SOME INTEGRAL INEQUALITIES FOR OPERATOR MONOTONIC FUNCTIONS ON HILBERT SPACES

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. Let f be an operator monotonic function on I and $A, B \in \mathcal{SA}_I(H)$, the class of all selfadjoint operators with spectra in I. Assume that $p:[0,1] \to \mathbb{R}$ is non-decreasing on [0,1]. In this paper we obtained, among others, that for $A \leq B$ and f an operator monotonic function on I,

$$0 \le \int_{0}^{1} p(t) f((1-t) A + tB) dt - \int_{0}^{1} p(t) dt \int_{0}^{1} f((1-t) A + tB) dt$$

$$\le \frac{1}{4} [p(1) - p(0)] [f(B) - f(A)]$$

in the operator order.

Several other similar inequalities for either p or f is differentiable, are also provided. Applications for power function and logarithm are given as well.

1. Introduction

Consider a complex Hilbert space $(H, \langle \cdot, \cdot \rangle)$. An operator T is said to be positive (denoted by $T \geq 0$) if $\langle Tx, x \rangle \geq 0$ for all $x \in H$ and also an operator T is said to be *strictly positive* (denoted by T > 0) if T is positive and invertible. A real valued continuous function f(t) on $(0, \infty)$ is said to be operator monotone if $f(A) \geq f(B)$ holds for any $A \geq B > 0$.

In 1934, K. Löwner [7] had given a definitive characterization of operator monotone functions as follows:

Theorem 1. A function $f:(0,\infty)\to\mathbb{R}$ is operator monotone in $(0,\infty)$ if and only if it has the representation

$$f(t) = a + bt + \int_{0}^{\infty} \frac{t}{t+s} dm(s)$$

where $a \in \mathbb{R}$ and $b \geq 0$ and a positive measure m on $(0, \infty)$ such that

$$\int_0^\infty \frac{dm\left(s\right)}{t+s} < \infty.$$

We recall the important fact proved by Löwner and Heinz that states that the power function $f:(0,\infty)\to\mathbb{R}, f(t)=t^{\alpha}$ is an operator monotone function for any $\alpha\in[0,1]$.

¹⁹⁹¹ Mathematics Subject Classification. 47A63, 26D15, 26D10.

Key words and phrases. Operator monotonic functions, Integral inequalities, Čebyšev inequality, Grüss inequality, Ostrowski inequality.

In [3], T. Furuta observed that for $\alpha_i \in [0,1]$, j=1,...,n the functions

$$g(t) := \left(\sum_{j=1}^{n} t^{-\alpha_j}\right)^{-1}$$
 and $h(t) = \sum_{j=1}^{n} (1 + t^{-1})^{-\alpha_j}$

are operator monotone in $(0, \infty)$.

Let f(t) be a continuous function $(0, \infty) \to (0, \infty)$. It is known that f(t) is operator monotone if and only if $g(t) = t/f(t) =: f^*(t)$ is also operator monotone, see for instance [3] or [8].

Consider the family of functions defined on $(0, \infty)$ and $p \in [-1, 2] \setminus \{0, 1\}$ by

$$f_{p}\left(t\right) := \frac{p-1}{p} \left(\frac{t^{p}-1}{t^{p-1}-1}\right)$$

and

$$f_0(t) := \frac{t}{1-t} \ln t,$$

$$f_1(t) := \frac{t-1}{\ln t}$$
 (logarithmic mean).

We also have the functions of interest

$$f_{-1}(t) = \frac{2t}{1+t}$$
 (harmonic mean), $f_{1/2}(t) = \sqrt{t}$ (geometric mean).

In [2] the authors showed that f_p is operator monotone for $1 \le p \le 2$. In the same category, we observe that the function

$$g_p\left(t\right) := \frac{t-1}{t^p - 1}$$

is an operator monotone function for $p \in (0,1]$, [3].

It is well known that the logarithmic function ln is operator monotone and in [3] the author obtained that the functions

$$f(t) = t(1+t)\ln\left(1+\frac{1}{t}\right), \ g(t) = \frac{1}{(1+t)\ln\left(1+\frac{1}{t}\right)}$$

are also operator monotone functions on $(0, \infty)$.

Let f be an operator monotonic function on I and A, $B \in \mathcal{SA}_I(H)$, the class of all selfadjoint operators with spectra in I. Assume that $p:[0,1] \to \mathbb{R}$ is non-decreasing on [0,1]. In this paper we obtain, among others, that for $A \leq B$ and f an operator monotonic function on I,

$$0 \le \int_0^1 p(t) f((1-t) A + tB) dt - \int_0^1 p(t) dt \int_0^1 f((1-t) A + tB) dt$$

$$\le \frac{1}{4} [p(1) - p(0)] [f(B) - f(A)]$$

in the operator order.

Several other similar inequalities for either p or f is differentiable, are also provided. Applications for power function and logarithm are given as well.

2. Main Results

For two Lebesgue integrable functions $h, g: [a, b] \to \mathbb{R}$, consider the Čebyšev functional:

(2.1)
$$C(h,g) := \frac{1}{b-a} \int_{a}^{b} h(t)g(t)dt - \frac{1}{b-a} \int_{a}^{b} h(t)dt \frac{1}{b-a} \int_{a}^{b} g(t)dt.$$

It is well known that, if h and g have the same monotonicity on [a, b], then

$$(2.2) \qquad \frac{1}{b-a}\int_a^b h(t)g(t)dt \ge \frac{1}{b-a}\int_a^b h(t)dt \frac{1}{b-a}\int_a^b g(t)dt,$$

which is known in the literature as Čebyšev's inequality.

In 1935, Grüss [4] showed that

(2.3)
$$|C(h,g)| \le \frac{1}{4} (M-m) (N-n),$$

provided that there exists the real numbers m, M, n, N such that

$$(2.4) m \le h(t) \le M and n \le g(t) \le N for a.e. t \in [a,b].$$

The constant $\frac{1}{4}$ is best possible in (2.1) in the sense that it cannot be replaced by a smaller quantity.

Let f be a continuous function on I. If $(A,B) \in \mathcal{SA}_I(H)$, the class of all selfadjoint operators with spectra in I and $t \in [0,1]$, then the convex combination (1-t)A+tB is a selfadjoint operator with the spectrum in I showing that $\mathcal{SA}_I(H)$ is a convex set in the Banach algebra $\mathcal{B}(H)$ of all bounded linear operators on H. By the continuous functional calculus of selfadjoint operator we also conclude that f((1-t)A+tB) is a selfadjoint operator in $\mathcal{B}(H)$.

For $A, B \in \mathcal{SA}_I(H)$, we consider the auxiliary function $\varphi_{(A,B)} : [0,1] \to \mathcal{B}(H)$ defined by

(2.5)
$$\varphi_{(A,B)}(t) := f((1-t)A + tB).$$

For $x \in H$ we can also consider the auxiliary function $\varphi_{(A,B);x}:[0,1] \to \mathbb{R}$ defined by

(2.6)
$$\varphi_{(A,B);x}(t) := \left\langle \varphi_{(A,B)}(t) x, x \right\rangle = \left\langle f\left((1-t) A + tB \right) x, x \right\rangle.$$

Theorem 2. Let $A, B \in \mathcal{SA}_I(H)$ with $A \leq B$ and f an operator monotonic function on I. If $p:[0,1] \to \mathbb{R}$ is monotonic nondecreasing on [0,1], then

$$(2.7) 0 \le \int_0^1 p(t) f((1-t) A + tB) dt - \int_0^1 p(t) dt \int_0^1 f((1-t) A + tB) dt$$
$$\le \frac{1}{4} [p(1) - p(0)] [f(B) - f(A)].$$

If $p:[0,1] \to \mathbb{R}$ is monotonic nonincreasing on [0,1], then

$$(2.8) 0 \le \int_0^1 p(t) dt \int_0^1 f((1-t)A + tB) dt - \int_0^1 p(t) f((1-t)A + tB) dt$$
$$\le \frac{1}{4} [p(0) - p(1)] [f(B) - f(A)].$$

Proof. Let $0 \le t_1 < t_2 \le 1$ and $A \le B$. Then

$$(1-t_2)A + t_2B - (1-t_1)A - t_1B = (t_2-t_1)(B-A) \ge 0$$

and by operator monotonicity of f we get

$$f((1-t_2)A+t_2B) \ge f((1-t_1)A+t_1B)$$
,

which is equivalent to

$$\varphi_{(A,B);x}(t_2) = \langle f((1-t_2)A + t_2B)x, x \rangle
\ge \langle f((1-t_1)A + t_1B)x, x \rangle = \varphi_{(A,B);x}(t_1)$$

that shows that the scalar function $\varphi_{(A,B);x}:[0,1]\to\mathbb{R}$ is monotonic nondecreasing for $A\leq B$ and for any $x\in H$.

If we write the inequality (2.2) for the functions p and $\varphi_{(A,B);x}$ we get

$$\int_{0}^{1} p(t) \left\langle f((1-t)A + tB)x, x \right\rangle dt \ge \int_{0}^{1} p(t) dt \int_{0}^{1} \left\langle f((1-t)A + tB)x, x \right\rangle dt,$$

which can be written as

$$\left\langle \left(\int_{0}^{1} p(t) f((1-t) A + tB) dt \right) x, x \right\rangle$$

$$\geq \left\langle \left(\int_{0}^{1} p(t) dt \int_{0}^{1} f((1-t) A + tB) dt \right) dt x, x \right\rangle$$

for $x \in H$, and the first inequality in (2.7) is obtained.

We also have that

$$\langle f(A) x, x \rangle = \varphi_{(A,B);x}(0) \le \varphi_{(A,B);x}(t) = \langle f((1-t) A + tB) x, x \rangle$$

$$\le \varphi_{(A,B);x}(1) = \langle f(B) x, x \rangle$$

and

$$p(0) \leq p(t) \leq p(1)$$

for all $t \in [0, 1]$.

By writing Grüss' inequality for the functions $\varphi_{(A,B):x}$ and p, we get

$$0 \le \int_0^1 p(t) \langle f((1-t)A + tB) x, x \rangle dt$$
$$- \int_0^1 p(t) dt \int_0^1 \langle f((1-t)A + tB) x, x \rangle dt$$
$$\le \frac{1}{4} [p(1) - p(0)] [\langle f(B) x, x \rangle - \langle f(A) x, x \rangle]$$

for $x \in H$ and the second inequality in (2.7) is obtained.

A continuous function $g: \mathcal{SA}_I(H) \to \mathcal{B}(H)$ is said to be Gâteaux differentiable in $A \in \mathcal{SA}_I(H)$ along the direction $B \in \mathcal{B}(H)$ if the following limit exists in the strong topology of $\mathcal{B}(H)$

(2.9)
$$\nabla g_A(B) := \lim_{s \to 0} \frac{g(A + sB) - g(A)}{s} \in \mathcal{B}(H).$$

If the limit (2.9) exists for all $B \in \mathcal{B}(H)$, then we say that g is G at e and e in e and we can write e in e and e in an open set e from e in e in e in e in an open set e from e in e

If g is a continuous function on I, by utilising the continuous functional calculus the corresponding function of operators will be denoted in the same way.

For two distinct operators $A, B \in \mathcal{SA}_I(H)$ we consider the segment of selfadjoint operators

$$[A, B] := \{(1 - t) A + tB \mid t \in [0, 1]\}.$$

We observe that $A, B \in [A, B]$ and $[A, B] \subset \mathcal{SA}_I(H)$.

Lemma 1. Let f be a continuous function on I and A, $B \in \mathcal{SA}_I(H)$, with $A \neq B$. If $f \in \mathcal{G}([A, B])$, then the auxiliary function $\varphi_{(A,B)}$ is differentiable on (0,1) and

(2.10)
$$\varphi'_{(A,B)}(t) = \nabla f_{(1-t)A+tB}(B-A).$$

In particular,

(2.11)
$$\varphi'_{(A,B)}(0+) = \nabla f_A(B-A)$$

and

$$\varphi'_{(A,B)}(1-) = \nabla f_B(B-A).$$

Proof. Let $t \in (0,1)$ and $h \neq 0$ small enough such that $t+h \in (0,1)$. Then

(2.13)
$$\frac{\varphi_{(A,B)}(t+h) - \varphi_{(A,B)}(t)}{h} = \frac{f((1-t-h)A + (t+h)B) - f((1-t)A + tB)}{h} = \frac{f((1-t)A + tB + h(B-A)) - f((1-t)A + tB)}{h}$$

Since $f \in \mathcal{G}([A, B])$, hence by taking the limit over $h \to 0$ in (2.13) we get

$$\varphi'_{(A,B)}(t) = \lim_{h \to 0} \frac{\varphi_{(A,B)}(t+h) - \varphi_{(A,B)}(t)}{h}$$

$$= \lim_{h \to 0} \frac{f((1-t)A + tB + h(B-A)) - f((1-t)A + tB)}{h}$$

$$= \nabla f_{(1-t)A + tB}(B-A),$$

which proves (2.10).

Also, we have

$$\varphi'_{(A,B)}(0+) = \lim_{h \to 0+} \frac{\varphi_{(A,B)}(h) - \varphi_{(A,B)}(0)}{h}$$

$$= \lim_{h \to 0+} \frac{f((1-h)A + hB) - f(A)}{h}$$

$$= \lim_{h \to 0+} \frac{f(A+h(B-A)) - f(A)}{h}$$

$$= \nabla f_A(B-A)$$

since f is assumed to be Gâteaux differentiable in A. This proves (2.11).

The equality (2.12) follows in a similar way.

Lemma 2. Let f be an operator monotonic function on I and A, $B \in \mathcal{SA}_I(H)$, with $A \leq B$, $A \neq B$. If $f \in \mathcal{G}([A, B])$, then

(2.14)
$$\nabla f_{(1-t)A+tB}(B-A) \ge 0 \text{ for all } t \in (0,1).$$

Also

$$(2.15) \nabla f_A (B-A), \ \nabla f_B (B-A) \ge 0.$$

Proof. Let $x \in H$. The auxiliary function $\varphi_{(A,B);x}$ is monotonic nondecreasing in the usual sense on [0,1] and differentiable on (0,1), and for $t \in (0,1)$

$$0 \leq \varphi'_{(A,B);x}(t) = \lim_{h \to 0} \frac{\varphi_{(A,B),x}(t+h) - \varphi_{(A,B),x}(t)}{h}$$

$$= \lim_{h \to 0} \left\langle \frac{\varphi_{(A,B)}(t+h) - \varphi_{(A,B)}(t)}{h} x, x \right\rangle$$

$$= \left\langle \lim_{h \to 0} \frac{\varphi_{(A,B)}(t+h) - \varphi_{(A,B)}(t)}{h} x, x \right\rangle$$

$$= \left\langle \nabla f_{(1-t)A+tB}(B-A) x, x \right\rangle.$$

This shows that

$$\nabla f_{(1-t)A+tB} \left(B - A \right) \ge 0$$

for all $t \in (0, 1)$.

The inequalities (2.15) follow by (2.11) and (2.12).

The following inequality obtained by Ostrowski in 1970, [9] also holds

$$|C(h,g)| \le \frac{1}{8} (b-a) (M-m) \|g'\|_{\infty},$$

provided that h is Lebesgue integrable and satisfies (2.4) while g is absolutely continuous and $g' \in L_{\infty}[a, b]$. The constant $\frac{1}{8}$ is best possible in (2.16).

Theorem 3. Let $A, B \in \mathcal{SA}_I(H)$ with $A \leq B$, f be an operator monotonic function on I and $p:[0,1] \to \mathbb{R}$ monotonic nondecreasing on [0,1].

(i) If p is differentiable on (0,1), then

$$(2.17) 0 \le \int_{0}^{1} p(t) f((1-t) A + tB) dt - \int_{0}^{1} p(t) dt \int_{0}^{1} f((1-t) A + tB) dt$$
$$\le \frac{1}{8} \sup_{t \in (0.1)} p'(t) [f(B) - f(A)].$$

(ii) If $f \in \mathcal{G}([A, B])$, then

$$(2.18) 0 \leq \int_{0}^{1} p(t) f((1-t) A + tB) dt - \int_{0}^{1} p(t) dt \int_{0}^{1} f((1-t) A + tB) dt$$

$$\leq \frac{1}{8} [p(1) - p(0)] \sup_{t \in (0,1)} \|\nabla f_{(1-t)A+tB} (B - A)\| 1_{H}.$$

Proof. Let $x \in H$. If we use the inequality (2.16) for g = p and $h = \varphi_{(A,B),x}$, then

$$0 \leq \int_{0}^{1} p(t) \langle f((1-t)A + tB) x, x \rangle dt$$
$$- \int_{0}^{1} p(t) dt \int_{0}^{1} \langle f((1-t)A + tB) x, x \rangle dt$$
$$\leq \frac{1}{8} \sup_{t \in (0,1)} p'(t) \left[\langle f(B) x, x \rangle - \langle f(A) x, x \rangle \right],$$

for any $x \in H$, which is equivalent to (2.17).

If we use the inequality (2.16) for h=p and $g=\varphi_{(A,B);x}$ then by Lemmas 1 and 2

(2.19)
$$0 \leq \int_{0}^{1} p(t) \langle f((1-t)A + tB) x, x \rangle dt \\ - \int_{0}^{1} p(t) dt \int_{0}^{1} \langle f((1-t)A + tB) x, x \rangle dt \\ \leq \frac{1}{8} [p(1) - p(0)] \sup_{t \in (0,1)} \langle \nabla f_{(1-t)A + tB} (B - A) x, x \rangle,$$

for any $x \in H$, which is an inequality of interest in itself.

Observe that for all $t \in (0,1)$,

$$\langle \nabla f_{(1-t)A+tB} (B-A) x, x \rangle \le ||\nabla f_{(1-t)A+tB} (B-A)|| ||x||^2$$

for any $x \in H$, which implies that (2.20)

$$\sup_{t \in (0,1)} \left\langle \nabla f_{(1-t)A+tB} \left(B - A \right) x, x \right\rangle \le \sup_{t \in (0,1)} \left\| \nabla f_{(1-t)A+tB} \left(B - A \right) \right\| \left\langle 1_H x, x \right\rangle$$

for any $x \in H$.

By making use of (2.19) and (2.20) we derive

$$0 \le \int_{0}^{1} p(t) \langle f((1-t)A + tB) x, x \rangle dt$$
$$- \int_{0}^{1} p(t) dt \int_{0}^{1} \langle f((1-t)A + tB) x, x \rangle dt$$
$$\le \frac{1}{8} [p(1) - p(0)] \sup_{t \in (0,1)} \|\nabla f_{(1-t)A + tB} (B - A)\| \langle 1_{H}x, x \rangle$$

for any $x \in H$, which is equivalent to (2.18).

Another, however less known result, even though it was obtained by Čebyšev in 1882, [1], states that

$$|C(h,g)| \le \frac{1}{12} \|h'\|_{\infty} \|g'\|_{\infty} (b-a)^{2},$$

provided that h', g' exist and are continuous on [a,b] and $||h'||_{\infty} = \sup_{t \in [a,b]} |h'(t)|$. The constant $\frac{1}{12}$ cannot be improved in the general case.

The case of *euclidean norms* of the derivative was considered by A. Lupaş in [5] in which he proved that

$$|C(h,g)| \le \frac{1}{\pi^2} \|h'\|_2 \|g'\|_2 (b-a),$$

provided that h, g are absolutely continuous and h', $g' \in L_2[a, b]$. The constant $\frac{1}{\pi^2}$ is the best possible.

Using the above inequalities (2.21) and (2.22) and a similar procedure to the one employed in the proof of Theorem 3, we can also state the following result:

Theorem 4. Let $A, B \in \mathcal{SA}_I(H)$ with $A \leq B$, f be an operator monotonic function on I and $p:[0,1] \to \mathbb{R}$ monotonic nondecreasing on [0,1]. If p is differentiable

and $f \in \mathcal{G}([A,B])$, then

$$(2.23) 0 \le \int_0^1 p(t) f((1-t) A + tB) dt - \int_0^1 p(t) dt \int_0^1 f((1-t) A + tB) dt$$
$$\le \frac{1}{12} \sup_{t \in (0,1)} p'(t) \sup_{t \in (0,1)} \|\nabla f_{(1-t)A+tB} (B - A)\| 1_H$$

and

$$(2.24) 0 \leq \int_{0}^{1} p(t) f((1-t) A + tB) dt - \int_{0}^{1} p(t) dt \int_{0}^{1} f((1-t) A + tB) dt$$
$$\leq \frac{1}{\pi^{2}} \left(\int_{0}^{1} \left[p'(t) \right]^{2} dt \right)^{1/2} \left(\int_{0}^{1} \left\| \nabla f_{(1-t)A+tB} (B - A) \right\|^{2} dt \right)^{1/2} 1_{H},$$

provided the integrals in the second term are finite.

3. Some Examples

We consider the function $f:(0,\infty)\to\mathbb{R},\ f(t)=-t^{-1}$ which is operator monotone on $(0,\infty)$.

If $0 < A \le B$ and $p: [0,1] \to \mathbb{R}$ is monotonic nondecreasing on [0,1], then by (2.7)

$$(3.1) 0 \le \int_0^1 p(t) dt \int_0^1 ((1-t)A + tB)^{-1} dt - \int_0^1 p(t) ((1-t)A + tB)^{-1} dt$$
$$\le \frac{1}{4} [p(1) - p(0)] (A^{-1} - B^{-1}).$$

Moreover, if p is differentiable on (0,1), then by (2.17) we obtain

$$(3.2) 0 \le \int_0^1 p(t) dt \int_0^1 ((1-t)A + tB)^{-1} dt - \int_0^1 p(t) ((1-t)A + tB)^{-1} dt$$
$$\le \frac{1}{8} \sup_{t \in (0.1)} p'(t) (A^{-1} - B^{-1}).$$

The function $f(t) = -t^{-1}$ is operator monotonic on $(0, \infty)$, operator Gâteaux differentiable and

$$\nabla f_T(S) = T^{-1}ST^{-1}$$

for T, S > 0.

If $p:[0,1]\to\mathbb{R}$ is monotonic nondecreasing on [0,1], then by (2.18) we get

$$(3.3) 0 \le \int_0^1 p(t) dt \int_0^1 ((1-t)A + tB)^{-1} dt - \int_0^1 p(t) ((1-t)A + tB)^{-1} dt$$

$$\le \frac{1}{8} [p(1) - p(0)]$$

$$\times \sup_{t \in (0,1)} \left\| ((1-t)A + tB)^{-1} (B-A) ((1-t)A + tB)^{-1} \right\| 1_H$$

for $0 < A \le B$.

If p is monotonic nondecreasing and differentiable on (0,1), then by (2.23) and (2.24) we get

$$(3.4) 0 \le \int_0^1 p(t) dt \int_0^1 ((1-t)A + tB)^{-1} dt - \int_0^1 p(t) ((1-t)A + tB)^{-1} dt$$

$$\le \frac{1}{12} \sup_{t \in (0,1)} p'(t)$$

$$\times \sup_{t \in (0,1)} \left\| ((1-t)A + tB)^{-1} (B-A) ((1-t)A + tB)^{-1} \right\| 1_H$$

and

$$(3.5) 0 \leq \int_{0}^{1} p(t) dt \int_{0}^{1} ((1-t)A + tB)^{-1} dt - \int_{0}^{1} p(t) ((1-t)A + tB)^{-1} dt$$

$$\leq \frac{1}{\pi^{2}} \left(\int_{0}^{1} [p'(t)]^{2} dt \right)^{1/2}$$

$$\times \left(\int_{0}^{1} \left\| ((1-t)A + tB)^{-1} (B-A) ((1-t)A + tB)^{-1} \right\|^{2} dt \right)^{1/2} 1_{H},$$

for $0 < A \le B$.

We note that the function $f(t) = \ln t$ is operator monotonic on $(0, \infty)$.

If $0 < A \le B$ and $p : [0,1] \to \mathbb{R}$ is monotonic nondecreasing on [0,1], then by (2.7) we have

$$(3.6) 0 \le \int_0^1 p(t) \ln ((1-t)A + tB) dt - \int_0^1 p(t) dt \int_0^1 \ln ((1-t)A + tB) dt$$
$$\le \frac{1}{4} [p(1) - p(0)] (\ln B - \ln A).$$

Moreover, if p is differentiable on (0,1), then by (2.17) we obtain

$$(3.7) 0 \le \int_0^1 p(t) \ln((1-t)A + tB) dt - \int_0^1 p(t) dt \int_0^1 \ln((1-t)A + tB) dt$$
$$\le \frac{1}{8} \sup_{t \in (0,1)} p'(t) (\ln B - \ln A).$$

The ln function is operator Gâteaux differentiable with the following explicit formula for the derivative (cf. Pedersen [10, p. 155]):

(3.8)
$$\nabla \ln_T (S) = \int_0^\infty (s1_H + T)^{-1} S (s1_H + T)^{-1} ds$$

for T, S > 0.

If $p:[0,1]\to\mathbb{R}$ is monotonic nondecreasing on [0,1], then by (2.18) we get (3.9)

$$0 \le \int_{0}^{1} p(t) \ln ((1-t)A + tB) dt - \int_{0}^{1} p(t) dt \int_{0}^{1} \ln ((1-t)A + tB) dt$$

$$\le \frac{1}{8} [p(1) - p(0)]$$

$$\times \sup_{t \in (0,1)} \left\| \int_{0}^{\infty} (s1_{H} + (1-t)A + tB)^{-1} (B-A) (s1_{H} + (1-t)A + tB)^{-1} ds \right\| 1_{H}$$

and if p is differentiable on (0,1), then

$$0 \leq \int_{0}^{1} p(t) \ln ((1-t)A + tB) dt - \int_{0}^{1} p(t) dt \int_{0}^{1} \ln ((1-t)A + tB) dt$$

$$\leq \frac{1}{12} \sup_{t \in (0,1)} p'(t)$$

$$\times \sup_{t \in (0,1)} \left\| \int_{0}^{\infty} (s1_{H} + (1-t)A + tB)^{-1} (B-A) (s1_{H} + (1-t)A + tB)^{-1} ds \right\| 1_{H}$$
for $0 < A \leq B$.

References

- [1] P. L. Chebyshev, Sur les expressions approximatives des intègrals définis par les outres prises entre les même limites, *Proc. Math. Soc. Charkov*, **2** (1882), 93-98.
- [2] J. I. Fujii, Y. Seo, On parametrized operator means dominated by power ones, Sci. Math. 1 (1998) 301–306.
- [3] T. Furuta, Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation, *Linear Algebra and its Appli*cations 429 (2008) 972–980.
- [4] G. Grüss, Über das Maximum des absoluten Betrages von $\frac{1}{b-a}\int_a^b f(x)g(x)dx \frac{1}{(b-a)^2}\int_a^b f(x)dx \int_a^b g(x)dx$, Math. Z., 39(1935), 215-226.
- [5] A. Lupaş, The best constant in an integral inequality, Mathematica (Cluj, Romania), 15 (38)
 (2) (1973), 219-222
- [6] E. Heinz, Beiträge zur Störungsteorie der Spektralzerlegung, Math. Ann. 123 (1951) 415-438.
- [7] K. Löwner, Über monotone MatrixFunktionen, Math. Z. 38 (1934) 177-216.
- [8] F. Kubo, T. Ando, Means of positive linear operators, Math. Ann. 246 (1980) 205-224.
- [9] A. M. Ostrowski, On an integral inequality, Aequat. Math., 4 (1970), 358-373.
- [10] G. K. Pedersen, Operator differentiable functions. Publ. Res. Inst. Math. Sci. 36 (1) (2000), 139-157.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-SRAND,, JOHANNESBURG, SOUTH AFRICA.