UPPER AND LOWER BOUNDS FOR AN INTEGRAL
TRANSFORM OF POSITIVE OPERATORS IN HILBERT SPACES
WITH APPLICATIONS

SILVESTRU SEVER DRAGOMIR1!:2

ABSTRACT. For a continuous and positive function w(A), A > 0 and p a
positive measure on (0, 00) we consider the following integral transform

D () (1) = [0 ) A+ 1) ),

where the integral is assumed to exist for T" a positive operator on a complex
Hilbert space H.

In this paper we show, among others that, if the positive operators A, B
satisfy the separation condition

0<a<A<B<y<B<$§

for some positive constants «, 3, v, 4, then

0< 3= [P w.) (8) = D . ) ()

<D (w,0) (4) = D (w,) (B) £ 7= D (w,) (0) = D (w.10) (7).
If A, B> 0 with ||A||||[B7}|| < 1, then

L ABH e
(Bl = [AD 1B (D (w, ) (I1AN) = D (w, ) (IIBIN)]

<D (w,p) (A) = D(w,p) (B)
Bl A= -1 1 —1y-1 _1)-1
< B =Ly ) [ ) (14 17) =~ D (151 7)].
e =) sl
Some natural applications for operator monotone and operator convex func-
tions are also given.
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1. INTRODUCTION

Consider a complex Hilbert space (H, (-,-)). An operator T is said to be positive
(denoted by T > 0) if (T'z,z) > 0 for all z € H and also an operator T is said to
be strictly positive (denoted by T' > 0) if T is positive and invertible. A real valued
continuous function f on (0,00) is said to be operator monotone if f(A) > f(B)
holds for any A > B > 0.

We have the following representation of operator monotone functions [10], see
for instance [1, p. 144-145]:
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Theorem 1. A function f : (0,00) — R is operator monotone in (0,00) if and
only if it has the representation

O tA
1.1 = -
(11) T A T
where a € R, b > 0 and a positive measure p on (0,00) such that
<A
1.2 — .
(1.2 | i <o

If f is operator monotone in [0,00), then a = f (0) in (1.1).

A real valued continuous function f on an interval I is said to be operator convex
(operator concave) on I if

(0C) F(A=XNA+AB) < ()1 =A)f(A)+Af(B)

in the operator order, for all A € [0,1] and for every selfadjoint operator A and B
on a Hilbert space H whose spectra are contained in I. Notice that a function f is
operator concave if — f is operator convex.

We have the following representation of operator convex functions [1, p. 147]:

Theorem 2. A function f : (0,00) — R is operator convex in (0,00) if and only if
it has the representation

12X
_ 2
(1.3) f@)=a+bt+ct +/O t—l—)\dﬂ()\)’

where a, b € R, ¢ > 0 and a positive measure p on (0,00) such that (1.2) holds. If
[ is operator convex in [0,00), then a = f(0) and b = f! (0), the right derivative,
in (1.1).

We have the following integral representation for the power function when t > 0,
r € (0, 1], see for instance [1, p. 145]

i co yr—1
pr—1 _ Sin (rm) / A D\
0

s A+t

Motivated by these representations, we introduce, for a continuous and positive
function w (A), A > 0, the following integral transform

(1.4) Dl @)= [ 5

where 4 is a positive measure on (0,00) and the integral (1.4) exists for all ¢ > 0.
For i the Lebesgue usual measure, we put

(1.5) D (w) (£) := /OOO W s 0.

dp(X), t>0,

A+t

Now, assume that 7" > 0, then by the continuous functional calculus for selfad-
joint operators, we can define the positive operator

(1.6) D) ()= [ wd) O+ 1) du (),
0
where w and p are as above. Also, when g is the usual Lebesgue measure, then

(1.7) D (w) (T) = /ooow(x) (A7) dx,
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for T > 0.
If we take p to be the usual Lebesgue measure and the kernel w, () = A" *,
r € (0,1], then
(1.8) et = ST sy @), > 0.
™

We define the upper incomplete Gamma function as [8]

I'(a, z) ::/ t* e tdt,

which for z = 0 gives Gamma function

I'(a) ::/ t*te~tdt for Rea > 0.
0
We have the integral representation [9)]

2%e 7 o0 tmae~t
1.9 I = dt
(1.9) (a,2) F(l—a)/o z+t

for Rea < 1 and |[phz| < 7.
Now, we consider the weight w.—a.— (A) :== A"% > for A > 0. Then by (1.9) we
have

oo Afae—)\
(1.10) D (W) (t) = / A AN =T - )T (0, 1)
0
fora <1 and t > 0.
For a = 0 in 1.10we get
0o —A
(1.11) D (w,-) () = / :Jr SdA = D(1)e'T(0,4) = ¢' By (1)
0
for t > 0, where
(1.12) B (t) = / ¢ du.
t u

Let a = 1 — n, with n a natural number with n > 0, then by (1.10) we have
o An71€_>\
(113) D (wa, ) (t) = / AN = T(n)en et T (1 =, t)
0 t+ A
= (n— 1" 1T (1 —n,t).

If we define the generalized exponential integral [6] by

e—t

. p—1 _ — ,p—1 007
E,(2)=2""T(1-p,z)==% /Z tpdt

then
t" 01 —n,t) = B, ()
forn>1and ¢t > 0.
Using the identity [6, Eq 8.19.7], for n > 2

(—Z)n_l e=% n—2

e

E,(2)=
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we get
(1.14) D (w.n-1,-) (¢)
=(n—1)e'E, (t)
=(n—1)lk! (_t)nilEl (t)+ 67_75 niz (n—k—=2)!(-t)"
(n—1)! (n—1)! P

(—D)" (n =k —2)1F + (—1)" "Lt By (1)
0

n

k=
forn>2and t > 0.
If T > 0, then we have

(1.15) D (w.-ae—) (T) = /Om A% A+ A" dA=T(1 —a)T “exp (T)['(a, T)

for a < 1.
In particular,

(1.16) D (we-.) (T) = /OOO e (T+N)""dr=exp (T) Ey (T)
and, for n > 2
(1.17) D (Won-10-) (£)

:/ AT Le M (T 4+ A) T dA
0

- ni: (1) (n — k = 21T% + (=1)" ' T" L exp (T) By (T),
k=0

where T > 0.
For n = 2, we also get

(1.18) D (w.o—) (T) = /OOO Ae (T + M) "1\ =1 — Texp (T) By (T)

for T > 0.
We consider the weight w(. ,)-1 (A) 1=
calculations, we get

1
Aa

for A > 0 and @ > 0. Then, by simple

o 1 Int—Ina
(1.19) D(w(,ﬂ)fl)(t) ::/0 crioTat = .

for all ¢ > 0 and ¢ > 0 with t # a.
From this, we get

Int=Ina+ (t —a)D ('U}(,_,’_a)fl) (t)

for all £, a > 0.
If T'> 0, then

(1.20) lnTzlna—i—(T—a)D(w(,Jra)_l) (t)

1na+(Ta)/Ooo
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Let a > 0. Assume that either 0 <T < a or T' > a, then by (1.21) we get

- < 1 _
1.21 In7T —Ina) (T —a 1:/ A+T)" A
(121) ( (M=)t = | s AT
We can also consider the weight w2 2y-1 (A) = /\Z#W for A > 0 and a > 0.
Then, by simple calculations, we get
o 1
D(w_a_)t::/ d)
(a0 | (A +1) (A +a?)
mt Int—1Ina

2 (12 +a2?) 2+ a2
for £ > 0 and a > 0.
For a = 1 we also have
& 1 mt Int
:D(w, 7)t::/ ) = -
(2411 ) (t) o A+t)(A\2+1) 2(2+1) 2+1

for t > 0.
If T'> 0 and a > 0, then

K
2a

[eS) 1 1
:/0 G (T

(1.22) T (1% + a2)71 — (In7T —Ina) (T° + a2)71

and, in particular,

T -1 -1 o 1 -1
1.23 “T(T?+1) — (T +1 lnT:/ < (A+T)" " dA.
( ) 2 ( ) ( ) o ()\2 + 1) ( )
Assume that 0 < A < B. We say that these operators are separated if there
exists 0 < S <~ysuchthat 0 < A< g <~v<B.
For a positive operator T' > 0, we have the operator inequalities ||T*1 Hfl <T<
|T||. Therefore, if A, B > 0 with [|A|/[[B~!|| <1, then

o<|a7Y <A< A< ||B7Y T <B<|BI.

The class of two separated positive operators play an important role in establish-
ing various refinements and reverses of operator Young inequalities as pointed out
in numerous recent papers from which we only mention [3], [13] and the references
therein.

In this paper we show, among others that, if the positive operators A, B satisfy
the separation condition

0<a<A<pB<y<B<LS

for some positive constants «, 3, v, d, then

= B1D (w,14) (8) — D (w, ) (6)

0=575
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If A, B> 0 with [|[A]| |[B7!|| <1, then

AL
aBET= A - 2 (@) (A =D (w.m) (IBI)]

<D (w, p) (A) =D (w, u) (B)

< =0 [ ) (117 ~ 2w (187417

0<

Some natural applications for operator monotone and operator convex functions
are also given.

2. MAIN RESULTS

In the following, whenever we write D (w, ;) we mean that the integral from
(2.3) exists and is finite for all ¢ > 0.

Lemma 1. For all A, B > 0 we have the representation

(2.1)  D(w,p)(A) =D (w,p)(B)
:/OO (/1 ()\+sB+(1—s)A)1(B—A)(A+sB+(1—s)A)1ds>
X wo()\) duo()\) .

Proof. Observe that, for all A, B >0

22) D) (B) - Dlw. ) () = [ Tom [0+ BT -0 du .

Let T, S > 0. The function f (t) = —t~! is operator monotone on (0, 00), operator
Gateaux differentiable and the Gateaux derivative is given by

f(T+1t5) - f(T)
t

Vir(S) = lim [ } =7 lsr!

for T, S > 0.

Consider the continuous function f defined on an interval I for which the cor-
responding operator function is Gateaux differentiable on the segment [C, D] :
{1—-¢t)C+tD, te€]0,1]} for C, D selfadjoint operators with spectra in I. We
consider the auxiliary function defined on [0, 1] by

fep (@) =f(1—-¢t)C+tD), te]0,1].
Then we have, by the properties of the Bochner integral, that

D)= £0)= [ 5 (en@de= [ Thugern (DO

If we write this equality for the function f (t) = —t~1 and C, D > 0, then we get
the representation

(2.3) Ccl'-Dl= /1 (1=t)C+tD) " (D-C)(1—t)C +tD) " dt
0
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Now, if we take in (2.3) C =X+ B, D = A+ A, then
A+B) ' —(A+4)7"
:/01((1—t)(>\+B)+t(A+A))_1(A—B)
X (1=t) A+ B)+t(A+ A) " dt
:/01 Ot (=) B+tA) " (A= B)(A+ (1— 1) B+tA) " dt
and by (2.2) we derive
D (w, 1) (A) = D (w, p) (B)
—/Ooow(x) (/01 ()\Jr(lt)BthA)l(BA)()\Jr(lt)B+tA)1dt> (),
which, by the change of variable t = 1 — s, gives (2.1). O

We have the following double inequality for two positive separated operators:

Theorem 3. If the positive operators satisfy the separation condition

(2.4) 0<a<A<pB<y<B<LS

for some positive constants o, B, 7y, 0, then

@5) 02 T2 (D) ()~ D (w0 (9) £ D (w. ) (4) = D (wo) (B)
< jjj (D (w, 1) (@) = D (w, 1) ()]

Proof. From (2.4) we have
0<y—B<B-A<{—aq,
which implies that

0<(v=B)((1—s)A+sB+\) "
<((1=8)A+sB+N) " (B=A)(1—s)A+sB+A)""
<@-a)(1—s)A+sB+A)2

for all s € [0,1] and A > 0.
By integration over s € [0, 1] we deduce

1
Og(yfﬂ)/o (1—s)A+sB+N)"2ds
g/1((1—s)A+sB+)\)_1(B—A)((l—s)/H—sB—l—)\)_lds
0

g(é—a)/()l((l—s)A+sB+)\)2ds

for all A > 0.



8 S.S. DRAGOMIR

If we multiply this inequality by w (\) > 0 and integrate over the measure p (\),
we get

0<(v—6)/000w(k) (/01((1—8)A+SB+A)2ds> dp (N)
</Ooow()\) (/01((1—5)A+SB+)\)1(B—A)((1—s)A+sB+)\)1ds> din (N)

<(5—a)/ooow()\) (/01((1—3)A+SB+>\)zds)dﬂ()\),

and, by (2.1) we derive the inequality of interest

(2.6) Og('y—ﬁ)/ooow()\)</0 ((1—s)A+sB+A)2ds>dﬂ(A)
<D (w,p) (A) = D(w,p) (B)

oo 1 L
< (5—a)/0 w (V) (/0 (1—s)A+sB+ ) ds) du (N
From (2.4) we derive that
(1-5)A+sB+A<(1—5)B+s6+A,
which implies that
(1—s)A+sB+XN) "> ((1—s)B+s5+N)""
and
(1—8)A+sB+X) 2> ((1—5)B+s0+A) "

for all s € [0,1] and A > 0.
Also

(1-5)A+sB+A>(1—-s)a+sy+A,
which implies that
(1—8)A+sB+N) "< (1—s)a+sy+A)""
and
(1—s)A+sB+XN) < ((1—s)a+sy+A)""

for all s € [0,1] and A > 0.
Therefore

(2.7) wm/ooow(x)(/ol«ls>ﬁ+s6+x>2ds)du<x>
<tr-8) [ ww (/01<<15>A+sB+A>2ds) ey

and

(2.8) (6—&)/00010()\) (/01((1—8)A+SB+)\)_2ds> di ()
s(é—a)/owwm (/01<(1—s>a+sv+A)‘2ds> dp () -
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(w—ﬁylwwcn(/d«l—@5+wa+xr2w)wun

0

and

waw«n(AWO—swuwv+»Wv—wal—@a+«v+»1d§du@>

= 220 () (@) = D () ()] (b (21),

v-a
then (2.7) and (2.8) become
29 FH P (®) - D) ©)
< (v—ﬁ)/ooow(x) (/0 ((1—5)A+sB+)\)2ds> du (N)
and
(2.10) 6 — ) /Ooow(x) (/O ((l—s)A+sB+)\)2ds) d ()
< 222 D () (@)~ D) ()],
Finally, on making use of (2.6), (2.9) and (2.10), we derive (2.5). O

Corollary 1. If A, B> 0 with || A ||B~!| < 1, then

L—JAl|B~"]
(211 0< g gt (P o) (1A1) =D (w, 1) (15

< D (w, ) (A) = D (w, p) (B)

1Bl A7 -1
AT = 1B
< [0 wo) (47 7) = Dw) (57 7)]

The proof follows by Theorem 3 on taking o = HA‘1H_1, B =|Al, vy =

|B~! ||71 and ¢ = ||B]| and performing the required calculations.
We can state the following result for operator monotone functions on [0, c0) :

1B~
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Proposition 1. Assume that f : [0,00) — R is an operator monotone function on
[0,00). If A, B > 0 satisfy condition (2.4), then

(2.12) =B B 5 - £ @5 - F(0) (B — 6]

3
FAYA? = f(B)B ' = f(0) (A" =B

S [f@at = £y - FO) ().

If £ (0) = 0, then we have the simpler inequality

2

4]
<

IN

er L@ @8] <fat - B s
e

<
e
Proof. If f :[0,00) — R is an operator monotone, then by (1.1)
0-10)_,_p

for some positive measure p, where £(\) = A, A > 0. By applying Theorem 3 for
the D (¢, 1) and performing the required calculations, we deduce (2.12). O

[fle@)a™ = f(n)r7].

0 (), >0

Corollary 2. Assume that f : [0,00) — R is an operator monotone function on
[0,00). If A, B> 0 with ||A| ||B7!|| < 1, then

L— Al B~1]

(B = TAD B
< [FAADIAIT = £ABNIBIT = £ (141 = 1817
STMAT = (BB = f(0) (A7 =B

1B [|A~] -1

S AT =18
£ (AT ) A= £ (1B ) 187
=L O (|A [ = [1B7HD)] -

If £ (0) = 0, then

(2.14) 0<

1B~

LAl L o
(2.15) 0 = An B L A IAIT = sash iz

< fA)AT - F(B) B!
IBI[A7] -1
— AT =B

S I B A el

The proof follows by Proposition 1 on taking o = HA_IH_l, B =|Al,~y=
B~ and 6 = ||B|.
We can state the following result for operator convex functions on [0, 00) :

1B~



UPPER AND LOWER BOUNDS FOR AN INTEGRAL TRANSFORM 11

Proposition 2. Assume that f : [0,00) — R is an operator convex function on
[0,00). If A, B > 0 satisfy condition (2.4), then

(2.16) ’g - 5
< [f(B)BZ=f(0)5 2= f0) (87 =677 = fL(0) (87 =571
SFAA?—f(B)B2-f(0)(A?=B7%) - fL(0) (A" =B
0—«
<

If £ (0) =0, then

i) I r@e 1) - o) (7 -0
S FAVA — F(B)B— [L(0) (A~ B
" @)~ ) - £ 0) (0 -],

Proof. If f :]0,00) — R is an operator convex function on [0, c0), then by (1.3) we
have that

f<t>*f<(t)g*f+<0>’ffc:me,u)(t),

for some positive measure u, where £(A) = A, A > 0. By applying Theorem 3 for
the D (¢, 1) and performing the required calculations, we deduce (2.12). O

Corollary 3. Assume that f : [0,00) — R is an operator monotone function on
[0,00). If A, B> 0 with ||A|| ||B~!]| <1, then

L— [ All|B~"
(IB1 = A BT
< [FUAI 1417 = B IBIT = £.0) (1417 = 181 7%)
£ (A = 1817 |

<FA) A= F(B)B2 = f(0) (A2 = B7%) — f,(0) (A7 - B7Y)

IBIA -1
< pa-ay 177

[ (AT At = s (1707 1B
~FO (A= 1B7P) = £ @ (Ja7 ] - 187 -

(2.18) 0<
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If £ (0) =0, then

L— A B~
(BI=TAD B
X LA AN = £ ABINIBIT = 74 ©) (Al = 181 7)]
<fA)A?—f(B)B?=fL(0) (A" =B

IB][[A7H] - 1
= A= 1B
<[ AP = o (1) s
= O (lA7H =187

3. SOME EXAMPLES

(219)  0<

1B~

Consider the operator monotonic function f (¢t) =¢", r € (0, 1]. If the condition
(2.4) is satisfied, then by (2.13) we get the power inequalities

Y- B r— r— r— r— d—a r— r—
(3.1) m(ﬁ ') <A -B 1gm(a Ly
If A, B> 0 with [|[A]| |B7!|| < 1, then by (2.15) we obtain
1- ||AH ||B_1H r—1 r—1
3.2 0< A —||B
(3:2) < TET=TAnE (4 - 18
S Ar—l _Br—l
1B lA~ -1

< gy B AT = s ).

Consider the operator convex function f (¢) = —In (¢ + 1) . If the condition (2.4)
is satisfied, then by (2.17) we get the logarithmic inequalities

(3.3) % 62 +1) - B Im(B+1)+8 " —6"]
<BZIm(B+1)-A2?Im(A+1)+A ' -B!
< j:‘; 2@ +1) - 2B+ 1) +p7 =671,
If A, B> 0 with |[|A] [[B~!|| <1, then by (2.19) we derive
L—[lAl ][~

B O B TAN B

X [IIBII‘QIH(HBII + 1) = [|A 7 I (A + 1) + AT - IIBII‘l}
<B?2In(B+1)-—A2mn(A+1)+ A -B7!

Bl A~ —1
AT =B
< (B 1) BT = A P (A7 1)
+{lATH = (1B

(=
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Assume that for a < 1. By taking

o

D(Wo-ae—)(T)= [ AN % E+N"d\=DT(1—a)T %exp(T)(a,T)

S~

in (2.5) we obtain

(35) 0< T8 (5" exp (5) (0, 8) — 6 exp () (a0
< A7 %exp (A)T(a, A) — B~ %exp (B)I'(a, B)
< 220 [ exp (@) P(a,a) ~ 9" exp (7) (e, )]

provided that the positive operators A, B satisfy condition (2.4).
In particular, we have

(3. 0< T2 o0 () EA(6) — exp (6) Ex 0)]
< exp (4) B1(4) ~ exp (B) Fu(B)
< 2= fexp () Ex(a) — exp (7) Ex(1)].

If A, B> 0 with [ A [[B~!|| <1, then
L[ All]|B~1]
(BT TAD B
x {417 exp (I A1) D@, [1A]) = I BI ™ exp (IBI) T(a, | BI)]
<A %exp(A)T(a,A) — B"%exp (B)I'(a, B)

IBI{[A~] -1
— AT =B

< [la7 " esp (47 ) Do

B e (13717 Ta B 7]

37  0<

1B~

A7)

In particular,

(3.8) 0< L1l 3~
— (B =NAD B

x [exp ([[A]]) Ev ([|A]]) — exp (I BI) E1 (/| B]])]
< exp (A) E1(A) — exp (B) E1(B)

Il |4~ -1
— AT =B

< Jexp (a7 7) Ea (A7) = oo (IB77) &0 (187 7) -

The interested author may state other similar inequalities by using the examples
of operator monotone functions from [2], [4] and the references therein.

1B~
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