Abstract. In this paper we obtain several reverse of Levin-Stečkin inequality. We also extend this result for the more general case in which the symmetrical transform is requested to be monotonic non-increasing on the half interval $[0, \frac{1}{2}]$, namely if $p : [0, 1] \rightarrow \mathbb{R}$ is symmetric in $[0, 1]$ and monotonic non-decreasing on $[0, \frac{1}{2}]$ and $f : [0, 1] \rightarrow \mathbb{R}$ is integrable and such that \tilde{f}, the symmetrical transform of f, is monotonic non-increasing on $[0, \frac{1}{2}]$, then

$$0 \leq \int_0^1 p(t)dt \int_0^1 f(t)dt - \int_0^1 p(t)f(t)dt \leq \frac{1}{4} \left(p \left(\frac{1}{2} \right) - p(0) \right) \left[\frac{f(0) + f(1)}{2} - \tilde{f} \left(\frac{1}{2} \right) \right].$$

Several other similar inequalities for either p or f is differentiable, are also provided.

1. Introduction

For two Lebesgue integrable functions h, $g : [a, b] \rightarrow \mathbb{R}$, consider the Čebyšev functional:

$$C(h, g) := \frac{1}{b - a} \int_a^b h(t)g(t)dt - \frac{1}{(b - a)^2} \int_a^b h(t)dt \int_a^b g(t)dt.$$

In 1935, Grüss [5] showed that

$$|C(h, g)| \leq \frac{1}{4} (M - m) (N - n),$$

provided that there exists the real numbers m, M, n, N such that

$$m \leq h(t) \leq M \quad \text{and} \quad n \leq g(t) \leq N \quad \text{for a.e. } t \in [a, b].$$

The constant $\frac{1}{4}$ is best possible in (1.1) in the sense that it cannot be replaced by a smaller quantity.

Another, however less known result, even though it was obtained by Čebyšev in 1882, [1], states that

$$|C(h, g)| \leq \frac{1}{12} \|h'\|_\infty \|g'\|_\infty (b - a)^2,$$

provided that h', g' exist and are continuous on $[a, b]$ and $\|h'\|_\infty = \sup_{t \in [a, b]} |h'(t)|$. The constant $\frac{1}{12}$ cannot be improved in the general case.

The Čebyšev inequality (1.4) also holds if $h, g : [a, b] \rightarrow \mathbb{R}$ are assumed to be absolutely continuous and $h', g' \in L_\infty [a, b]$ while $\|h'\|_\infty = \esssup_{t \in [a, b]} |h'(t)|$.

1991 Mathematics Subject Classification. 26D15, 26D10.

Key words and phrases. Convex functions, Integral inequalities, Grüss, Čebyšev, Ostrowski inequalities, Levin-Stečkin’s inequality.
A mixture between Grüss’ result (1.2) and Čebyšev’s one (1.4) is the following inequality obtained by Ostrowski in 1970, [9]:

\[|C(h, g)| \leq \frac{1}{8} (b - a) (M - m) \|g'\|_\infty, \]

provided that \(h \) is Lebesgue integrable and satisfies (1.3) while \(g \) is absolutely continuous and \(g' \in L_\infty[a, b] \). The constant \(\frac{1}{8} \) is best possible in (1.5).

The case of euclidean norms of the derivative was considered by A. Lupăş in [6] in which he proved that

\[|C(h, g)| \leq \frac{1}{\pi^2} \|h'\|_2 \|g'\|_2 (b - a), \]

provided that \(h, g \) are absolutely continuous and \(h', g' \in L_2[a, b] \). The constant \(\frac{1}{\pi^2} \) is the best possible.

The following result is known in the literature as Levin-Stečkin’s inequality [10]:

Theorem 1. If the function \(p : [0, 1] \to \mathbb{R} \) is symmetric, namely \(p(1 - t) = p(t) \) for \(t \in [0, 1] \) and non-decreasing (non-increasing) on \([0, 1/2] \), then for every convex function \(g \) on \([0, 1] \),

\[
\text{(LS)} \quad \int_0^1 p(t) g(t) \, dt \leq (\geq) \int_0^1 p(t) \, dt \int_0^1 g(t) \, dt.
\]

If the function \(g \) is concave on \([0, 1] \), then the signs of inequalities reverse in (LS).

For some recent results related to Levin-Stečkin’s inequality, see [7], [8] and [11].

In this paper we obtain several reverse inequalities for (LS). We also extend this result and its reverses for the more general case in which the symmetrical transform of \(g \) is requested to be monotonic on the half interval \([0, 1/2] \). Some examples of interest are also provided.

2. REVERSE INEQUALITIES

We have the following natural reverse of Levin-Stečkin’s inequality, see also [4, Corollary 1.4]:

Theorem 2. Assume that \(p : [0, 1] \to \mathbb{R} \) is symmetric and non-decreasing on \([0, 1/2] \) and \(f : [0, 1] \to \mathbb{R} \) is convex, then

\[
0 \leq \int_0^1 p(t) \, dt \int_0^1 f(t) \, dt - \int_0^1 p(t) f(t) \, dt
\leq \frac{1}{4} \left(p\left(\frac{1}{2} \right) - p(0) \right) \left(\frac{f(0) + f(1)}{2} - f\left(\frac{1}{2} \right) \right)
\leq \frac{1}{16} \left(p\left(\frac{1}{2} \right) - p(0) \right) \left[f_+''(1) - f_+''(0) \right].
\]

Proof. Since \(p \) is symmetric on \([0, 1] \), then

\[
\int_0^1 p(t) \frac{f(t) + f(1 - t)}{2} \, dt = \frac{1}{2} \left[\int_0^1 p(t) f(t) \, dt + \int_0^1 p(t) f(1 - t) \, dt \right]
= \frac{1}{2} \left[\int_0^1 p(t) f(t) \, dt + \int_0^1 p(1 - t) f(1 - t) \, dt \right].
\]
By changing the variable $1 - t = s$, $s \in [0, 1]$ we have

$$
\int_0^1 p(1 - t) f(1 - t) \, dt = \int_0^1 p(s) f(s) \, ds
$$

and then

$$
\int_0^1 p(t) \frac{f(t) + f(1 - t)}{2} \, dt = \int_0^1 p(t) f(t) \, dt.
$$

Also

$$
\int_0^1 f(t) + f(1 - t) \, dt = \int_0^1 f(t) \, dt.
$$

Therefore

$$
(2.2) \quad 0 \leq \int_0^1 p(t) \, dt \int_0^1 f(t) \, dt - \int_0^1 p(t) f(t) \, dt
$$

$$
= \int_0^1 p(t) \, dt \int_0^1 \tilde{f}(t) \, dt - \int_0^1 p(t) \tilde{f}(t) \, dt,
$$

where

$$
\tilde{f}(t) := \frac{f(t) + f(1 - t)}{2}, \ t \in [0, 1]
$$

is the symmetrized transform of f.

Since f is convex, then \tilde{f} is symmetric and convex which implies that

$$
f \left(\frac{1}{2} \right) = \tilde{f} \left(\frac{1}{2} \right) \leq \tilde{f}(t) \leq \tilde{f}(1) = \frac{f(0) + f(1)}{2}, \ t \in [0, 1].
$$

Also $p(0) \leq p(t) \leq p \left(\frac{1}{2} \right), \ t \in [0, 1]$ and by Grüss’ inequality we get

$$
0 \leq \int_0^1 p(t) \, dt \int_0^1 \tilde{f}(t) \, dt - \int_0^1 p(t) \tilde{f}(t) \, dt
$$

$$
\leq \frac{1}{4} \left[p \left(\frac{1}{2} \right) - p(0) \right] \left[\frac{f(0) + f(1)}{2} - \tilde{f} \left(\frac{1}{2} \right) \right]
$$

and the second inequality (2.1) is thus proved.

For the last part, we use the inequality for convex functions $h : [a, b] \to \mathbb{R}$, see for instance [2] and [3] where the Hermite-Hadamard reverse inequalities were considered,

$$
0 \leq \frac{h(a) + h(b)}{2} - h \left(\frac{a + b}{2} \right) \leq \frac{1}{4} (b - a) \left[h'(b) - h'(a) \right],
$$

in which the constant $\frac{1}{4}$ is best possible.

Further, we have:

Theorem 3. Assume that $p : [0, 1] \to \mathbb{R}$ is symmetric and non-decreasing on $[0, 1/2]$ and $f : [0, 1] \to \mathbb{R}$ is convex.
(i) If \(p \) is differentiable on \((0, 1)\) with \(p' \in L_\infty(0, 1)\), then
\[
0 \leq \int_0^1 p(t) dt \int_0^1 f(t) dt - \int_0^1 p(t) f(t) dt \\
\leq \frac{1}{16} \left| p \left(\frac{1}{2} \right) - p(0) \right| \sup_{t \in (0, 1)} |f'(t) - f'(1 - t)|.
\]

(ii) If \(f \) is differentiable on \((0, 1)\), then
\[
0 \leq \int_0^1 p(t) dt \int_0^1 f(t) dt - \int_0^1 p(t) f(t) dt \\
\leq \frac{1}{24} \|p'\|_{\infty,(0,1)} \sup_{t \in (0,1)} |f'(t) - f'(1 - t)|.
\]

(iii) If \(p \) and \(f \) are differentiable on \((0, 1)\) with \(p' \in L_\infty(0, 1)\), then
\[
0 \leq \int_0^1 p(t) dt \int_0^1 f(t) dt - \int_0^1 p(t) f(t) dt \\
\leq \frac{1}{2\pi^2} \|p'\|_2 \left(\int_0^1 |f'(t) - f'(1 - t)|^2 dt \right)^{1/2}.
\]

Proof. We consider the function \(g : [0, 1] \to \mathbb{R}, \)
\[
g(t) = \frac{f(t) + f(1 - t)}{2}.
\]
If \(f \) is differentiable on \((0, 1)\), then
\[
g'(t) = \frac{f'(t) - f'(1 - t)}{2}, \quad t \in (0, 1).
\]

By applying Čebyšev, Ostrowski and Lupuș inequalities for the appropriate choices of \(h \) and \(g \) we derive the corresponding inequalities (2.3)-(2.5).

\[\square \]

Corollary 1. Assume that \(p : [0, 1] \to \mathbb{R} \) is symmetric and non-decreasing on \([0, 1/2]\) and \(f : [0, 1] \to \mathbb{R} \) is differentiable convex with the derivative \(f' \) \(L\)-Lipschitzian on \((0, 1)\), namely
\[
|f'(u) - f'(u)| \leq L |u - v| \quad \text{for all } u, v \in (0, 1).
\]

Then
\[
0 \leq \int_0^1 p(t) dt \int_0^1 f(t) dt - \int_0^1 p(t) f(t) dt \leq \frac{1}{16} \left[p \left(\frac{1}{2} \right) - p(0) \right].
\]

If \(p \) is differentiable with \(p' \in L_\infty(0, 1)\), then
\[
0 \leq \int_0^1 p(t) dt \int_0^1 f(t) dt - \int_0^1 p(t) f(t) dt \leq \frac{1}{24} L \|p'\|_{\infty,(0,1)}.
\]
and if $p' \in L_2 [a, b]$, then

$$0 \leq \int_0^1 p(t) dt \int_0^1 f(t) dt - \int_0^1 p(t) f(t) dt \leq \frac{\sqrt{3}}{6\pi^2} L \|p'\|_2. \quad (2.9)$$

Proof. Since f' is L-Lipschitzian on $(0, 1)$, then

$$|f'(t) - f'(1 - t)| \leq L |1 - 2t| = 2L \left| t - \frac{1}{2} \right| \leq L$$

for all $t \in (0, 1)$.

Therefore

$$\sup_{t \in (0, 1)} |f'(t) - f'(1 - t)| \leq L,$$

and

$$\int_0^1 |f'(t) - f'(1 - t)|^2 dt \leq 4L^2 \int_0^1 \left| t - \frac{1}{2} \right|^2 dt = \frac{1}{3} L^2.$$

By utilising Theorem 3 we derive the desired results. \hfill \Box

3. Some Extensions

For a function $f : [a, b] \to \mathbb{C}$ we consider the symmetrical transform of f on the interval $[a, b]$, denoted by $\hat{f}_{[a,b]}$, or simply \hat{f}, when the interval $[a, b]$ is implicit, as defined by

$$\hat{f}(t) := \frac{1}{2} \left[f(t) + f(a + b - t) \right], \quad t \in [a, b]. \quad (3.1)$$

We recall that the pair of functions (f, g) defined on $[a, b]$ are called synchronous (asynchronous) on $[a, b]$ if

$$\max_{t \in [a, b]} (f(t) - f(s)) (g(t) - g(s)) \geq 0 \quad (\leq 0) \quad (3.2)$$

for any $t, s \in [a, b]$. It is clear that if both functions (f, g) are monotonic nondecreasing (nonincreasing) on $[a, b]$ then they are synchronous on $[a, b]$. There are also functions that change monotonicity on $[a, b]$, but as a pair they are still synchronous. For instance if $a < 0 < b$ and $f, g : [a, b] \to \mathbb{R}$, $f(t) = t^2$ and $g(t) = t^4$, then

$$(f(t) - f(s)) (g(t) - g(s)) = (t^2 - s^2) (t^4 - s^4) = (t^2 - s^2)^2 (t^2 + s^2) \geq 0$$

for any $t, s \in [a, b]$, which show that (f, g) is synchronous.

We can introduce the following concept as well:

Definition 1. We say that the pair of functions (f, g) defined on $[a, b]$ is called symmetrized synchronous (asynchronous) on $[a, b]$ if the pair of symmetrized transforms (\hat{f}, \hat{g}) is synchronous (asynchronous) on $[a, b]$, namely

$$(\hat{f}(t) - \hat{f}(s)) (\hat{g}(t) - \hat{g}(s)) \geq 0 \quad (\leq 0) \quad (3.3)$$

for any $t, s \in [a, b]$.

Now, assume that the function $x : [a, b] \to I$, where I is an interval of real numbers, and (ϕ, ψ) is a pair of synchronous (asynchronous) functions defined on the interval I. Consider the functions $f, g : [a, b] \to \mathbb{R}$ defined by $f = \phi \circ x$ and $g = \psi \circ x$.

Then the functions f and g are symmetrical on $[a, b]$ and $\hat{f} = \phi \circ x$ and $\hat{g} = \psi \circ x$. Since (ϕ, ψ) is a pair of synchronous (asynchronous) functions, it follows that (\hat{f}, \hat{g}) is synchronous (asynchronous) on $[a, b]$, namely the pair of functions (f, g) defined
on \([a, b]\) is symmetrized synchronous (asynchronous) on \([a, b]\). Therefore, we can give many example of symmetrized synchronous (asynchronous) functions on \([a, b]\). For instance, if \((\phi, \psi)\) is a pair of synchronous (asynchronous) functions defined on the interval \([0, \infty)\), then the functions \(f, g : [a, b] \rightarrow \mathbb{R}\) defined by
\[f(t) = \phi \left(|t - \frac{a + b}{2}|^p \right) \]
and
\[g(t) = \psi \left(|t - \frac{a + b}{2}|^p \right) \]
with \(p > 0\) are symmetrized synchronous (asynchronous) on \([a, b]\).

One of the most important results for synchronous (asynchronous) and integrable functions \(f, g\) on \([a, b]\) is the well-known Čebyšev’s inequality:

\[\frac{1}{b - a} \int_a^b f(t) g(t) \, dt \geq \left(\frac{1}{b - a} \int_a^b f(t) \, dt \right) \left(\frac{1}{b - a} \int_a^b g(t) \, dt \right). \]

We have the following Čebyšev’s type result:

Lemma 1. Assume that the pair of integrable functions \((f, g)\) defined on \([a, b]\) is symmetrized synchronous (asynchronous) on \([a, b]\), then

\[\frac{1}{b - a} \int_a^b \tilde{f}(t) g(t) \, dt \geq \left(\frac{1}{b - a} \int_a^b \tilde{f}(t) \, dt \right) \left(\frac{1}{b - a} \int_a^b g(t) \, dt \right). \]

Proof. Since \((\tilde{f}, \tilde{g})\) is synchronous (asynchronous) on \([a, b]\), then by Čebyšev’s inequality (3.4) we have

\[\frac{1}{b - a} \int_a^b \tilde{f}(t) \tilde{g}(t) \, dt \geq \left(\frac{1}{b - a} \int_a^b \tilde{f}(t) \, dt \right) \left(\frac{1}{b - a} \int_a^b \tilde{g}(t) \, dt \right). \]

Observe that, by the change of variable \(s = a + b - t, \ t \in [a, b]\) we have

\[
\int_a^b \tilde{f}(t) \, dt = \frac{1}{2} \int_a^b [f(t) + f(a + b - t)] \\
= \frac{1}{2} \left[\int_a^b f(t) \, dt + \int_a^b f(a + b - t) \, dt \right] = \int_a^b f(t) \, dt,
\]

\[
\int_a^b \tilde{g}(t) \, dt = \int_a^b g(t) \, dt.
\]
and

\[(3.7) \quad \int_a^b \hat{f}(t) \hat{g}(t) \, dt = \frac{1}{4} \int_a^b \left[f(t) + f(a + b - t) \right] \left[g(t) + g(a + b - t) \right] \, dt \]

\[= \frac{1}{4} \int_a^b \left[f(t) g(t) + f(a + b - t) g(t) \right. \]
\[\left. + f(t) g(a + b - t) + f(a + b - t) g(a + b - t) \right] \, dt \]

\[= \frac{1}{4} \left[\int_a^b f(t) g(t) \, dt + \int_a^b f(a + b - t) g(t) \, dt \right. \]
\[\left. + \int_a^b f(a + b - t) g(t) \, dt + \int_a^b f(t) g(t) \, dt \right] \]

\[= \frac{1}{2} \left[\int_a^b f(t) g(t) \, dt + \int_a^b f(a + b - t) g(t) \, dt \right] \]

\[= \int_a^b \hat{f}(t) \hat{g}(t) \, dt \]

since,

\[\int_a^b f(a + b - t) g(t) \, dt = \int_a^b f(s) g(a + b - s) \, ds \]

and

\[\int_a^b f(a + b - t) g(a + b - t) \, dt = \int_a^b f(s) g(s) \, ds. \]

By making use of (3.6) we obtain the desired result (3.5). \qed

Corollary 2. Assume that the pair of integrable functions \((p, g)\) defined on \([a, b]\) is symmetrized synchronous (asynchronous) on \([a, b]\) and \(p\) is symmetric, then

\[(3.8) \quad \frac{b - a}{b - a} \int_a^b p(t) g(t) \, dt \geq (\leq) \frac{1}{b - a} \int_a^b p(t) dt \frac{1}{b - a} \int_a^b g(t) \, dt. \]

We have the following generalization of Levin-Stečkin inequality.

Theorem 4. Assume that \(p : [0, 1] \rightarrow \mathbb{R}\) is symmetric in \([0, 1]\) and monotonic non-decreasing (non-increasing) on \([0, \frac{1}{2}]\) and \(f : [0, 1] \rightarrow \mathbb{R}\) integrable and such that \(f\) is monotonic non-increasing on \([0, \frac{1}{2}]\); then we have

\[(3.9) \quad \int_0^1 p(t) f(t) \, dt \leq (\geq) \int_0^1 p(t) \, dt \int_0^1 f(t) \, dt. \]

If \(f\) is monotonic non-decreasing on \([0, \frac{1}{2}]\), then the inequalities reverse in (3.9).
Proof. Observe that

\begin{equation}
\int_0^1 p(t) f(t) \, dt = \int_0^{1/2} p(t) f(t) \, dt + \int_{1/2}^1 p(t) f(t) \, dt
\end{equation}

\begin{align*}
&= \int_0^{1/2} p(t) f(t) \, dt + \int_{1/2}^1 p(1-t) f(t) \, dt \\
&= \int_0^{1/2} p(t) f(t) \, dt + \int_0^{1/2} p(s) f(1-s) \, ds \\
&= \int_0^{1/2} p(t) [f(t) + f(1-t)] \, dt = 2 \int_0^{1/2} p(t) \bar{f}(t) \, dt.
\end{align*}

Using Čebyšev’s inequality for functions with opposite monotonicity on \([0, \frac{1}{2}]\), we have

\begin{equation}
2 \int_0^{1/2} p(t) \bar{f}(t) \, dt \leq \int_0^{1/2} p(t) \, dt \cdot 2 \int_0^{1/2} \bar{f}(t) \, dt
\end{equation}

\begin{align*}
&= \int_0^{1/2} p(t) \, dt \int_0^{1/2} \bar{f}(t) \, dt = \int_0^{1/2} p(t) \, dt \int_0^{1/2} f(t) \, dt.
\end{align*}

By making use of (3.10) and (3.11) we deduce the desired result (3.9). □

Remark 1. We observe that if \(f : [0, 1] \to \mathbb{R} \) is convex on \([0, 1]\), then \(\bar{f} \) is monotonic non-decreasing on \([0, \frac{1}{2}]\) and by (3.9) we get the Levin-Stečkin inequality for \(p : [0, 1] \to \mathbb{R} \) that is symmetric in \([0, 1]\) and monotonic non-decreasing on \([0, \frac{1}{2}]\) while \(f : [0, 1] \to \mathbb{R} \) is convex on \([0, 1]\).

Now, consider the function \(f : [0, 1] \to \mathbb{R}, f(t) = |t - \frac{1}{2}|^r \) for \(r \in (0, 1) \). This is a symmetric function and \(\bar{f}(t) = f(t) = |t - \frac{1}{2}|^r \). For \(t \in [0, \frac{1}{2}] \) we get

\[
f'(t) = -r \left(\frac{1}{2} - t \right)^{r-1} \quad \text{and} \quad f''(t) = -r (1-r) \left(\frac{1}{2} - t \right)^{r-2},
\]

which shows that \(\bar{f} \) is monotonic decreasing on \([0, \frac{1}{2}]\) but not convex on \([0, 1]\).

Therefore Theorem 4 extends Levin-Stečkin inequality to a larger class of functions, namely functions for which the symmetrical transform is monotonic non-increasing on \([0, \frac{1}{2}]\).

We have the following reverses of (3.9):

Theorem 5. Assume that \(p : [0, 1] \to \mathbb{R} \) is symmetric in \([0, 1]\) and monotonic non-decreasing on \([0, \frac{1}{2}]\) and \(f : [0, 1] \to \mathbb{R} \) integrable and such that \(\bar{f} \) is monotonic non-increasing on \([0, \frac{1}{2}]\).

(i) Then

\begin{equation}
0 \leq \int_0^1 p(t) \, dt \int_0^1 f(t) \, dt - \int_0^1 p(t) f(t) \, dt
\end{equation}

\begin{align*}
&\leq \frac{1}{4} \left[p \left(\frac{1}{2} \right) - p(0) \right] \left[\frac{f(0) + f(1)}{2} - f \left(\frac{1}{2} \right) \right].
\end{align*}
(ii) If p is differentiable on $(0, 1)$ with $p' \in L_\infty [0, 1]$, then

\begin{equation}
0 \leq \int_0^1 p(t) \, dt \int_0^1 f(t) \, dt - \int_0^1 p(t) f(t) \, dt
\leq \frac{1}{8} \|p'\|_{\infty, (0,1)} \left[\frac{f(0) + f(1)}{2} - f\left(\frac{1}{2}\right) \right].
\end{equation}

(iii) If p and f are differentiable on $(0, 1)$ with $p', f' \in L_\infty [0, 1]$, then

\begin{equation}
0 \leq \int_0^1 p(t) \, dt \int_0^1 f(t) \, dt - \int_0^1 p(t) f(t) \, dt
\leq \frac{1}{16} \sup_{t \in (0,1)} |f'(t) - f'(1-t)|.
\end{equation}

(iv) If p and f are differentiable on $(0, 1)$ with $p', f' \in L_2 [a,b]$, then

\begin{equation}
0 \leq \int_0^1 p(t) \, dt \int_0^1 f(t) \, dt - \int_0^1 p(t) f(t) \, dt
\leq \frac{1}{2\pi^2} \|p'\|_2 \left(\int_0^1 \left|f'(t) - f'(1-t)\right|^2 \, dt \right)^{1/2}.
\end{equation}

Proof. Observe that, as in the proof of Theorem 4, we have

\[
\int_0^1 p(t) \, dt \int_0^1 f(t) \, dt - \int_0^1 p(t) f(t) \, dt = \frac{1}{1/2} \int_0^{1/2} p(t) \, dt \cdot \frac{1}{1/2} \int_0^{1/2} f(t) \, dt - \frac{1}{1/2} \int_0^{1/2} p(t) \, dt \cdot \frac{1}{1/2} \int_0^{1/2} f(t) \, dt.
\]

By using now the inequalities (1.2), (1.5), (1.4) and (1.6) for the functions p and \tilde{f} on the interval $[0, 1/2]$ and perform some calculations, we derive the desired results. \qed

Corollary 3. Assume that $p : [0, 1] \to \mathbb{R}$ is symmetric and non-decreasing on $[0, 1/2]$ and $f : [0, 1] \to \mathbb{R}$ is differentiable with \tilde{f} is monotonic non-increasing on $[0, 1/2]$ and the derivative f' is L-Lipschitzian on $(0, 1)$, then

\begin{equation}
0 \leq \int_0^1 p(t) \, dt \int_0^1 f(t) \, dt - \int_0^1 p(t) f(t) \, dt \leq \frac{1}{16} \left[p\left(\frac{1}{2}\right) - p(0) \right].
\end{equation}

Moreover, if p is differentiable with $p' \in L_\infty (0, 1)$, then

\begin{equation}
0 \leq \int_0^1 p(t) \, dt \int_0^1 f(t) \, dt - \int_0^1 p(t) f(t) \, dt \leq \frac{1}{24} L \|p'\|_{\infty, (0,1)}
\end{equation}

and if $p' \in L_2 [a,b]$, then

\begin{equation}
0 \leq \int_0^1 p(t) \, dt \int_0^1 f(t) \, dt - \int_0^1 p(t) f(t) \, dt \leq \frac{\sqrt{3}}{2\pi^2} L \|p'\|_2.
\end{equation}
4. Examples

Consider the function $p : [0, 1] \rightarrow [0, \infty), \ p(t) = t(1-t)$. If $f : [0, 1] \rightarrow \mathbb{R}$ is convex, then by (2.1) we get

\begin{equation}
0 \leq \frac{1}{6} \int_{0}^{1} f(t) \, dt - \int_{0}^{1} t(1-t) \, f(t) \, dt \\
\leq \frac{1}{16} \left[f(0) + f(1) \right] - f\left(\frac{1}{2} \right) \leq \frac{1}{64} \left[f'(1) - f'(0) \right].
\end{equation}

while from (2.4) we derive

\begin{equation}
0 \leq \frac{1}{6} \int_{0}^{1} f(t) \, dt - \int_{0}^{1} t(1-t) \, f(t) \, dt \leq \frac{1}{64} \sup_{t \in (0,1)} |f'(t) - f'(1-t)|,
\end{equation}

provided that f is differentiable on $(0,1)$.

If f is differentiable convex on $(0,1)$ with $f' \in L_2[a,b]$, then by (2.6)

\begin{equation}
0 \leq \frac{1}{6} \int_{0}^{1} f(t) \, dt - \int_{0}^{1} t(1-t) \, f(t) \, dt \\
\leq \frac{\sqrt{3}}{6\pi^2} \left(\int_{0}^{1} |f'(t) - f'(1-t)|^2 \, dt \right)^{1/2}.
\end{equation}

since

\[||p'||_2 = \left(\int_{0}^{1} (1-2t)^2 \, dt \right)^{1/2} = \frac{\sqrt{3}}{3}. \]

If we consider the function $p : [0, 1] \rightarrow [0, \infty), \ p(t) = |t - \frac{1}{2}|$, then for $f : [0, 1] \rightarrow \mathbb{R}$ convex we get by (2.1) that

\begin{equation}
0 \leq \int_{0}^{1} \left| t - \frac{1}{2} \right| f(t) \, dt - \frac{1}{4} \int_{0}^{1} f(t) \, dt \\
\leq \frac{1}{8} \left[\frac{f(0) + f(1)}{2} - f\left(\frac{1}{2} \right) \right] \leq \frac{1}{32} \left[f'(1) - f'(0) \right].
\end{equation}

By (2.4) we get

\begin{equation}
0 \leq \int_{0}^{1} \left| t - \frac{1}{2} \right| f(t) \, dt - \frac{1}{4} \int_{0}^{1} f(t) \, dt \leq \frac{1}{32} \sup_{t \in (0,1)} |f'(t) - f'(1-t)|,
\end{equation}

provided that f is differentiable convex on $(0,1)$.

If f is differentiable convex on $(0,1)$ with $f' \in L_2[a,b]$, then

\begin{equation}
0 \leq \int_{0}^{1} \left| t - \frac{1}{2} \right| f(t) \, dt - \frac{1}{4} \int_{0}^{1} f(t) \, dt \\
\leq \frac{1}{2\pi^2} \left(\int_{0}^{1} |f'(t) - f'(1-t)|^2 \, dt \right)^{1/2}.
\end{equation}

References

[5] G. Grüss, Über das Maximum des absoluten Betrages von \(\frac{1}{b-a} \int_a^b f(x)g(x)dx - \frac{1}{(b-a)^2} \int_a^b f(x)dx \int_a^b g(x)dx \), *Math. Z.*, 39(1935), 215-226.

1*Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.*

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

2*DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, & Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa.*