SOME INTEGRAL INEQUALITIES FOR OPERATOR
MONOTONIC FUNCTIONS ON HILBERT SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Let f be an operator monotonic function on I and A, B € SA; (H),
the class of all selfadjoint operators with spectra in I. Assume that p: [0,1] —
R is non-decreasing on [0,1]. In this paper we obtained, among others, that
for A < B and f an operator monotonic function on I,

1 1 1
og/o p(t)f((l—t)A+tB)dt—/O p(t)dt/o F(A—t)A+tB)dt

<3 () —pO]1f (B) - £ (4)]

in the operator order.
Several other similar inequalities for either p or f is differentiable, are also
provided. Applications for power function and logarithm are given as well.

1. INTRODUCTION

Consider a complex Hilbert space (H, (-, -}). An operator T is said to be positive
(denoted by T > 0) if (T'z,z) > 0 for all z € H and also an operator T is said to
be strictly positive (denoted by T' > 0) if T is positive and invertible. A real valued
continuous function f(¢) on (0, c0) is said to be operator monotone if f(A) > f(B)
holds for any A > B > 0.

In 1934, K. Lowner [7] had given a definitive characterization of operator monotone
functions as follows:

Theorem 1. A function f : (0,00) — R is operator monotone in (0,00) if and
only if it has the representation

f(t)=a+bt+/ooot+sdm(s)

where a € R and b > 0 and a positive measure m on (0,00) such that

/ °° dm (s)
< o0
0 t + s
We recall the important fact proved by Lowner and Heinz that states that the

power function f : (0,00) — R, f (¢) = t* is an operator monotone function for any
a€[0,1].
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In [3], T. Furuta observed that for a; € [0,1], j = 1, ...,n the functions

-1
n

g(t) = Zf&j and h(t) = Z (L+t71)™"

Jj=1

are operator monotone in (0, 00).

Let f(t) be a continuous function (0,00) — (0,00). It is known that f(¢) is
operator monotone if and only if g(¢) =t/ f(t) =: f*(t) is also operator monotone,
see for instance [3] or [8].

Consider the family of functions defined on (0,00) and p € [-1,2]\ {0,1} by

p—1/ tr—1
fp (1) ::p<tp—1—1>

t

fo(t) == 1 7tlnt,

and

t—1
fi(®) = T (logarithmic mean).

We also have the functions of interest

f-1(t)

=111 (harmonic mean), fy/5 (t) = V/t (geometric mean).

In [2] the authors showed that f,, is operator monotone for 1 < p < 2.
In the same category, we observe that the function

t—1
gp () == w1

is an operator monotone function for p € (0, 1], [3].
It is well known that the logarithmic function In is operator monotone and in [3]
the author obtained that the functions

f(t):t(1+t)1n<1+1>,g(t): !

(1+t)n(1+1)

are also operator monotone functions on (0, c0) .

Let f be an operator monotonic function on I and A, B € SA; (H), the class
of all selfadjoint operators with spectra in I. Assume that p : [0,1] — R is non-
decreasing on [0, 1]. In this paper we obtain, among others, that for A < B and f
an operator monotonic function on I,

1 1 1
og/O p(t)f((lft)AthB)dtf/O p(t)dt/o F(A—t)A+tB)dt
< 1l = p(O)][f (B)— 1 (4)

in the operator order.
Several other similar inequalities for either p or f is differentiable, are also pro-
vided. Applications for power function and logarithm are given as well.
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2. MAIN RESULTS

For two Lebesgue integrable functions h, g : [a,b] — R, consider the Cebysev

functional:
21) /h Bt — _a/ Wt dt—/ g()dt.

It is well known that, if h and g have the same monotonicity on [a, ], then

(2.2) b_a/ h(t)g(e)dt > _a/ Bt dt—/ g()dt,

which is known in the literature as Cebysev’s inequality.
In 1935, Griiss [4] showed that

(2.3) IC(hg)l < 5 (M m) (N —n),
provided that there exists the real numbers m, M, n, N such that
(2.4) m<h(@t)<M and n<g(t)<N forae t€c]alb.

The constant i is best possible in (2.1) in the sense that it cannot be replaced by
a smaller quantity.

Let f be a continuous function on I. If (A,B) € SA;(H), the class of all
selfadjoint operators with spectra in I and ¢ € [0, 1], then the convex combination
(1 —t) A+tB is a selfadjoint operator with the spectrum in I showing that SA; (H)
is a convex set in the Banach algebra B (H) of all bounded linear operators on H.
By the continuous functional calculus of selfadjoint operator we also conclude that
f((1—=t) A+tB) is a selfadjoint operator in B (H).

For A, B € SA; (H), we consider the auxiliary function (4 gy : [0,1] — B(H)
defined by

(2.5) Yap @) =f((1-t)A+1tB).

For z € H we can also consider the auxiliary function ¢4 py,, : [0,1] — R defined
by

(26)  pame ® = (pom O za) = (F(1-) A+tB)z,z).

Theorem 2. Let A, B € SA;(H) with A < B and f an operator monotonic
function on I. pr : [0,1] — R is monotonic nondecreasing on [0,1], then

1—t)A+tB)dt—/lp(t)dt/lf((l—t)A+tB)dt
0 0

IN

i 1) = p(O)][F (B) ~ f (A)].

If p:[0,1] — R is monotonic nonincreasing on [0,1], then
1
<l

((1—t)A+tB)dt—/1p(t)f((1—t)A+tB)dt

0

p(0) — p(l)] [f (B) = f(A)].
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Proof. Let 0 <t; <ty <1and A< B. Then
(1—te) A+taB—(1—t1)A—t;B=(ta—t1) (B—A) >0
and by operator monotonicity of f we get
f((1=t2) A+tB) > f((1—t1) A+t B),
which is equivalent to
P(a,B) (t2) = (f (1 —t2) A+ 12B) z,x)
2 (f(I=t) A+ t1B)x,x) = ¢ By (t1)

that shows that the scalar function ¢4 p),, : [0,1] — R is monotonic nondecreasing
for A < B and for any = € H.
If we write the inequality (2.2) for the functions p and ¢4 p),, we get

/p(t)(f((l—t)A+tB)m7:r>dt2/ p(t)dt/ (F((1—t) A+ tB) ) dt,
0 0 0

which can be written as

<</01p(t)f((1—t)A+tB)dt> xx>
> ([ v [ 1@ -0a+8) )

for z € H, and the first inequality in (2.7) is obtained.
We also have that
(f(A)z,) = ©aB)(0) <eunp).t)=((1-1)A+iB)z )
< P(A,B) (1) - <.f (B) Z, LL’>
and

p(0) <p(t) <p(1)

=

for all t € [0,1].
By writing Griiss’ inequality for the functions (4 p),, and p, we get

1
0< [ O (1=t A+ B0
—/1p(t)dt/1<f((1—t)A+tB)x,x)dt
0 0

1
< 7@ =pO][f (B)z,z) - (f (4) z,2)]
for x € H and the second inequality in (2.7) is obtained. O

A continuous function g : SA; (H) — B (H) is said to be Gdteaux differentiable
in A € SA; (H) along the direction B € B(H) if the following limit exists in the
strong topology of B (H)

(2.9) Vga (B) := liH(l)
If the limit (2.9) exists for all B € B(H ), then we say that g is Gateaux differentiable

in A and we can write g € G (A). If this is true for any A in an open set S from
SA; (H) we write that g € G (S).
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If g is a continuous function on I, by utilising the continuous functional calculus
the corresponding function of operators will be denoted in the same way.
For two distinct operators A, B € SA; (H) we consider the segment of selfadjoint
operators
[A,B]:={(1—-¢t)A+tB |te[0,1]}.
We observe that A, B € [A, B] and [A,B] C SA; (H).

Lemma 1. Let f be a continuous function on I and A, B € SA; (H), with A # B.
If f € G([A, B]), then the auxiliary function ¢4 py is differentiable on (0,1) and

(2.10) Ylap) () =Vfa-narn (B—A).
In particular,

and

(2.12) gp’(&B) (1-)=Vfs(B-A4).

Proof. Let t € (0,1) and h # 0 small enough such that ¢t + h € (0,1). Then
Yap) E+h)—puap ()

(2.13) -
Cf((—t—h)A+(t+h)B)— f((1—t)A+tB)
B h
(A=) A+tB+h(B—A)—f((1—1)A+1tB)
- : .

Since f € G ([A, B]), hence by taking the limit over A — 0 in (2.13) we get
oy PAB) (t+h) —pun @)

Plap) () = }Ll_m 3
_ f(A-t)A+tB+h(B—A))—f((1-t)A+1tB)
- hlil%) h

= Vf(lft)A+tB (B - A) )
which proves (2.10).
Also, we have
h) — 0
lim P(A,B) (h) P(A,B) (0)
h—0+ h
f(A—h)A+hB)— f(4)

P(a,p) (0+)

= Vfa(B-A4)

since f is assumed to be Gateaux differentiable in A. This proves (2.11).
The equality (2.12) follows in a similar way. |

Lemma 2. Let f be an operator monotonic function on I and A, B € SA; (H),
with A< B, A# B. If f € G([A, B]), then

(214) vf(l_t)A+tB (B — A) Z 0 fOT all t c (0, 1) .
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Also
(2.15) Vfa(B—A), Vfp(B—A)=>0.
Proof. Let x € H. The auxiliary function ¢4 p),, i monotonic nondecreasing in

the usual sense on [0, 1] and differentiable on (0,1), and for ¢ € (0, 1)

. (pA,B ,m(t+h)_(pA,B ,a:(t)
) <<P(A,B) (t+h)—ap () >
= z,x

h
<1. ap) E+h) = p () >
= ( lim T, T
h—0 h

=(Vfa-tyattp (B—A)z,x).
This shows that

Vfa-tyars (B—A)>0
for all t € (0,1).
The inequalities (2.15) follow by (2.11) and (2.12). O

The following inequality obtained by Ostrowski in 1970, [9] also holds
1
(2.16) € (hyg)l < 5 (b—a) (M =m) gl

provided that h is Lebesgue integrable and satisfies (2.4) while g is absolutely con-
tinuous and ¢’ € Lo [a,b]. The constant £ is best possible in (2.16).

Theorem 3. Let A, B € SA;(H) with A < B, f be an operator monotonic
function on I and p : [0,1] — R monotonic nondecreasing on [0,1].

(i) If p is differentiable on (0,1), then
1 1 1
. —t)A+tB)dt — d —t)A+tB)d
@1 o< [por-nasma— [ poa [ f1-na+ma

<Ly r® - 1),

3 t€(0,1)
(ii) If f € G([A, B]), then

1 1 1
(2.18) Og/op(t)f((l—t)AthB)dtf/O p(t)dt/o F(A—t)A+tB)dt

1
< 3 [p(1) —p(0)] sup va(lft)AthB (B - A)H 1g.
te(0,1)

Proof. Let z € H. If we use the inequality (2.16) for g = p and h = ¢4 p),,, then
1
0< / p@) (f(1—t)A+tB)z,x)dt
0
1 1
f/ p(t)dt/ (f(1—t)A+tB)zx,z)dt
0 0

<5 sw o O (B)a.a) ~ (f (A)w,2)],

te(0,1)

for any = € H, which is equivalent to (2.17).
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If we use the inequality (2.16) for h = p and g = ¢4 p),, then by Lemmas 1 and
2

(2.19) Og/lp(t)<f((1t)A+tB):r,x>dt
0

1

p(t)dt/ol (F((1—t)A+tB)a,z)dt

< < [p(1) =p(0)] sup <vf(17t)A+tB (B—A) 39755> )

t€(0,1)

0|~ S—~—0,

for any = € H, which is an inequality of interest in itself.
Observe that for all ¢ € (0,1),

(Vfa-tyares (B—A)z,z) < ||Via—naps (B —A)| ||
for any x € H, which implies that

(2.20)
sup <Vf(17t)A+tB (B —A) 95737> < sup va(lft)AthB (B - A)H <1H37a CE>
te(0,1) t€(0,1)

for any =z € H.
By making use of (2.19) and (2.20) we derive

og/o p@) (f(1—t)A+tB)z,z)dt

1 1
_/ p(t)dt/ (f (1 =) A+1tB)z, ) dt

0 0
1
< S [p(1) —p(0)] sup va(lft)A+tB (B - A)H gz, )
te(0,1)
for any « € H, which is equivalent to (2.18). O

Another, however less known result, even though it was obtained by Cebysev in
1882, [1], states that

1
(2.21) 1C (hg)l < 75 11l 1191l (b = a)’,

provided that A, g’ exist and are continuous on [a, b] and [|A'||, = sup;c(q 4 |2 ()]
The constant 1—12 cannot be improved in the general case.

The case of euclidean norms of the derivative was considered by A. Lupas in [5]
in which he proved that

1
(2.22) € (hg)l < —5 [INllz lg'll (b= a),

provided that h, g are absolutely continuous and &', ¢’ € Ls [a, b] . The constant 2
is the best possible.

Using the above inequalities (2.21) and (2.22) and a similar procedure to the one
employed in the proof of Theorem 3, we can also state the following result:

Theorem 4. Let A, B € SA; (H) with A < B, [ be an operator monotonic func-
tion on I and p : [0,1] — R monotonic nondecreasing on [0,1]. If p is differentiable
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and f € G([A, B)]), then

1 1 1
(2.23) Og/o p(t)f((l—t)A—i—tB)dt—/O p(t)dt/o F((1l=t)A+tB)dt
<= swp J (1) s |Vfa-pape(B-A)|1a
12 4e(0,1) t€(0,1)

and

(2.24) 0</Olp(t)f((l—t)A+tB)dt—/Olp(t)dt/olf((l—t)A+tB)dt
1/2

< % (/01 IAGE dt)l/Q (/01 IV fa—tyatis (B — A)H2 dt) 1,

provided the integrals in the second term are finite.

3. SOME EXAMPLES

We consider the function f : (0,00) — R, f(t) = —t~! which is operator
monotone on (0,00).

If 0 < A< Bandp:|[0,1] — R is monotonic nondecreasing on [0, 1], then by
(2.7)

1

1 1
31) 0< p(t)dt/o ((1—t)A+tB)*1dt—/0 p)(1—t)A+tB) "t

= S5—

A

<zPp@-pO) (AT -BT).

Moreover, if p is differentiable on (0,1), then by (2.17) we obtain

1

(3.2) Og/lp(t)dt/l((1—t)A+tB)_1dt—/ p() (1= 1) A+tB) " dt

0 0 0

1
<< sup p'(t) (A" =B7).
8 te(0,1)

The function f(t) = —t~! is operator monotonic on (0,0), operator Gateaux
differentiable and

Vir(S) =TT

for T, S > 0.
If p: [0,1] — R is monotonic nondecreasing on [0,1], then by (2.18) we get

(3.3) 0</01p(t)dt/01((1—t)A+tB)1dt—/01p(t)((1—t)A+tB)ldt

< 5 b= p(O)

X sup H((1—t)A+tB)*1 (B — A) ((1—t)A+tB)*1H1H
t€(0,1)

for 0 < A< B.
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If p is monotonic nondecreasing and differentiable on (0, 1), then by (2.23) and
(2.24) we get

1 1 1
(3.4) 0§/0p(t)dt/0 (1—t)A+1tB) dt—/op(t)((l—t)A—i—tB) dt

1
< — sup p (¢)
12 t€(0,1)

< s H((l —H)A+tB) (B A)(1-t) A+ tB)*H .

and

(3.5) 0</01p(t)dt/1((1—t)A+tB)1dt—/01p(t)((1—t)A+tB)ldt

0
<L ([wors)”
1/2

y (/01 l@-nav)y B-a@-na+ tB)—1H2dt> L,

for 0 < A< B.

We note that the function f(¢) = Int is operator monotonic on (0, c0) .

If 0 < A< Bandp:[0,1] — R is monotonic nondecreasing on [0,1], then by
(2.7) we have

(3.6) Og/Olp(t)ln((l—t)A+tB)dt—/Olp(t)dt/olln((l—t)A+tB)dt

1
<7Pp@-pO](InB-Ind).
Moreover, if p is differentiable on (0,1), then by (2.17) we obtain

(3.7) 0</Olp(t)ln((l—t)A+tB)dt—/Olp(t)dt/olln((l—t)A+tB)dt

< 1 sup p' (t)(InB —1InA).
t€(0,1)

The In function is operator Gateaux differentiable with the following explicit
formula for the derivative (cf. Pedersen [10, p. 155]):

(3.8) Ving (S) = /OOO (slg +T) " S(slyg +T) " ds

for T, S > 0.
If p: [0,1] — R is monotonic nondecreasing on [0,1], then by (2.18) we get

(3.9)
og/ p(t)ln((l—t)A+tB)dt—/

0 0

1

p(t)dt/lln((l—t)A+tB)dt

0

< b -p(O)

X sup 1y

te(0,1)

/OO (slg+(1—t)A+tB) ' (B—A)(sly + (1 —t) A+tB) " ds
0
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and if p is differentiable on (0, 1), then
(3.10)

Og/op(t)ln((l—t)A—i—tB)dt—/op(t)dt/o In((1— ) A+ tB) dt

()

—_— sup p
12 4e(0,1)

X sup / (514 (1—t) A+1B) " (B A) (sly+ (1— ) A+ tB) “ds| 1n
t€(0,1) 0
for 0 < A< B.
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