SUBADDITIVITY OF AN INTEGRAL TRANSFORM FOR
POSITIVE OPERATORS IN HILBERT SPACES WITH
APPLICATIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. For a continuous and positive function w(A), A > 0 and p a
positive measure on (0, 00) we consider the following integral transform

D () (1) = [0 ) A+ 1) ),

where the integral is assumed to exist for T" a positive operator on a complex
Hilbert space H.
We show among others that, if B, A > 0, then
D (w,p) (A) + D (w, p) (B) 2 D (w, p) (A+ B),

namely D (w, p) is operator subadditive on (0,00) . From this we derive that, if
f :[0,00) — R is an operator monotone function on [0, 00), then the function
[f (t) — £ (0)]t~1 is operator subadditive on (0,00). Also, if f:[0,00) — R is
an operator convex function on [0, c0), then the function

[£(t) = £ (0) = f} (0)¢] 2
is operator subadditive on (0,00). Some examples for integral transforms
D (-,-) related to the exponential and logarithmic functions are also provided.

1. INTRODUCTION

Consider a complex Hilbert space (H, (-,-)). An operator T is said to be positive
(denoted by T > 0) if (T'z,z) > 0 for all z € H and also an operator T is said to
be strictly positive (denoted by T' > 0) if T is positive and invertible. A real valued
continuous function f on (0,00) is said to be operator monotone if f(A4) > f(B)
holds for any A > B > 0.

We have the following representation of operator monotone functions [6], see for
instance [1, p. 144-145]:

Theorem 1. A function f : (0,00) — R is operator monotone in (0,00) if and
only if it has the representation

Ot
1.1 t) = bt ——dp (A
(11) R A T
where a € R, b > 0 and a positive measure p on (0,00) such that
<A
1.2 ——du (\) < cc.
(1.2 | e <o

If f is operator monotone in [0,00), then a = f (0) in (1.1).
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A real valued continuous function f on an interval [ is said to be operator convex
(operator concave) on I if

(0C) F(A=XNA+AB) < (2)(1-X)f(A)+Af(B)

in the operator order, for all A € [0,1] and for every selfadjoint operator A and B
on a Hilbert space H whose spectra are contained in I. Notice that a function f is
operator concave if — f is operator convex.

We have the following representation of operator convex functions [1, p. 147]:

Theorem 2. A function f : (0,00) — R is operator convez in (0,00) if and only if
it has the representation

D)
t+ A

(oo}
(1.3) f(t) :a+bt+ct2+/ du (N,
0
where a, b € R, ¢ > 0 and a positive measure p on (0,00) such that (1.2) holds. If
[ is operator convex in [0,00), then a = f(0) and b = f! (0), the right derivative,
in (1.1).

Assume that A, B > 0. In the recent paper [7], Moslehian and Najafi showed
that AB+ BA is positive if and only if the following operator subadditivity property
holds

(1.4) f(A+B) < f(A)+[f(B)

for all nonnegative operator monotone functions on [0,00). For some interesting
consequences of this result see [7].

We have the following integral representation for the power function when ¢ > 0,
r € (0, 1], see for instance [1, p. 145]

: oo yr—1
=1 _ sin (rm) / A D
s 0 )\ +t

Motivated by these representations, we introduce, for a continuous and positive
function w (A), A > 0, the following integral transform

(15) D (w. 1) (1) = / Twl)

A+t
where p is a positive measure on (0, 00) and the integral (1.5) exists for all £ > 0.
For p the Lebesgue usual measure, we put

w ()

(1.6) D (w) (t) := /000 md)\, t>0.

dp (X)), t>0,

Now, assume that 7" > 0, then by the continuous functional calculus for selfad-
joint operators, we can define the positive operator

(1.7) D) ()= [ w0+ 7)™ du ().
where w and p are as above. Also, when g is the usual Lebesgue measure, then
(oo}
(18) D (w) (T) ;:/ W) (A1) d,
0

for T' > 0.
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If we take p to be the usual Lebesgue measure and the kernel w, () = A" *,
r € (0,1], then

(1.9) trt = WD(W) (t), t>0.

We define the upper incomplete Gamma function as [10]

I'(a,z):= / t* e tdt,
which for z = 0 gives Gamma function
I'(a) :z/ t*te~tdt for Rea > 0.
0

We have the integral representation [11]

2% o0 t—ap—t
1.10 (a,2) = dt
(1.10) @)= |

for Rea < 1 and |phz| < 7.
Now, we consider the weight w.—a.— (\) := A"% ™ for A > 0. Then by (1.10)
we have

[e'e] A—a -\
(1.11) D (W.—ae--) (t) = / ; _f)\ d\=T(1 —a)t™%e'T'(a,t)
0
fora <1 andt > 0.
For a =01in (1.11) we get
0o L=\
(1.12) D (w, ) (t) :/ LA = P()T(0,0) = ¢y (1)
0
for ¢t > 0, where
(1.13) By (t) = / ¢ _du.
.U

Let a = 1 — n, with n a natural number with n > 0, then by (1.11) we have

[e%s) )\n—le_)\

(1.14) D (w.n-1e-) (1) :/0 S
= (n— )" L1 — n,t).

d\ =T (n)t"'e'T(1 — n,t)

If we define the generalized exponential integral [12] by

e—t

E,(2):=2"'T(1—p,2) = zp_l/ t—pdt

then
t" 01— n,t) = B, (1)
forn>1and ¢t > 0.
Using the identity [12, Eq 8.19.7], for n > 2

(—Z)n_l e=% n—2

TR

E,(2)=
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we get

|
I\

(1.15) D (won-1o-.) (t) = S (=1)F (n— k= 2)1% + (—=1)" 1Lt By (1)
0

S
Il

forn > 2 and ¢t > 0.
If T > 0, then we have

(1.16) D (w.—ap-)(T) = /OOO A% M E+A) T HdA =T (1 —a)T “exp (T) I(a,T)

for a < 1.
In particular,

(1.17) D (w,.-.) (T) = /OOO e M T+ N dr=exp (T) By (T)

and, for n > 2
(1.18)

o0

D (won-10-.) (t) AL A (T 4+ A) T dA

I
TS~

[ V)

(=) (n—k = 2)T* + (—=1)" ' T Lexp (T) By (T),
0

b
Il

where T" > 0.
For n = 2, we also get

(1.19) D (w.-)(T) = /OOO A (T +A) LA =1 — Texp (T) Ey (T)

for T > 0.
We consider the weight wy. ,)-1 (A = )\—ia for A > 0 and a > 0. Then, by simple
calculations, we get

o 1 Int—Ina
(1.20) D(w(,ﬂ)q)(t)::/o oo T .

for all @ > 0 and ¢ > 0 with ¢ # a.
From this, we get

Int=Ina+ (t —a)D ('U}(,_,’_a)fl) (t)

for all ¢, a > 0.

If T > 0, then
(1.21) lnT:lnaJr(Tfa)D(w(_i_a)fl) (t)
o 1 .
—1 T A+ 1) dA
na+(=a) [ om0+ D)

Let a > 0. Assume that either 0 < T < a or T > a, then by (1.22) we get

02w = Mg

A+T)""dA.
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1

We can also consider the weight w2 ,2)-1 (A) := for A > 0 and @ > 0.

N ta?
Then, by simple calculations, we get
° 1
D(w_ afl)t;:/ d\
(a0 | (A +1) (A% +a?)
mt Int—Ina

2a (t2 + a?) 24 a2

for ¢t > 0 and a > 0.
For a = 1 we also have

o0 1 mt Int
'D(UJ(.2+1)*1) (t) ':/0 ()\+t) ()\2+1)d/\: 2(t2—|—1) B 241
for ¢ > 0.
If T >0 and a > 0, then
2 N1 (T 5 N > 1 -1
123  (P+a?) (oo lnT—I-lna)—/O G A0
and, in particular,
_ > 1
1.24 241 (Zr — T :/ A+ T) " 'dr
( ) ( +) (2 n) 0 ()\2+1)(+)

Motivated by the above results, we show among others that, if B, A > 0, then
D (w, p) (A) + D (w, p) (B) = D (w, p) (A+ B),

namely D (w, ) is operator subadditive on (0,00). From this we derive that, if
f :][0,00) — R is an operator monotone function on [0,00), then the function
[f (t) — f(0)]t~! is operator subadditive on (0,00). Also, if f : [0,00) — R is an
operator convex function on [0,00), then the function [f (¢t) — f(0) — f/ (0)¢] ¢~2
is operator subadditive on (0,00). Some examples for integral transforms D (-,-)
related to the exponential and logarithmic functions are also provided.

2. SUBADDITIVITY PROPERTY

The following operator subadditivity property holds:
Theorem 3. For all A, B > 0 we have
(2.1) D(w, 1) (A) + D(w, 1) (B) > D(w, u) (A+ B),
namely D(w, 1) is operator subadditive.
Proof. For all A, B > 0, by using the representation of D(w, i), we have
(22)  D(w, ) (A) + D(w, u) (B) = D(w, p) (A+ B)

- /Ooow(x) (A BN (A BN du .

For A > 0, define the operator

Kyi=(A+N "+ B+N"—(A+B+N".
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If we multiply both sides of K, with A+ B + A, then we obtain successively
(2.3) (A+B+ M\ Ky (A+B+))
—(A+B+NA+N " (A+B+))
+(A+B4+XN(B+N ' (A+B+)N)—-A—-B-2)
:(LuﬂA+m4)m+A+m
+Qu3+»*+4yA+B+»—A_B_A
—A+ A +B+B+B(A+)N'B
+AB+N A+ A+ A+B+A-A-B-)
=BA+N "'B+AB+N) "A+2(A+B)+A=:L,.
By multiplying both sides of (2.3) with (A + B+ )~ " we get
(2.4) Ky=(A+B+)A) "Ly(A+B+)\"".
We then have the representation
(2.5) D(w, p) (A) + D(w, u) (B) = D(w, 1) (A + B)
— [ ey
0
:/'wuﬂA+B+M4LmA+B+m*@un
0

for all A, B > 0.

Since A, B > 0 and A > 0, hence by the definition of L) we obtain that Ly > 0,
which, by (2.4) implies that K > 0 and multiplying with w (A) > 0 and integrating
over the measure p we deduce the desired result (2.1). O

Corollary 1. Assume that f : [0,00) — R is an operator monotone function on

[0,00). If A, B >0, then
(2.6) F(A)AT + f(B)B™' — f(A+B)(A+B)™"

zfmﬂA*+B4—m+Br1,

namely, the function [f (t) — f (0)]t~1 is operator subadditive on (0, 00).
In particular, if f(0) =0, then

(2.7) FAYA™ 4 f(B)B' > f(A+B)(A+B).
Proof. If f:[0,00) — R is an operator monotone, then by (1.1)

f(t) = f(0)

t _b:D(‘ga/u’)(t)vt>0

for some positive measure p, where £ (X) = A\, A > 0.
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By applying Theorem 3 for the D (¢, 1) and performing the required calculations,
we deduce

0 < D(w, p) (A) + D(w, 1) (B) = D(w, 1) (A + B)
[f(A) = FOA™ b+ [f(B) = F(0)] B~ —b
—[f(A+B) - ()](A+B)71+b

FA)AT + f(B)B™' = f(A+B)(A+B)™
—f(o)[A + B! (A+B)*1}—b,

for all A, B > 0, which gives that

FA)A + f(BYB™' — f(A+B)(A+B)™"

> f(0) (A + BT = (A+B) ) +b

> £(0) [A*l Y B (A+ B)’l]
for all A, B > 0 and the inequality (2.6) is obtained. O
Remark 1. If we take f (t) =t", r € (0,1] in (2.7), then we get the power inequality
(2.8) A 4 B > (A+ B!

for all A, B > 0.
If we take f(t) =In(t+ 1) in (2.7), then we get the logarithmic inequality

(2.9) A7'm(A+1)+B 'In(B+1)>(A+B) "In(A+B+1).

The interested author may state other similar inequalities by using the examples
of operator monotone functions from [2], [3] and the references therein.

Corollary 2. Assume that f : [0,00) — R is an operator convex function on [0, 00).
If A, B >0, then

(2.10) FAA 2+ f(BYB2—f(A+B)(A+B)?
> £(0) [A—2 Y B2 (A4 B)—Z]
+ £1(0) [A—l Bl (A+ B)*l} ,

namely, the function [f (t) — f(0) — f, (0)t] t=2 is operator subadditive on (0, 0).
If £ (0) =0, then

(2.11) FAA 2+ f(BYB2—f(A+B)(A+B)?
>0 [AT B - (a4 B) T

Proof. If f : [0,00) — R is an operator convex function on [0, c0), then by (1.3) we

have that
f@—f@—ﬁﬂm_czpmmw,

for some positive measure p, where £ (X) = A\, A > 0.
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By applying Theorem 3 for the D (¢, 1) and performing the required calculations,
we deduce

0 < D(w, )() D(w, )() D(w, )(A+B)
)

FA)AT2—[(0) A2 = fL(0) A" -

f(B)B ()B2 f()Bl—c
m+BMA+m2 FO(A+B) >+ (0)(A+B) " +e¢
FAA 2+ f(BYB2—f(A+B)(A+B)?

— O [A2 4B = (A+B) 7| - £ (0) [A + BT = (a4 B) | ¢

for all A, B > 0.
From this we get

FA)A + f(B)B™> — f(A+B)(A+B)™*
> £(0) {A*2+B 2_(A+B)” ]+f+ [ 4B ' —(A+B)” } c
> fO) [+ B2~ (A+ B) 2+ 7L (0) [A + BT - (a4 B)
which proves (2.11). O

Remark 2. Let a > 0 and p € [-1,0) U [L1,2]. Then for all A, B > 0 we have the
power inequality

(212) (A+a)’ A2+ (B+a)’ B>~ (A+B+a)(A+B)?
>a? |AT2+ B2 - (A+ B)‘Q} + paP~! [A*l +B (A4 B)‘l] .
We also have the logarithmic inequality
(2.13) (A+B) °’In(A+B+1)—A2In(A+1) - B2l (B+1)
>(A+B) '—Bl-A"!
for all A, B > 0.
Using the transform (1.16) we have for A, B > 0 that
(2.14) A %exp (A)T(a, A) + B~ %exp (B)I'(a, B)
> (A+ B) “exp(A+ B)I'(a, A+ B)

for a < 1.
In particular, we have

(2.15) exp (A) By (A) +exp (B) E1 (B) > exp(A+ B)Ey (A+ B)
and
(2.16) (A+ B)exp(A+ B)E, (A+ B) > 1+ Aexp(A) Ey (A)+Bexp(B) Eq (B)

for all A, B > 0.
Using the (1.22) we also have

(2.17) (InA—1Ina)(A—a) "+ (nB—Ina) (B—a)"
>(n(A+B)—Ina)(A+B—a)""
for all A, B > a > 0.
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3. REVERSE INEQUALITIES
We define the difference D (w, i) (-, ) for positive numbers ¢, s by
D (w, 1) (t,5) i= D(w, 1) (£) + D(w, 1) (5) — Dlaw, 1) (¢ +5) > 0
and the difference for positive operators A, B,
D (w, 1) (A, B) i= D(w, 1) (A) + D(w, 1) (B) — D(w, p) (A+ B) > 0

for a continuous and positive function w (A), A > 0, and p a positive measure on
(0, 00) such that the integral (1.5) exists for all £ > 0.
We also have the following reverse inequality:

Theorem 4. Assume that there exists positive constants c, 5, v and & such that
(3.1) O<a<A<Band0<y<B<LY.

Then

B+0
a+y

(32)  0<D(wpu)(AB) <D (w ) (a7) + ( - 1) D(w,p) (8 + ).
Proof. Observe that

A+N <@+ BT < (407!

and
B+3+N " <(A+B+A)"!
i.e.,
—(A4+B+XN) "< —(B+5+N",

which give

A+N "+ B+N ' —A+B+N!

<@+ T+ O+ =B+
namely

(A+N "+ (B+A) ' —(A+B+N)"!
<@+ N H AN (@t N T R @ty N T = (BN

for all A > 0.
If we multiply with w (A\) > 0 and integrate, then by (2.2) we get

D(w, 1) (A) + D(w, 1) (B) — D(w, ) (A + B)
< D(w, p) (@) + D(w, p) (v) = D(w, ) (@ + )
> -1 —1
+/0 w) [ty + 07 = B+ 0T du (),
namely
(33)  D(w,pu) (4, B) 1) (

<D (w,p) ()
+/0 w) [ty + 07 = @45+ 0 du ().
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Observe that

/Ooow(x) [(a+7+A)*1—(5+5+A)*1} dp ()

) /000 B [(a +i:i)_(g T )\)] di (V)

_ o > w (N)
=(B+i-a 7)/0 @ty +A) (B+o+A)
Observe that

dp (N).

! <
at+v7+A 7T a+7y

for A > 0,
which implies that

> w (M) A)
A (a+7+)\)(5+6+>\)du(>\)§a+7/o B+6+)\du()\)
— L D(w, ) (6+9).

a+y
Therefore
(3.4) / w(N) [(amﬂ)* - (5+5+>\)’1] du (V)
0
B+46
< (222 1) D 5 +9).
By making use of (3.3) and (3.4) we derive (3.2). O

The case of operator monotone functions is as follows:

Corollary 3. Assume that f : [0,00) — R is an operator monotone function on
[0,00) with f(0) =0. If A, B > 0 satisfy the condition (3.1), then

(3.5) 0<f(AA ' +f(B)B ' —f(A+B)(A+B)"
<f@a+f)y = flat)(@+y)!

p+4 -1
N C== e FICERICER)

Proof. From (3.2) we get for
f®)
t

—b=DU,p) ), t>0
for some positive measure p, where £ (A) = A, A > 0, that
0<f()A*+f@)"—ﬂA+BMA+BY1
fl@a +fmMy = flat+y)(@+y)
(51 - ) (1220
fla@ o™ + fMr = fla+y) (a+y)™

(b’ + ) f(B+9)

+ -1 )

o+ B+46

which proves the desired result (3.5). (]
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Remark 3. If A, B > 0 satisfy the condition (3.1) and r € (0, 1], then we have the
reverse power inequality

(3.6) 0<A'4+B'—(A+B)"

_ 0 _
B RV r—1 B+ _1> P
<a =Gk (2 1) o

The case of operator convex functions is as follows:

Corollary 4. Assume that f : [0,00) — R is an operator convex function on [0, 00)
with f(0) =0. If A, B > 0 satisfy the condition (3.1), then

(3.7) 0<f(A)A 2+ f(B)B2—f(A+B)(A+B)"
~ [ (0) [A7 4 BT = (A4 B) ]
<f@a?+fMr 2= flaty) (a+y)”
~ O [0 T = )

+<ﬁ+5 1) f(B+0)—f.(0)(B+9)
o+ (B +0)?

Proof. Follows by (3.2) observing, by (1.3), we have that

f#) =)= fi )¢
t2

c=D(p)(t),
for some positive measure p, where £ (A) = A, A > 0. O

Remark 4. If A, B > 0 satisfy the condition (3.1), then by taking f(t) =
—In(t+1) in (3.7), we obtain
(3.8) 0<(A+B) ’In(A+B+1)—A2Im(A+1)—B 2 In(B+1)
—(A+B) ' +4 4+ B!
<(a+7)  In(a+v+1)—a?n(a+1) =y 2In(y+1)
—(a+y) a4y
n <6+5 _1> (ﬁ—|—5)—1n(ﬁ—|—5+1).
ot (B +6)°

Using the transform (1.16) we have for A, B > 0 satisfying the condition (3.1)
that

(3.9) 0< A “%exp(A)T(a,A)+ B “exp(B)I'(a,B)
—(A+B) “exp(A+ B)T'(a, A+ B)
<a “exp(a)(a, ) +7 " exp () I'(a,7)
—(a+7)"exp(a+7y)T(a,a+7)
+<5+5

e 1) (B+0)""exp (8 +0)T(a,B+9)
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for a < 1. In particular, we have
10) 0<exp(A+B)E;(A+ B) —exp(A) E, (A) —exp (B) E1 (B)
<exp(a+7) Er (a+7) —exp(a) E1 (a) —exp (7) E1 (7)

+<gij1)exp(ﬁ+§)E1(5+5).

The interested reader may state other similar inequalities by using the examples

of transforms presented in the introduction. We omit the details.
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