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Abstract In [3] ; Feng Qi has presented a sharp inequality between the sum
of squares and the exponential of the sum of a nonnegative sequence. His
result has been extended to more general power sums by H. N. Shi [4; 5],
and independently by B. Belaïdi, A. El Farissi and Z. Latreuch [1; 2]. In
this note we give some inequalities between the exponential of the sum and
product of power of a nonnegative sequence. We also give a simple proof of
Arithmetic-Geometric-Harmonic means inequality.
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1 Introduction and main results

For our own convenience, we introduce the following notations:

[0;1)n 4
= [0;1)� [0;1)� � � � � [0;1)| {z }

n times

(1.1)

and
(0;1)n 4

= (0;1)� (0;1)� � � � � (0;1)| {z }
n times

(1.2)
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for n 2 N; where N denotes the set of all positive integers.

The following inequalities are due to Feng Qi ([3]).

Theorem A For (x1; x2; :::; xn) 2 [0;1)n and n > 2, inequality

e2

4

nX
i=1

x2i � exp
 

nX
i=1

xi

!
(1.3)

is valid. Equality in (1:3) holds if xi = 2 for some given 1 6 i 6 n and
xj = 0 for all 1 6 j 6 n with j 6= i: Thus, the constant e2

4
in (1:3) is the best

possible.

Theorem B Let fxig1i=1 be a nonnegative sequence such that
1P
i=1

xi < 1.
Then

e2

4

1X
i=1

x2i � exp
 1X
i=1

xi

!
: (1.4)

Equality in (1:4) holds if xi = 2 for some given i 2 N and xj = 0 for all
j 2 N with j 6= i:Thus, the constant e2

4
in (1:4) is the best possible.

Recently, Theorems A, B have been generalized to sum of power as
follows (see [1] ; [2] ; [4] ; [5]) :

Theorem C Let p > 1 be a real number. For (x1; x2; :::; xn) 2 [0;1)n and
n > 2; the inequality

ep

pp

nX
i=1

xpi � exp
 

nX
i=1

xi

!
(1.5)

is valid. Equality in (1:5) holds if xi = p for some given 1 6 i 6 n and
xj = 0 for all 1 6 j 6 n with j 6= i: Thus, the constant ep

pp
in (1:5) is the best

possible.

Theorem D Let fxig1i=1 be a nonnegative sequence such that
1P
i=1

xi < 1
and p > 1 be a real number. Then

ep

pp

1X
i=1

xpi � exp
 1X
i=1

xi

!
: (1.6)
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Equality in (1:6) holds if xi = p for some given i 2 N and xj = 0 for all
j 2 N with j 6= i: Thus, the constant ep

pp
in (1:6) is the best possible.

In this paper we will establish the following inequalities.

Theorem 1.1 Let (p1; p2; :::; pn) 2 (0;1)n (n > 1). For (x1; x2; :::; xn) 2
[0;1)n and n > 1; the inequality

exp

 
nX
i=1

xi

!
�
exp

�
nP
i=1

pi

�
nQ
i=1

ppii

nY
i=1

xpi�(i) (1.7)

is valid for all permutations � (i) of f1; 2; :::; ng. Equality in (1:7) holds if

x�(i) = pi for all 1 6 i 6 n: Thus, the constant
exp

�
nP
i=1

pi

�
nQ
i=1

p
pi
i

in (1:7) is the best

possible.

Theorem 1.2 Let (y1; y2; :::; yn) 2 (0;1)n ; (x1; x2; :::; xn) 2 (0;1)n (n > 1) :
Then, we have

nY
i=1

yyii x
xi
i �

nY
i=1

yxi�(i)x
yi
�(i) (1.8)

for all two permutations � (i) ; � (i) of f1; 2; :::; ng.

Theorem 1.3 Let (x1; x2; :::; xn) 2 (0;1)n (n > 1) and (p1; p2; :::; pn) 2
(0;1)n (n > 1) such that

nP
i=1

pi = 1: Then, we have

nX
i=1

pixi �
nY
i=1

xpii : (1.9)

Setting pi = p (i = 1; :::; n) in Theorem 1.1, we obtain:

Corollary 1.1 Let p > 0 and (x1; x2; :::; xn) 2 [0;1)n (n > 1): Then, the
inequality

exp

 
nX
i=1

xi

!
� enp

pnp

nY
i=1

xp�(i) (1.10)
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is valid for all permutations � (i) of f1; 2; :::; ng. Equality in (1:10) holds if
xi = p for all 1 6 i 6 n: Thus, the constant enp

pnp
in (1:10) is the best possible.

Corollary 1.2 (Arithmetic-Geometric-Harmonic means inequality). Let
(x1; x2; :::; xn) 2 (0;1)n (n > 1): Then, we have

1

n

nX
i=1

xi �
 

nY
i=1

xi

! 1
n

� n
nP
i=1

1
xi

: (1.11)

Corollary 1.3 Let (y1; y2; :::; yn) 2 (0;1)n ; (x1; x2; :::; xn) 2 (0;1)n (n >
1). If

nP
i=1

xi =
nP
i=1

yi; then we have

nY
i=1

xxii �
nY
i=1

yxi�(i) (1.12)

for all permutations � (i) of f1; 2; :::; ng.

Corollary 1.4 Let (x1; x2; :::; xn) 2 (0;1)n (n > 1): Then, we have
nY
i=1

xxii �
nY
i=1

xxi�(i) (1.13)

for all permutations � (i) of f1; 2; :::; ng.

Corollary 1.5 Let (x1; x2; :::; xn) 2 (0;1)n (n > 1): Then, we have

nY
i=1

xxii �
 
1

n

nX
i=1

xi

! nP
i=1

xi

�
 

nY
i=1

xi

! 1
n

nP
i=1

xi

: (1.14)

2 Lemma

Lemma 2.1 Let p > 0 be a real number and x > 0. Then, the inequality

ex � ep

pp
xp (2.1)
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is valid. Equality in (2:1) holds if x = p. Thus, the constant ep

pp
in (2:1) is

the best possible.

Proof. It is clearly that for all t � �1; we have et � t + 1: So, if we put
t = x

p
� 1; then we get (2:1).

3 Proof of Theorems

Proof of Theorem 1.1 Let (x1; x2; :::; xn) 2 (0;1)n (n > 1): By Lemma
2.1, for all permutations � (i) of f1; 2; :::; ng and pi > 0 (1 6 i 6 n), we have

ex�(i) � epi

ppii
xpi�(i);

which implies that
nY
i=1

ex�(i) �
nY
i=1

epi

ppii
xpi�(i):

Then, we can write

exp

 
nX
i=1

xi

!
�
exp

�
nP
i=1

pi

�
nQ
i=1

ppii

nY
i=1

xpi�(i): (3.1)

Proof of Theorem 1.2 Let (y1; y2; :::; yn) 2 (0;1)n ; (x1; x2; :::; xn) 2
(0;1)n (n > 1). By using Theorem 1.1, we have

exp

 
nX
i=1

xi

!
�
exp

�
nP
i=1

yi

�
nQ
i=1

yyii

nY
i=1

xyi�(i); (3.2)

for all permutations � (i) of f1; 2; :::; ng and

exp

 
nX
i=1

yi

!
�
exp

�
nP
i=1

xi

�
nQ
i=1

xxii

nY
i=1

yxi�(i) (3.3)
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for all permutations � (i) of f1; 2; :::; ng. By using (3:2) into (3:3) ; we get
(1:8) :

Proof of Theorem 1.3 Let (x1; x2; :::; xn) 2 (0;1)n (n > 1) and set � =
nQ
i=1

xpii : By Lemma 2.1, we have

epixi � epixpi :

It follows that

e

nP
i=1
pixi � e

nP
i=1
pi

nY
i=1

xpii = e
nY
i=1

xpii : (3.4)

Replacing xi with xi
�
in (3:4) ; we obtain

e

nP
i=1

pixi
� � e

nY
i=1

�xi
�

�pi
=

e
nQ
i=1

x
pi

i

�

nP
i=1
pi

= e:

Hence
nX
i=1

pixi � � =
nY
i=1

xpii : (3.5)

Proof of Corollary 1.2 Let (x1; x2; :::; xn) 2 (0;1)n (n > 1): By Theorem
1.3 for pi = 1

n
(i = 1; :::; n), we have

1

n

nX
i=1

xi �
 

nY
i=1

xi

! 1
n

: (3.6)

Replacing xi with
1

xi
in (3:6) ; we obtain

1

n

nX
i=1

1

xi
� 1�

nQ
i=1

xi

� 1
n

:

It follows that  
nY
i=1

xi

! 1
n

� n
nP
i=1

1
xi

: (3.7)
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Now using (3:6) and (3:7) ; we get (1:11) :

Proof of Corollary 1.3 Let (y1; y2; :::; yn) 2 (0;1)n ; (x1; x2; :::; xn) 2
(0;1)n (n > 1): By using Theorem 1.1, we have

exp

 
nX
i=1

yi

!
�
exp

�
nP
i=1

xi

�
nQ
i=1

xxii

nY
i=1

yxi�(i)

for all permutations � (i) of f1; 2; :::; ng. Using the fact that
nP
i=1

xi =
nP
i=1

yi;

then we get (1:12) :

Proof of Corollary 1.4 This can be concluded by letting xi = yi in Corol-
lary 1.3.

Proof of Corollary 1.5 By letting yi = 1
n

nP
i=1

xi (i = 1; :::; n) in Corollary

1.3, we obtain

nY
i=1

xxii �
 
1

n

nX
i=1

xi

! nP
i=1

xi

: (3.8)

Now by Corollary 1.2, we have

1

n

nX
i=1

xi �
 

nY
i=1

xi

! 1
n

:

It follows that  
1

n

nX
i=1

xi

! nP
i=1

xi

�
 

nY
i=1

xi

! 1
n

nP
i=1

xi

: (3.9)

By (3:8) and (3:9) ; we get (1:14) :

References
[1] B. Belaïdi, A. El Farissi, Z. Latreuch, Inequalities between the sum of
power and the exponential of sum of nonnegative sequence, RGMIA Research
Report Collection, 11(1), Art. 6, 2008, 6 pp.

7



[2] B. Belaïdi, A. El Farissi, Z. Latreuch, On open problems of F. Qi. JIPAM,
J. Inequal. Pure Appl. Math. 10 (2009), no. 3, Article 90, 7 pp.
[3] F. Qi, Inequalities between the sum of squares and the exponential of sum
of a nonnegative sequence, J. Inequal. Pure and Appl. Math., 8 (3) (2007),
Art. 78, 5 pp.
[4] H. N. Shi, Solution of an open problem proposed by Feng Qi, RGMIA
Research Report Collection, 10 (4), Art. 9, 2007, 4 pp.
[5] H. N. Shi, A generalization of Qi�s inequality for sums, Kragujevac J.
Math. 33 (2010), 101�106.

8




