (a) does not depend
on the choice of v and the Spectral Mapping Theorem (SMT)

o(f(a))=f(o(a))
holds.
For any o € R we define for ¢ € A and a > 0, the real power
1 _
a® = 3 ’Yza(z—a) Ydz,
where z® is the principal a-power of z. Since A is a Banach x-algebra, then a® € A.
Moreover, since z* is analytic in {Re z > 0}, then by (SMT) we have

o(a®)=(o(a)*={2%:2€0(a)} C(0,00).
Following [8], we list below some important properties of real powers:

(viii) If 0 < @ € A and « € R, then a®* € A with a® > 0 and (a2)1/2 = a, [12,
Lemma 6];
(ix) If0 < a € A and o, B € R, then a®a® = a**+7;
(x) f0<ae Aand o €R, then (a®) " = (ail)a =a" %
(xi) If0 < a, b€ A, a, B€R and ab = ba, then a®b® = b7a®.
Now, assume that f(-) is analytic in G, an open subset of C and for the real
interval I C G assume that f(z) > 0 for any z € I. If u € A such that o (u) C I,
then by (SMT) we have

o (f(u) = f(o(w)c f)cC0,00)

meaning that f (u) > 0 in the order of A.
Therefore, we can state the following fact that will be used to establish various
inequalities in A, see also [3].

Lemma 1. Let f(z) and g(z) be analytic in G, an open subset of C and for the
real interval I C G, assume that f(z) > g(z) for any z € I. Then for any u € A
with o (u) C I we have f (u) > g (u) in the order of A.
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For some recent inequalities in Hermitian Banach x-algebras, see [3], [4] and [5].

Let G be an open subset of C and I C G a real interval. If a, b € A with
o(a), o(b) C I, then by SMT the element (1 —¢)a + tb € A has the spectrum
o((1—=t)a+1tb) C I for all ¢t € [0,1]. We say that an analytic function f(z) in G
is operator convex on I in the Hermitian Banach *-algebra A if

(1.1) f((Q—=t)a+tb) <(1—1¢)f(a)+tf(b) in the order of A
for all a, b € A with o (a), o (b) C I and all t € [0,1].

In the recent paper [6] we obtained the following results:

Theorem 1. Assume that f (z) is analytic in G, an open subset of C and I C G a
real interval. The function f (z) is operator convex on I in the Hermitian Banach
x-algebra A if and only if for all a, b € A with o (a), o (b) C I we have

(1.2) f(®) = f(a) = Df(a)(b—a)
in the order of A, where Df is the Fréchet derivative of f as a function of elements

in the Hermitian Banach *-algebra A.

Let f (z) be analytic in G, an open convex subset of C and a, b € A with o (a),
o (b) C G. Consider the auxiliary function F, ) : [0,1] — A defined by

Flap) () == f((1—t)a+1b).
The following characterization results also holds [6].

Theorem 2. Assume that f (z) is analytic in G, an open subset of C and I C G a
real interval. The function f (z) is operator convex on I in the Hermitian Banach
x-algebra A if and only if for all a, b € A with o (a), o (b) C I we have for all to,
ty € [0,1] with t; < ty that

(1.3) Flyy (t3) = DF (1= t2) 0+ tb) (b — )
> f((l—tg)@-i—tzb)—f((l—t1>a+t1b)
- to —t1

>Df(1—t1)a+t1b)(b—a)= F(’a,b) (t1).
We also have
(1.4)  Df(b)(b—a) > Fp ) =Df(1-t)a+tb)(b—a) > Df (a) (b—a)
for allt € (0,1).
It is well known that, if E is a Banach space and ¢ : [0,1] — E is a continuous
function, then g is Bochner integrable, and its Bochner 1ntegral coincides with its

Riemann integral. We denote this integral as usual by fo t) dt.
In the recent paper [7] we also obtained the following FeJer s type inequalities:

Theorem 3. Assume that f (z) is analytic in G, an open subset of C and I C G a
real interval. If the function f (z) is operator convex on I in the Hermitian Banach
x-algebra A and p : [0,1] — [0,00) is Lebesgue integrable and symmetric, namely
p(l—1t)=p(t) for allt €]0,1], then for all a, b € A with o (a), o (b) C I we have

(15) 0< /p(t)f((l—t)a+tb)dt—</01p(t)dt>f<a-21-b>

;( ‘ )[Df(b)(b—a)—Df(a)(b—a)]~
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In particular, for p =1 we get

(1.6) Og/olf((l—t)a+tb)dt—f(a;b>

< S [DF (5) (b~ a) ~ D (a) (b~ a)].

We also have:

Theorem 4. Assume that f (z) is analytic in G, an open subset of C and I C G a
real interval. If the function f (z) is operator convex on I in the Hermitian Banach
x-algebra A and p : [0,1] — [0,00) is Lebesgue integrable and symmetric, then for
all a, b € A with o (a), o (b) C I we have

(1.7) og(/o p(t)dt)f(a);f(b)—/op(t)f((l—t)a+tb)dt

<3 [ G-l-3)roapioo-o-pr@e-a.

In particular, for p =1 we get

(1.8) O<W—/Olf((1—t)a+tb)dt

< LIDFO) (b~ )~ Df () (b )]

Motivated by the above results, in this paper we provide lower and upper bounds,
or so called Griiss type inequalities, in the order of the Hermitian Banach x-algebra
A for the Cebysev’s difference

[ ros-nasmar— [p@ar [ r@-narmar

in the case that f(z) is analytic in G, an open subset of C, I C G a real interval
and the function f (z) is operator conver on I while p : [0,1] — R is a Lebesgue
integrable function such that

T 1
Og/ p(s)dsg/ p(s)ds for all 7 € [0,1],
0 0
and a, b € A with o (a), o (b) C I.

2. MAIN RESULTS

We start to the following identity that is of interest in itself as well:

Lemma 2. Assume that f(2) is analytic in G, an open subset of C and I C G
a real interval. If p : [0,1] — C is Lebesgue integrable, then for all a, b € A with
o (a), o (b) C I we have the following identity for the auwiliary function Fqp)

1 1 1
(2.1) / p(7) Fap (7) dr — / p(r)dr / Flap (7) dr

_ /0 1 ( / o s) ds) T Fl, ) (7)d7 + /0 1 ( /0 "p(s) ds) (r = 1) Fluy (7) dr.
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Proof. The function F{, 4 is obviously differentiable on (0, 1) . Integrating by parts
in the Bochner’s integral, we have

T 1
/OtF(’aJ,) (t)dt+/T (t—1) F, ) (t)dt
1

T Fp (1) / Flapy (£ dt — (7 — 1) Fray) (7) - / Fla () dt

T

1
— Fluy (1) — / Flan () dt

that holds for all 7 € [0, 1] .
If we multiply this identity by p (7) and integrate over 7 in [0, 1], then we get

ey | () By (7) dr / p(r)dr / Bl ()
= /Olp(T) (/OT tF b (1) dt) dr + /Olp(T) </Tl (t—1) Fl,p (1) dt) dr.

Using integration by parts, we derive

(2.3) /Olp(T) </0T tF 0 (1) dt) dr

[ ([ inas)o( [0
< /0 "p(s) ds) ( /0 UEL () dt) :— /O 1 < /O "p(s) ds) Ty (7)dr
Olp(s) ds> ( /O 1tF(’a’b) () dt) _ /0 1 ( /0 "p(s) ds) TFlyp (7)d7

[ reras— [ v i) 7y (1)

Il
SO
7 N N

and

/0 () ( / 1 (t-1)Fl, (t)dt) dr

:/01 /1 t—1)F, b)(t)dt>d(/07p(s)ds)
(1 F<ab)<>dt)(/07p<s>ds>l
/ < / )(7_1)%,,,)(7)@17

= [ ([ v1as) ¢ =0 #Ly

which proves the identity in (2.1). O

0
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Theorem 5. Assume that f (z) is analytic in G, an open subset of C and I C G a

real interval. If the function f(2) is operator convex on I in the Hermitian Banach
x-algebra A and p : [0,1] — R is a Lebesgue integrable function such that

(2.4) 0</07p(s)ds</O p(s)ds for all T € [0,1],

then for all a, b € A with o (a), o (b) C I we have the following Griiss type inequal-
1ties

(2.5) [/01 </1p(s)ds> TdT] Df (a) (b a)

—[/( "p(s)ds) (1= )ar| DI ) (- )
g/Olp(T)f((l—T)@—l—Tb)dT—/Olp(T)dT/Olf((l—T)a+Tb)dT

or, equivalently,

1 T
2o [ a-n (/ [p(lS)Df(b)(ba)p(s)Df(a)(ba)]ds)dT
f

1
</
0

<[a-n ([ =905 @00~ D7 0)6 - alds) ar

p

1 1
(1) ((177’)a+7’b)d7’7/0p(7')d7'/0 f((=71)a+7b)dr

Proof. We have for F, ;) and p: [0,1] — R a Lebesgue integrable function that
(2.7)

1 1 1
/0 p (1) Flap (1) dr — /0 p(7) dT/O Flap (1)dr

-/ 1 (/ () ) () oy () | 1 ([ peras) 0= Fuy @)

By the properties of F{, ;) from the above section, we have in the operator order
that

(2.8) Ty (1=) 2 TF (44 (1) 2 TF(, ) (0+)
and
(2.9) (L=7) Flap (1=) = (1 = 7) F ) (7) = (1= 7) F ), (0+)
for all 7 € (0,1).
From

/OTP(S)CZSS/0110(63)0[8:/OTp(s)ds-|-/Tlp(s)ds7

we get that lep(s) ds >0 for all 7 € (0,1).
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From (2.8) we obtain that

(/Tlp(s)dS) TFl,p (1-) > (/Tlp(s) ds) TF(,p) (7)

vV
N
S~

o
iS]

—~

3

N~—

QU

&
~__

\]

o
=)
=

—~

o

X

and from (2.9) that

— </07—p(8)d8> (L=7) F, 4 (0+)

IN

- (/OTP(S) d8> (1=7) Flap) (7)
([ peras) -0 Fuy 00
all 7 € (0,1).

If we integrate these inequalities over 7 € [0, 1] and add the obtained results,
then we get

/ 1 (/ () i) 7ar iy (10) - [ 1 ([ p@as)a=narri,, ©
> [ ([ ras) ety @ar = [ ([ p61as) 0 -1 Ry ()
> /01 </Tlp(s) ds) rdrFl,, (()Jr)—A1 </0Tp(3)ds) (1= 7)drF,, (1-).

By using the equality (2.1) we derive

(2.10) /01 </Tlp(s) ds> Td7F{, ;) (0+)

IN

[ peas)a-nar, 00,

and since F{, ;) (1) = Df (b) (b—a) and F{, ;) (0+) = Df (b) (b — a) hence we
obtain (2.5).
If we change the variable « =1 — 7, then we have

/O1 (/Tlp(s)d8> TdT:/Ol (/ll_ap(S)ds> (1- a)da.

Also by the change of variable u =1 — s, we get

/11ap<s)ds:/0“p<1_u>du,
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which implies that

/o1 </Tlp(5)d5) Tdr = /01 (/OTp(l —~ S)ds> (1—7)dr.
/Tlp (#) ds) TdrE, ) (17) = /01 (/OTP(S) ds) (1—7)drF{,; (0+)
(

= /01 oTp(l —s) dS) (1 —7)drF(, ) (1-)
1 / "p(s) ds) (1= ) drFl, 4 (0+)

and
([ vas)rarrty 00 - [ ([ p6ras) @ -rar,, 00
= [([ pa-9as) @ -nar, 00
[ ([ reas) a-narm, 0o
= [0 ([ -9 R 00 96 Ry (1) a5 ar
and by (2.10) we get (2.6). 0

We say that the function p : [0,1] — R is symmetric on [0,1] if
p(l—1t)=p(t) for all t € [0,1].

Corollary 1. With the assumptions of Theorem 5 and, in addition, if p : [0,1] — R
is a symmetric function on [0, 1], then we have

1
e =5 ([r0ar) s -0 - i@ - a)
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Proof. Since p is symmetric, then p (1 — s) = p(s) for all s € [0,1] and by (2.6) we

get
/0 1 ( / p(s) ds) (1= 7) dr [ Flupy (04) = Fly) (1-)]
< /Olp(T) Flap (1) dr — /Olp(T) dr /01 Flap (1)dr

< [Pl 19~ R 00)] [ (["p91a5) (1= yar

0

which is equivalent to the second and third inequalities (2.11).
Since 0 < [ p(s)ds < folp(T) dr, hence

[ ([[rrs) e f e [ 1100 [

and the last part of (2.11) is proved. O

Remark 1. If the function p is nonnegative and symmetric then the inequality
(2.11) holds true.

3. SOME EXAMPLES

In the following, we assume that f (z) is analytic in G, an open subset of C and
I C G areal interval and the function f (z) is operator convex on I in the Hermitian
Banach -algebra A and a, b € A with o (a), o (b) C I.

If we consider the weight p : [0,1] — [0,00), p(s) = }s - %| , then

:/01 /0 s—% ds)(l—r)dT:/j (/OT s—% ds>(1—7)d7
+/; /0 5—% ds)(l—7’)d7’z/02 </OT(;—s>d8>(1—T)dT
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and
/11 (/ @_S)d”/; (“2)‘”) (1=7)dr
:/11 <;+;<7—2>2> (1—7)dr
:;/11(1—7')6#4—;/11 <T—;)2(1_7)d7_3;4
Therefore 2 ’

/01 (/OTp(s)ds> (1—T)d7=6%.

Since fol |7 — 3|dr =%, hence

fop(lT)dT/o ([ peras) a-rar= .

Utilising (2.11) for symmetric weight p : [0,1] — [0,00), p(s) = |s — 3|, we get
(31) = DI 6-a) - Df (@) (- a)]
1 1 1
§4/0 T — 2'f((l—7')(1,—|—Tb)d7'—/0 f((l=7)a+7b)dr

3
< 551D () (b~ ) ~ D (a) (b~ a)].

where f is an operator convex function on I and a, b € A with o (a), o (b) C I.
Consider now the symmetric function p(s) = (1 —s)s, s € [0,1]. Then

T T 1 9
/0 p(s)ds:/ (l—S)SdS:—éT (21 =3), 7 €10,]1]

a

and
([ pras) -y =1 172(27—3)(1‘7)‘“:%
0 0 ’ :
Also
/Olp(T)dr/ol(lT)TdTé
and

f01p(17—)d7/01 (/OTp(s)ds> (1*T)d7:2%

and by (2.11) we obtain
3

(32) =5 [DfFB)(b~a) = Df(a) (b~a)

S6/O (1—T)Tf((1—T)a—|—Tb)dT—/O F((1=7)a+7b)dr

3
< 55 1Df (D) (b=) = Df (@) (b= )],

where f is an operator convex function and a, b € A with o (a), o (b) C 1.
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The function f (2) = 2! is operator convex on (0,00) in the Hermitian Banach

x-algebra A, [6], and we have for a, b > 0 that

(3.

Df(a)(b—a)=—-a"t(b—a)a ' and Df (b)(b—a) = —-b"'(b—a)b "

If we write the inequalities (2.11) for this function, then we get

IA

35 - % (/Olp(T)dT) [at(b—a)a™ — b (b—a)b!]
- (/01 (/OTp(s)ds> (1—7’)d7’> [a™t(b—a)a™ =b (b—a)b!]

p(T)((l—T)a+Tb)_1dT—/o p(T)dT/O ((1—T)(1+Tb)_1dT

/o1 </OTP () d8> (1-7) d7> [ (b—a)a™ — b7 (b~ a) b7

</01p () dT> et (b—a)a~t b1 (b—a)b}],

AN IN
NI S

where p satisfies the condition (2.4).

If in (3.3) we take p: [0,1] — [0,00), p(s) = |s — 3|, then we get

(3.4) = 230 [a'(b—a)a ' =b"'(b—a)b ]
1 1 1
< 4/ T— 2‘ (1 —T)a+Tb)*1dT—/ (1 =7)a+7b)""dr
0 0
< 3 [a'(b—a)a ' —b " (b—a)b ']
20
fora, b >0
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