
New inequalities for quotients of circular and
hyperbolic functions

Yogesh J. Bagul1, Ramkrishna M. Dhaigude2, Sumedh B. Thool∗,
1Department of Mathematics, K. K. M. College, Manwath,

Dist: Parbhani(M.S.)-431505, India.
Email: yjbagul@gmail.com

2,∗ Department of Mathematics, Government Vidarbha Institute of Science
and Humanities, Amravati(M. S.)-444604, India

Email: rmdhaigude@gmail.com, sumedhmaths@gmail.com

Abstract. This paper deals with new inequalities involving the quo-
tients sinx

sinhx ,
cosx
coshx and tanx

tanhx . The proofs are based on l’Hôpital’s rule of
monotonicity, series expansions using Bernoulli numbers, and some analyt-
ical techniques. Some of the obtained inequalities have resemblance with
Adamović-Mitrinović, Wilker and Cusa-Huygens type inequalities.

1 Introduction

We begin with the following two results recently established by C. Chesneau
and Y. J. Bagul [8] for the quotients of circular and hyperbolic functions.
For similar results for the products of these functions we refer to [9] and
references therein.

Theorem 1. [8, Proposition 2]: For x ∈ (0, α) where α ∈ (0, π/2), we have

e−βx
2
6

cosx

coshx
, (1.1)

with β = ln(coshα/ cosα)/α2.

Theorem 2. [8, Proposition 4]: For x ∈ (0, π/2), we have

e−γx
2
<

sinx

sinhx
, (1.2)

with γ = 4 ln(sinhπ/2)/π2 ≈ 0.337794.

The inequalities (1.1) and (1.2) are generalized in [17]. We can obtain
similar types of exponential bounds for both the quotients cosx

coshx and sinx
sinhx

by using exponential bounds of sinx
x , x

sinhx , cosx and coshx given in [3,4,10]
after slight rearrangement of terms as follows:
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Theorem 3. For x ∈ [0, α] where α ∈ (0, π/2), we have

e−(A+1/2)x2 6
cosx

coshx
6 e−(B+1/2)x2 , (1.3)

with A = − ln(cosα)/α2 and B = 4 ln[cosh(π/2)]/π2 ≈ 0.372844.

Theorem 4. For x ∈ (0, π/2), we have

e−(C+1/6)x2 <
sinx

sinhx
< e−(D+1/6)x2 , (1.4)

with C = −4 ln(2/π)/π2 ≈ 0.183019 and D = 4 ln[2 sinh(π/2)/π]/π2 ≈
0.154774.

Motivated by these results, the main purpose of this paper is to establish
improved upper bounds for cosx

coshx and sinx
sinhx and to obtain some other inter-

esting inequalities involving these functions. Inequalities involving tanx
tanhx will

also be investigated.

2 Preliminaries

The following series expansions can be found in [15, 1.411]:

cotx =
1

x
−
∞∑
n=1

22n

(2n)!
|B2n|x2n−1; |x| < π, (2.1)

cothx =
1

x
+
∞∑
n=1

(−1)n−1
22n

(2n)!
|B2n|x2n−1; |x| < π, (2.2)

cosecx =
1

x
+
∞∑
n=1

2
(
22n−1 − 1

)
(2n)!

|B2n|x2n−1; |x| < π, (2.3)

and

cosechx =
1

x
−
∞∑
n=1

2
(
22n−1 − 1

)
(2n)!

B2nx
2n−1; |x| < π, (2.4)

where B2n are the even-indexed Bernoulli numbers, see [14, p. 231]. From
expansion (2.1), we obtain

tanhx

tanx
=

tanhx

x
−
∞∑
n=1

22n

(2n)!
|B2n|x2n−1 tanhx; |x| < π, (2.5)

2



and(
sinhx

sinx

)2

= −(cotx)′ sinh2 x

=

(
sinhx

x

)2

+
∞∑
n=1

22n(2n− 1)

(2n)!
|B2n|x2n−2 sinh2 x; |x| < π.

(2.6)

Similarly, from (2.3), (2.4) we respectively have

x

sinx
= 1 +

∞∑
n=1

2
(
22n−1 − 1

)
(2n)!

|B2n|x2n; |x| < π, (2.7)

and

x

sinhx
= 1−

∞∑
n=1

2
(
22n−1 − 1

)
(2n)!

B2nx
2n; |x| < π. (2.8)

The following l’Hôpital’s rule of monotonicity [1] has widespread ap-
plications and is proved to be an important tool in the field of analytic
inequalities.

Lemma 1. ([l’Hôpital’s rule of monotonicity] [1]): Let f, g be two real
valued functions which are continuous on [a, b] and differentiable on (a, b),
where −∞ < a < b <∞ and g′(x) 6= 0, for ∀x ∈ (a, b). Let,

A(x) =
f(x)− f(a)

g(x)− g(a)

and

B(x) =
f(x)− f(b)

g(x)− g(b)
.

Then

I. A(x) and B(x) are increasing on (a, b) if f ′/g′ is increasing on (a, b)
and

II. A(x) and B(x) are decreasing on (a, b) if f ′/g′ is decreasing on (a, b).

The strictness of the monotonicity of A(x) and B(x) depends on the strict-
ness of monotonicity of f ′/g′.

3 Main results

We now state and prove the first main result of the paper.
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Proposition 1. If x ∈ [0, α] where α ∈ (0, π/2) then

e−ax
2
6

cosx

coshx
6 e−x

2
, (3.1)

with a = ln(coshα/ cosα)/α2.

Proof. We have to show that

1 < f(x) < a (0 < x < π/2),

where

f(x) =
ln(coshx/ cosx)

x2
.

Let
g1(x) = ln(coshx/ cosx), g2(x) = tanhx+ tanx,

and
h1(x) = x2, h2(x) = 2x.

Then

gi(0+) = hi(0+) = 0 (i = 1, 2),
g′1(x)

h′1(x)
=
g2(x)

h2(x)
,

and
g′2(x)

h′2(x)
=
P (x)

2

with P (x) = sech2 x+ sec2 x. It has derivative

P ′(x) = 2
(
tanx sec2 x− tanhx sech2 x

)
.

Now tanx > tanhx and sec2 x > sech2 x in (0, π/2) imply P ′(x) > 0 which
in turn implies that P (x) is increasing in (0, π/2). Applying Lemma 1, gives
that f(x) is increasing in the same interval. Since f(0+) = 1 by l’Hôpital’s

rule and f(α−) = ln(coshα/ cosα)
α2 we obtain (3.1).

It should be noted that the lower bound in (3.1) is nothing but lower
bound in (1.1) and upper bound in (3.1) is sharper than the corresponding
upper bound in (1.3). The right inequality of (3.1) is in fact true in (0, π/2).

In what follows, similar bounds for sinx
sinhx as in (3.1) are proposed.

Proposition 2. If x ∈ (0, π/2) then

e−bx
2
<

sinx

sinhx
< e−x

2/3, (3.2)

with b = 4 ln(sinhπ/2)
π2 ≈ 0.337794.

The following lemma is important as it leads to prove Proposition 2 and
gives very sharp bounds for x

tanx in (0, π/2).
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Lemma 2. λ(x) = cothx−cotx
x is positive increasing in (0, π). In particular

we have the following inequalities:

x

tanhx
− cx2 < x

tanx
<

x

tanhx
− 2

3
x2; x ∈ (0, π/2), (3.3)

and

x

tanx
<

x

tanhx
− 2

3
x2; x ∈ (0, π) (3.4)

where c = 2 coth(π/2)
π = 0.694126 · · · .

Proof. Utilizing (2.1) and (2.2) we write

λ(x) =
cothx− cotx

x

=
∞∑
n=1

22n

(2n)!
|B2n|

[
(−1)n−1 + 1

]
x2n−2

=
∞∑
n=1

anx
2n−2

where an > 0; ∀n. Thus λ(x) = 2
3 + 4x4

945 + 4x8

93555 + · · · . This clearly shows
that λ(x) is positive increasing in (0, π). With the limits λ(0+) = 2

3 and

λ(π/2−) = 2 coth(π/2)
π we get inequalities (3.3) and (3.4).

The inequality (3.3) is very sharp and can be studied further indepen-
dently for its refinement and generalization. Let us now prove Proposition
2.

Proof of Proposition 2. Let

f(x) =
ln(sinhx/ sinx)

x2
=
g(x)

h(x)
,

where g(x) = ln(sinhx/ sinx) and h(x) = x2 with g(0+) = 0 and h(0) = 0.
Differentiation gives

g′(x)

h′(x)
=

1

2

cothx− cotx

x
=

1

2
λ(x)

which is increasing in (0, π/2) by Lemma 2. So

f(0+) < f(x) < f(π/2−).

With the limits f(0+) = limx→0+
1
2λ(x) = 1

2
2
3 = 1

3 by Lemma 2 and

f(π/2−) = 4 ln(sinh(π/2))
π2 ≈ 0.337794 we finish the proof.

Here, too, it should be noted that the lower bound in (3.2) is nothing
but lower bound in (1.2) and upper bound in (3.2) is sharper than the
corresponding upper bound in (1.4). Moreover, the constants obtained in
Propositions 1 and 2 are optimal.
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Remark 1. An immediate consequence of Propositions 1 and 2 is the fol-
lowing inequality:

cosx

coshx
<

sinx

sinhx
; x ∈ (0, π/2) (3.5)

which can also be obtained from the obvious relation tanhx < tanx. Simi-
larly from Propositions 1 and 2, we can have the inequality

cosx

coshx
<

(
sinx

sinhx

)1/b

; x ∈ (0, π/2) (3.6)

where 1/b ≈ 2.960383.

Now we ask the natural question: what can be the best possible exponent
of sinx

sinhx in the above inequality (2.4)? can we expect it to be 3? The
affirmative answer can be seen in the following theorem.

Theorem 5. If x ∈ (0, π/2) then the inequality(
tanhx

tanx

)1/2

<
sinx

sinhx
(3.7)

holds true with the best possible constant 1/2. Equivalently, we have

cosx

coshx
<

(
sinx

sinhx

)3

; x ∈ (0, π/2), (3.8)

with the best possible constant 3.

Before entering the proof of Theorem 5, we prove two lemmas as follows.

Lemma 3. ξ(x) = cosx coshx is strictly positive decreasing in (0, π/2).

Proof. The proof is easy and straightforward since,

ξ′(x) = cosx sinhx− sinx coshx < 0

by (3.5).

Lemma 4. τ(x) = sin2 x+sinh2 x
sinx sinhx = sinx

sinhx + sinhx
sinx is strictly increasing in

(0, π/2).

Proof.

(sinx sinhx)2 τ ′(x) = sinx sinh2 x coshx+ sin2 x sinhx cosx

− sin3 x coshx− sinh3 x cosx

= sinh2 x (sinx coshx− sinhx cosx)

− sin2 x (sinx coshx− sinhx cosx)

= (sinx coshx− sinhx cosx)
(
sinh2 x− sin2 x

)
which is positive by (3.5) and the fact that sinhx > sinx. This proves our
lemma.
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We are now in a position to prove Theorem 5.

Proof of Theorem 5. Suppose

f(x) =
ln(sinx/ sinhx)

ln(tanhx/ tanx)
=
g(x)

h(x)
,

where g(x) = ln(sinx/ sinhx) and h(x) = ln(tanhx/ tanx) with g(0+) =
0 = h(0+). Then

g′(x)

h′(x)
=

sinx coshx− sinhx cosx

sinhx coshx− sinx cosx
(cosx coshx)

= q(x)(cosx coshx).

And

q(x) =
sinx coshx− sinhx cosx

sinhx coshx− sinx cosx
=
q1(x)

q2(x)
,

where q1(x) = sinx coshx − sinhx cosx, q2(x) = sinhx coshx − sinx cosx
with q1(0) = q2(0) = 0. By differentiation

q′1(x)

q′2(x)
=

sinx sinhx

sin2 x+ sinh2 x
=

1

τ(x)

which is strictly decreasing by Lemma 4. By Lemma 1, q(x) is strictly
decreasing in (0, π/2) and it is obvious that q(x) is positive. By Lemma 3,

cosx coshx is positive decreasing. Consequently g′(x)
h′(x) is strictly decreasing

in (0, π/2) and so is f(x) by Lemma 1 again. Hence

f(x) < f(0+); 0 < x < π/2.

Lastly f(0+) = limx→0+ q(x) limx→0+(cosx coshx) = limx→0+
1

τ(x) = 1
2

completes the proof.

Note: The inequality (3.8) has close resemblance with Mitrinović-Adamović
inequality, see e.g., [1, 19,23,29].

In the following corollary, we present an inequality for ratio functions
which is exactly similar to the one known as Wilker’s inequality [12, 20, 22,
25,28,30].

Corollary 1. For x ∈ (0, π/2), we have(
sinx

sinhx

)2

+
tanx

tanhx
> 2. (3.9)

Proof. For x ∈ (0, π/2), the inequality (3.7) can be written as(
sinx

sinhx

)2

>
tanhx

tanx
.
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This implies (
sinx

sinhx

)2

+
tanx

tanhx
>

tanhx

tanx
+

tanx

tanhx
> 2,

as u+ 1
u > 2 for any u > 0.

In Proposition 3, we establish another upper bound for sinx
sinhx .

Proposition 3. If x ∈ (0, π) then

sinx

sinhx
<

√
x+ sinx cosx

x+ sinhx coshx
=

√
2x+ sin 2x

2x+ sinh 2x
. (3.10)

Proof. By Lemma 2, λ′(x) > 0 in (0, π). It means that

x
(
cosec2 x− cosech2 x

)
− (cothx− cotx) > 0,

which is equivalent to

x cosec2 x+ cotx > cothx+ x cosech2 x

or
x+ sinx cosx

sin2 x
>
x+ sinhx coshx

sinh2 x
.

This gives desired inequality.

Some computations and Graphing calculator at www.symbolab.com sug-
gest that the upper bound of sinx

sinhx in (3.10) is sharper than the correspond-
ing upper bound in (1.4) except for a little portion as x→ π/2. We present
the following graphical comparison in support of our claim.

0.0 0.5 1.0 1.5

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

sin(x) sinh(x)
exp(− (0.154774 + 1 6)x2)
exp(− (x2) 3)
(x + sin(x)cos(x)) (x + sinh(x)cosh(x))

Figure 1: Upper bounds of sinx
sinhx in (1.4), (3.2) and (3.10) for x ∈ (0, π/2).

Inspired by Corollary 1, we prove
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Theorem 6. For x ∈ (0, π), the inequality(
sinhx

sinx

)2

+
tanhx

tanx
> 2 (3.11)

holds true.

Proof. Adding (2.5) and (2.6), and using the well-known inequality (see
e.g., [28]) (

sinhx

x

)2

+
tanhx

x
> 2; x > 0,

we get (
sinhx

sinx

)2

+
tanhx

tanx
> 2 +

∞∑
n=1

22n

(2n)!
|B2n|fn(x)x2n−1 sinhx,

for x ∈ (0, π), where fn(x) =
(
(2n− 1) sinhxx − 1

coshx

)
. Since, (2n−1) sinhxx >

1
coshx for all x > 0 and n > 1, our assertion is proved.

Let us find exponential bounds for tanhx
tanx .

Proposition 4. For x ∈ (0, α] where α ∈ (0, π/2), it is true that

e−cx
2
<

tanhx

tanx
< e−

2
3
x2 , (3.12)

with the best possible constants c = ln(tanα/ tanhα)
α2 and −2

3 .

Proof. We want to prove that

−2

3
< f(x) < a; x ∈ (0, α],

where

f(x) =
ln(tanx/ tanhx)

x2
.

Let g(x) = ln(tanx/ tanhx) and h(x) = x2. We can see that g(0+) = 0 =
h(0). After differentiating we get

g′(x)

h′(x)
=

tanhx sec2 x− tanx sech2 x

2x tanx tanhx

=
sinhx coshx− sinx cosx

2x sinx cosx sinhx coshx

=
1

2x2

(
2x

sin 2x
− 2x

sinh 2x

)
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Utilization of (2.7) and (2.8) yields

g′(x)

h′(x)
=

1

2x2

( ∞∑
n=1

22n+1(22n−1 − 1)

(2n)!
|B2n|x2n +

∞∑
n=1

22n+1(22n−1 − 1)

(2n)!
B2nx

2n

)

=
1

2

∞∑
n=1

22n+1(22n−1 − 1)

(2n)!
(|B2n|+B2n)x2n−2

=
1

2

∞∑
n=1

22n+1(22n−1 − 1)

(2n)!
|B2n|

(
1 + (−1)n−1

)
x2n−2

which is strictly increasing in (0, α]. By Lemma 1, f(x) is also strictly in-

creasing in (0, α]. By the limits f(0+) = 2
3 and f(α−) = ln(tanα/ tanhα)

α2 , the
proof is now complete.

The right inequality of (3.12) is, of course, holds for x ∈ (0, π/2) and
this inequality with the left inequality of (3.2) provides an alternative simple
proof of Theorem 5.

We proceed to obtain a simple Jordan type inequality for sinx
sinhx . The

details of Jordan’s inequality can be found in [1, 4, 6, 16, 27] and references
therein.

Proposition 5. For x ∈ (0, π/2) we have

1− x2

3
<

sinx

sinhx
< 1. (3.13)

Proof. The right inequality is obvious as sinx < sinhx. For left inequality,
let us set

T (x) = sinx− sinhx+
x2

3
sinhx.

Successive differentiation gives

T ′(x) = cosx− coshx+
x2

3
coshx+

2x

3
sinhx,

T ′′(x) = − sinx− sinhx+
x2

3
sinhx+

4x

3
coshx+

2

3
sinhx

and

T ′′′(x) = (coshx− cosx) + 2x sinhx+
x2

3
coshx > 0,

implying that T ′′(x) is increasing on (0, π/2) and, T ′′(x) > T ′′(0) = 0 for-
tiori, T (x) > 0 gives inequality (3.13).

Motivated by Cusa-Huygens inequality [2,5,13,20,21,24] which is stated
as

sinx

x
<

2 + cosx

3
; x ∈ (0, π/2)

we present a very similar inequality in the next theorem.
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Theorem 7. If x ∈ (0, π/2) then the following inequality holds true:

sinx

sinhx
<

2 + cosx

2 + coshx
. (3.14)

Proof. Suppose that,

f(x) = 2(sinhx− sinx)− (sinx coshx− sinhx cosx).

On differentiating continuously four times we get successive derivatives as
follows:

f ′(x) = 2(coshx− cosx)− 2 sinx sinhx,

f ′′(x) = 2(sinhx+ sinx)− 2(cosx sinhx+ sinx coshx),

f ′′′(x) = 2(coshx+ cosx)− 4 cosx coshx

and

f iv(x) = 2(sinhx− sinx) + 4(sinx coshx− cosx sinhx) > 0.

Now since sinhx > sinx and by (2.3) we get that f iv(x) > 0, implying taht
f ′′′(x) is increasing on (0, π/2). Hence f ′′′(x) > f ′′′(0) = 0 fortiori, f(x) > 0
gives the desired inequality.

The inequality (3.14) is very sharp. This claim can be verified from the
following figure.

0.0 0.5 1.0 1.5

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

sin(x) sinh(x)
(2 + cos(x)) (2 + cosh(x))

Figure 2: Graphs of functions in (3.14) for x ∈ (0, π/2).
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4 Applications

In this section, we see some important consequences of our main results. We
first offer a very simple proof of Wu and Srivastava’s inequality [26, Lemma
3].

Lemma 5. ( [26]) For x ∈ (0, π/2) , it is true that( x

sinx

)2
+

x

tanx
> 2.

Proof. Inequality (3.10) can be written as( x

sinx

)2
+

x

tanx
>
( x

sinhx

)2
+

x

tanhx
; x ∈ (0, π/2). (4.1)

C.-P. Chen and J. Sándor [7, Theorem 1.2(iii)] established the inequality( x

sinhx

)2
+

x

tanhx
> 2; x ∈ (0, π/2). (4.2)

Required inequality follows from inequalities (4.1) and (4.2).

To obtain bounds of sinx
sinhx in terms of cosine and hyperbolic cosine func-

tions we continue with

Corollary 2. ρ(x) = cothx(cothx− cotx) is strictly increasing in (0, π).

Proof.

ρ(x) =
x

tanhx

cothx− cotx

x
= κ(x)λ(x)

which is strictly positive increasing since κ(x) is obviously positive increasing
and λ(x) is also positive increasing by Lemma 2.

Corollary 3. Ψ(x) = cotx(cothx− cotx) is strictly decreasing in (0, π/2).

Proof. By (3.5), Ψ(x) is positive in (0, π/2). After differentiating Ψ(x) we
get

Ψ′(x) = − cotx cosech2 x− cothx cosec2 x+ 2 cotx cosec2 x.

By Corollary 2

ρ′(x) > 0 in (0, π/2).
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i.e.
−2 cothx cosech2 x+ cotx cosech2 x+ cothx cosec2 x > 0.

Equivalently,

− cothx cosec2 x < (cotx− 2 cothx) cosech2 x.

Hence

Ψ′(x) < (cotx− 2 cothx) cosech2 x− cotx cosech2 x

+ 2 cotx cosech2 x+ 2 cotx cosec2 x

= −2 cothx cosech2 x+ 2 cotx cosec2 x

= 2

(
sinh3 x cosx− sin3 x coshx

)
sin3 x sinh3 x

< 0

by 3.8. Thus our claim is proved.

Note. We can obtain new bounds for x
tanx with the help of Corollaries

2 and 3; but the new bounds are not as sharp as those obtained in Lemma
2. So we do not present them here.

Proposition 6. For x ∈ (0, π/2), one has

cos2/3 x <
sinx

sinhx
. (4.3)

Proof. Let

F (x) =
ln(sinx/ sinhx)

ln(cosx)
=
F1(x)

F2(x)
,

where F1(x) = ln(sinx/ sinhx) and F2(x) = ln(cos(x)) with F1(0+) = 0 =
F2(0). By differentiation we have

F ′1(x)

F ′2(x)
= cotx(cothx− cotx) = Ψ(x)

which is strictly decreasing in (0, π/2) by Corollary 3. Therefore F (x) is
also strictly decreasing in (0, π/2) by Lemma 1. So we can write

F (x) < F (0+); x > 0,

and F (0+) = limx→0+ Ψ(x) = limx→0+
x

tanxλ(x) = 2
3 gives (4.3).

Proposition 7. For x ∈ (0, π/2) we have(
1

coshx

)h
<

sinx

sinhx
<

(
1

coshx

)2/3

(4.4)

with best possible constants h = ln(sinhπ/2)
ln(coshπ/2) ≈ 0.905994 and 2/3.
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Proof. Suppose

G(x) =
ln(sinhx/ sinx)

ln(coshx)
.

We want
2

3
< G(x) < h; x ∈ (0, π/2).

Let G1(x) = ln(sinhx/ sinx) and G2(x) = ln(coshx). Clearly G1(0+) = 0 =
G2(0). Differentiation gives

G′1(x)

G′2(x)
= cothx(cothx− cotx) = ρ(x)

which is strictly increasing in (0, π/2) Corollary 2 and so is G(x) by Lemma
1. Lastly, the limitsG(0+) = limx→0+G(x) = limx→0+ ρ(x) = limx→0+

x
tanhxλ(x) =

2
3 and G(π/2−) = ln(sinhπ/2

ln(coshπ/2) ≈ 0.905994 give desired result.

Remark 2. Combining ( 4.3) and ( 4.4), the following inequality can be
written:

cos2 x <

(
sinx

sinhx

)3

<
1

cosh2 x
; x ∈ (0, π/2). (4.5)

We conclude this section by noticing that our obtained results give in-
terested inequalities connecting sinc and hyperbolic sinc functions as well as
inequalities connecting cosine and hyperbolic cosine functions. For instance,
the inequalities (3.1), (3.2), (3.8), (3.12), (3.13), and (3.14) can be written
respectively as follows:

e−ax
2

coshx 6 cosx 6 e−x
2

coshx; x ∈ [0, α], (4.6)

where α ∈ (0, π/2) and a = ln(coshα/ cosα)/α2,

(
sinhx

x

)
e−bx

2
<

sinx

x
<

(
sinhx

x

)
e−x

2/3; x ∈ (0, π/2), (4.7)

where b ≈ 0.337794,

(
sinhx

x

)3

cosx <

(
sinx

x

)3

coshx; x ∈ (0, π/2), (4.8)

e−cx
2

tanx < tanhx < e−
2
3
x2 tanx; x ∈ (0, α], (4.9)

where α ∈ (0, π/2) and c = ln(tanα/ tanhα)
α2 .
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(
1− x2

3

)
sinhx

x
<

sinx

x
<

sinhx

x
; x ∈ (0, π/2), (4.10)

and

sinx

x

(
2 + coshx

3

)
<

sinhx

x

(
2 + cosx

3

)
; x ∈ (0, π/2). (4.11)

5 Conclusion

We obtained sharp exponential bounds for cosx
coshx ,

sinx
sinhx , and tanx

tanhx and es-
tablished some other inequalities involving these functions. The obtained
inequalities are similar to Jordan, Mitrinović-Adamović, Wilker and Cusa-
Huygens type for these functions. In an attempt to obtain our main results,
we also established very sharp bounds for x

tanx .
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