INEQUALITIES FOR THE MONOTONIC INTEGRAL TRANSFORM OF POSITIVE OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR

Abstract. For a continuous and positive function \(w(\lambda) \), \(\lambda > 0 \) and \(\mu \) a positive measure on \((0, \infty) \) we consider the following mapping that we call the monotonic integral transform
\[
\mathcal{M}(w, \mu)(T) := \int_0^\infty w(\lambda) T (\lambda + T)^{-1} \, d\mu(\lambda),
\]
where the integral is assumed to exist for \(T \) a positive operator on a complex Hilbert space \(H \).

Assume that \(A > 0 \), \(B > 0 \) and \(0 < m \leq B - A \leq M \) for some constants \(a, \delta, m, M \). We prove among others that
\[
0 < m \mathcal{M}(w, \mu)(B) - \mathcal{M}(w, \mu)(A) \leq M M\mathcal{M}'(w, \mu)(\delta),
\]
where \(\mathcal{D}'(w, \mu) \) is the derivative of \(\mathcal{D}(w, \mu)(t) \) as a function of \(t > 0 \).

As a consequence, if \(f : (0, \infty) \to \mathbb{R} \) is operator monotone in \((0, \infty) \), then
\[
0 < m f'(\delta) \leq f(B) - f(A) \leq M f'(\alpha).
\]

Some examples for operator convex functions as well as for integral transforms \(\mathcal{M}(\cdot, \cdot) \) related to the exponential and logarithmic functions are also provided.

1. Introduction

Consider a complex Hilbert space \((H, \langle \cdot, \cdot \rangle) \). An operator \(T \) is said to be positive (denoted by \(T \geq 0 \)) if \(\langle Tx, x \rangle \geq 0 \) for all \(x \in H \) and also an operator \(T \) is said to be strictly positive (denoted by \(T > 0 \)) if \(T \) is positive and invertible.

We have the following integral representation for the power function when \(t > 0, r \in (0, 1] \), see for instance [1, p. 145]
\[
t^{-1} = \frac{\sin \left(r \pi \right)}{\pi} \int_0^\infty \frac{\lambda^{r-1}}{\lambda + t} \, d\lambda. \tag{1.1}
\]

Observe that for \(t > 0, t \neq 1 \), we have
\[
\int_0^u \frac{d\lambda}{(\lambda + t)(\lambda + 1)} = \frac{\ln t}{t-1} + \frac{1}{1-t} \ln \left(\frac{u+t}{u+1} \right)
\]
for all \(u > 0 \).

By taking the limit over \(u \to \infty \) in this equality, we derive
\[
\frac{\ln t}{t-1} = \int_0^\infty \frac{d\lambda}{(\lambda + t)(\lambda + 1)}.
\]
which gives the representation for the logarithm

\[\ln t = (t - 1) \int_0^\infty \frac{d\lambda}{(\lambda + 1)(\lambda + t)} \]

for all \(t > 0 \).

Motivated by these representations, we introduce, for a continuous and positive function \(w(\lambda), \lambda > 0 \), the following integral transform

\[\mathcal{D}(w, \mu)(t) := \int_0^\infty \frac{w(\lambda)}{\lambda + t} d\mu(\lambda), \quad t > 0, \]

where \(\mu \) is a positive measure on \((0, \infty)\) and the integral (1.3) exists for all \(t > 0 \).

For \(\mu \) the Lebesgue usual measure, we put

\[\mathcal{D}(w)(t) := \int_0^\infty \frac{w(\lambda)}{\lambda + t} d\lambda, \quad t > 0, \]

If we take \(\mu \) to be the usual Lebesgue measure and the kernel \(w_r(\lambda) = \lambda^{r-1}, \quad r \in (0, 1] \), then

\[t^{r-1} = \frac{\sin \left(r\pi \right)}{\pi} \mathcal{D}(w_r)(t), \quad t > 0. \]

For the same measure, if we take the kernel \(w_{\ln}(\lambda) = (\lambda + 1)^{-1}, \quad t > 0 \), we have the representation

\[\ln t = (t - 1) \mathcal{D}(w_{\ln})(t), \quad t > 0. \]

Assume that \(T > 0 \), then by the continuous functional calculus for selfadjoint operators, we can define the positive operator

\[\mathcal{D}(w, \mu)(T) := \int_0^\infty w(\lambda)(\lambda + T)^{-1} d\mu(\lambda), \]

where \(w \) and \(\mu \) are as above. Also, when \(\mu \) is the usual Lebesgue measure, then

\[\mathcal{D}(w)(T) := \int_0^\infty w(\lambda)(\lambda + T)^{-1} d\lambda, \]

for \(T > 0 \).

A real valued continuous function \(f \) on \((0, \infty)\) is said to be operator monotone if \(f(A) \geq f(B) \) holds for any \(A \geq B > 0 \).

We have the following representation of operator monotone functions [8], see for instance [1, p. 144-145]:

Theorem 1. A function \(f : (0, \infty) \to \mathbb{R} \) is operator monotone in \((0, \infty)\) if and only if it has the representation

\[f(t) = a + bt + \int_0^\infty \frac{t\lambda}{t+\lambda} d\mu(\lambda), \]

where \(a \in \mathbb{R}, b \geq 0 \) and a positive measure \(\mu \) on \((0, \infty)\) such that

\[\int_0^\infty \frac{\lambda}{1+\lambda} d\mu(\lambda) < \infty. \]

If \(f \) is operator monotone in \([0, \infty)\), then \(a = f(0) \) in (1.9).

In the recent paper [2] we obtained the following result:
Theorem 2. For all $A, B > 0$ we have the representation
\begin{equation}
D(w; \mu)(B) - D(w; \mu)(A) = -\int_0^\infty \left(\int_0^1 (\lambda + (1 - t)B + tA)^{-1} (B - A)(\lambda + (1 - t)B + tA)^{-1} dt \right)
\times w(\lambda) \, d\mu(\lambda).
\end{equation}
If $B \geq A > 0$, then
\begin{equation}
D(w; \mu)(B) \leq D(w; \mu)(A),
\end{equation}
namely, the function $D(w; \mu)(\cdot)$ is operator monotone decreasing on $(0, \infty)$.

As a consequence we also obtained the following result [2]:

Corollary 1. Assume that $f : [0, \infty) \to \mathbb{R}$ is an operator monotone function on $[0, \infty)$. Then $[f(0) - f(t)] \, t^{-1}$ is operator monotone on $(0, \infty)$.

A real valued continuous function f on an interval I is said to be operator convex (operator concave) on I if
\begin{equation}
(f((1 - \lambda)A + \lambda B)) \preceq (\succeq) (1 - \lambda)f(A) + \lambda f(B)
\end{equation}
in the operator order, for all $\lambda \in [0, 1]$ and for every selfadjoint operator A and B on a Hilbert space H whose spectra are contained in I. Notice that a function f is operator concave if $-f$ is operator convex.

We have the following representation of operator convex functions [1, p. 147]:

Theorem 3. A function $f : (0, \infty) \to \mathbb{R}$ is operator convex in $(0, \infty)$ if and only if it has the representation
\begin{equation}
f(t) = a + bt + ct^2 + \int_0^\infty \frac{t^2 \lambda}{t + \lambda} \, d\mu(\lambda),
\end{equation}
where $a, b \in \mathbb{R}, c \geq 0$ and a positive measure μ on $(0, \infty)$ such that (1.2) holds. If f is operator convex in $[0, \infty)$, then $a = f(0)$ and $b = f_+(0)$, the right derivative, in (1.13).

In [2] we also obtained the following result for operator convex functions:

Corollary 2. Assume that $f : [0, \infty) \to \mathbb{R}$ is an operator convex function on $[0, \infty)$. Then $[f(0) + f_+(0) - f(t)] \, t^{-2}$ is operator monotone on $(0, \infty)$.

For a continuous and positive function $w(\lambda), \lambda > 0$ and a positive measure μ on $(0, \infty)$, we can define the following mapping, which we call monotonic integral transform, by
\begin{equation}
\mathcal{M}(w, \mu)(t) := tD(w, \mu)(t), \quad t > 0.
\end{equation}
For $t > 0$ we have
\begin{equation}
\mathcal{M}(w, \mu)(t) := tD(w, \mu)(t) = \int_0^\infty w(\lambda) \, t \, (t + \lambda)^{-1} \, d\mu(\lambda)
= \int_0^\infty w(\lambda) \, (t + \lambda - \lambda)(t + \lambda)^{-1} \, d\mu(\lambda)
= \int_0^\infty w(\lambda) \left[1 - \lambda (t + \lambda)^{-1} \right] \, d\mu(\lambda).
\end{equation}
If \(\int_{0}^{\infty} w(\lambda) \, d\mu(\lambda) < \infty \), then
\[
(1.16) \quad \mathcal{M}(w, \mu)(t) = \int_{0}^{\infty} w(\lambda) \, d\mu(\lambda) - D(\ell w, \mu)(t),
\]
where \(\ell(t) = t, \ t > 0 \).

Consider the kernel \(e^{-a}\lambda) := \exp(-a\lambda), \ \lambda \geq 0 \) and \(a > 0 \). Then after some calculations, we get
\[
D(e^{-a}) (t) = \int_{0}^{\infty} \frac{\exp(-a\lambda)}{t + \lambda} \, d\lambda = E_{1}(at) \exp(at), \ t \geq 0
\]
and
\[
\int_{0}^{\infty} w(\lambda) \, d\lambda = \int_{0}^{\infty} \exp(-a\lambda) \, d\lambda = \frac{1}{a},
\]
where
\[
E_{1}(t) := \int_{t}^{\infty} \frac{e^{-u}}{u} \, du.
\]
This gives that
\[
\mathcal{M}(e^{-a})(t) = tD(w, \mu)(t) = tE_{1}(at) \exp(at), \ t \geq 0.
\]

By integration we also have
\[
D(\ell e^{-a}, \mu)(t) = \int_{0}^{\infty} \frac{\lambda \exp(-a\lambda)}{t + \lambda} \, d\lambda = \frac{1}{a} - tE_{1}(at) \exp(at)
\]
for \(t > 0 \).

One observes that
\[
\mathcal{M}(e^{-a})(t) = \int_{0}^{\infty} w(\lambda) \, d\lambda - D(\ell e^{-a}, \mu)(t), \ t > 0
\]
and the equality (1.16) is verified in this case.

If we take \(w_r(\lambda) = \lambda^{r-1}, \ r \in (0, 1] \), then \(\int_{0}^{\infty} w_r(\lambda) \, d\lambda = \infty \) and the equality (1.16) does not hold in this case.

For all \(T > 0 \) we have, by the continuous functional calculus for selfadjoint operators, that
\[
(1.17) \quad \mathcal{M}(w, \mu)(T) = TD(w, \mu)(T) = \int_{0}^{\infty} w(\lambda) \left[1 - \lambda (T + \lambda)^{-1} \right] \, d\mu(\lambda).
\]
This gives the representation
\[
T^r = \frac{\sin(r\pi)}{\pi} \mathcal{M}(w_r, \mu)(T),
\]
where \(w_r(\lambda) = \lambda^{r-1}, \ r \in (0, 1] \) and \(\mu \) is the usual Lebesgue norm. Also, from (1.6) we have the representation
\[
\ln T = (T - 1) D(w_{in})(T), \ T > 0,
\]
where \(w_{in}(\lambda) = (\lambda + 1)^{-1}, \ t > 0 \).

Motivated by the above results, in this paper we show among others that
\[
0 \leq m \mathcal{M}'(w, \mu)(\delta) \leq \mathcal{M}(w, \mu)(B) - \mathcal{M}(w, \mu)(A) \leq M \mathcal{M}'(w, \mu)(\alpha),
\]
where \(A \geq \alpha > 0, \ \delta \geq B > 0 \) and \(0 < m \leq B - A \leq M \) for some constants \(\alpha, \ \delta, \ m, \ M \) and \(\mathcal{D}'(w, \mu) \) is the derivative of \(\mathcal{M}(w, \mu)(t) \) as a function of \(t > 0 \).

As a consequence, if \(f : (0, \infty) \to \mathbb{R} \) is operator monotone in \((0, \infty), \) then
\[
0 \leq mf'(\delta) \leq f(B) - f(A) \leq M f' (\alpha).
\]
Some examples for operator convex functions as well as for integral transforms \(\mathcal{M}(\cdot, \cdot) \) related to the exponential and logarithmic functions are also provided.

2. Monotonicity Properties

We have the following monotonicity result:

Theorem 4. For all \(A, B > 0 \) we have the representation

\[
\mathcal{M}(w, \mu)(B) - \mathcal{M}(w, \mu)(A) = \int_0^\infty \left(\int_0^1 (\lambda + (1-t)A + tB)^{-1} (B - A) (\lambda + (1-t)A + tB)^{-1} \, dt \right) \lambda w(\lambda) \, d\mu(\lambda).
\]

If \(B \geq A > 0 \), then

\[
\mathcal{M}(w, \mu)(B) \geq \mathcal{M}(w, \mu)(A),
\]

namely \(\mathcal{M}(w, \mu) \) is operator monotone on \((0, \infty)\).

Proof. From (1.17) we have for all \(A, B \geq 0 \) that

\[
\mathcal{M}(w, \mu)(B) - \mathcal{M}(w, \mu)(A) = \int_0^\infty w(\lambda) \left[1 - \lambda (B + \lambda)^{-1} \right] d\mu(\lambda) - \int_0^\infty w(\lambda) \left[1 - \lambda (A + \lambda)^{-1} \right] d\mu(\lambda)
\]

\[
= \int_0^\infty \lambda w(\lambda) \left[(A + \lambda)^{-1} - (B + \lambda)^{-1} \right] d\mu(\lambda).
\]

Let \(T, S > 0 \). The function \(f(t) = -t^{-1} \) is operator monotone on \((0, \infty)\), operator Gâteaux differentiable and the Gâteaux derivative is given by

\[
\nabla f_T(S) := \lim_{t \to 0} \frac{f(T + tS) - f(T)}{t} = T^{-1}ST^{-1}
\]

for \(T, S > 0 \).

Consider the continuous function \(g \) defined on an interval \(I \) for which the corresponding operator function is Gâteaux differentiable on the segment \([C, D] : \{(1-t)C + tD, \ t \in [0,1]\}\) for \(C, D \) selfadjoint operators with spectra in \(I \). We consider the auxiliary function defined on \([0,1]\) by

\[
f_{C,D}(t) := f((1-t)C + tD), \ t \in [0,1].
\]

Then we have, by the properties of the Bochner integral, that

\[
f(D) - f(C) = \int_0^1 \frac{d}{dt} (f_{C,D}(t)) \, dt = \int_0^1 \nabla f_{(1-t)C+tD} (D-C) \, dt.
\]

If we write this equality for the function \(f(t) = -t^{-1} \) and \(C, D > 0 \), then we get the representation

\[
C^{-1} - D^{-1} = \int_0^1 ((1-t)C + tD)^{-1} (D - C) ((1-t)C + tD)^{-1} \, dt.
\]
Now, if we take in (2.6) \(C = \lambda + A, D = \lambda + B \), then

\[
(2.7) \quad (\lambda + A)^{-1} - (\lambda + B)^{-1} = \int_0^1 ((1 - t) (\lambda + A) + t(\lambda + B))^{-1} (B - A) \\
\times ((1 - t) (\lambda + A) + t(\lambda + B))^{-1} dt \\
= \int_0^1 (\lambda + (1 - t) A + tB)^{-1} (B - A) (\lambda + (1 - t) A + tB)^{-1} dt.
\]

By employing (2.3) and (2.7), we derive (2.1).

Corollary 3. Assume that the function \(f : (0, \infty) \rightarrow \mathbb{R} \) is operator monotone in \((0, \infty)\) and it has the representation (1.9), then for all \(A, B > 0 \) we have the representation

\[
(2.8) \quad f (B) - f (A) = b(B - A) \\
\text{and by (2.1) we get (2.8).}
\]

Proof. From (1.9) we have for \(T > 0 \) that

\[
f (T) - a - bT = M(\ell, \mu) (T),
\]

for some positive measure \(\mu \), where \(\ell (\lambda) = \lambda, \lambda \geq 0 \). Therefore

\[
M(w, \mu) (B) - M(w, \mu) (A) = f (B) - f (A) - b(B - A)
\]

and by (2.1) we get (2.8).

Corollary 4. Assume that the function \(f : (0, \infty) \rightarrow \mathbb{R} \) is operator convex in \((0, \infty)\) and it has the representation (1.13), then for all \(A, B > 0 \) we have the representation

\[
(2.10) \quad f (B) B^{-1} - f (A) A^{-1} - a (B^{-1} - A^{-1}) - c(B - A) \\
= \int_0^\infty \left(\int_0^1 (\lambda + (1 - t) A + tB)^{-1} (B - A) (\lambda + (1 - t) A + tB)^{-1} dt \right) \\
\times \lambda^2 d\mu (\lambda).
\]

If \(B \geq A \), then

\[
(2.11) \quad f (B) B^{-1} - f (A) A^{-1} - a (B^{-1} - A^{-1}) \geq c(B - A) \geq 0.
\]

Proof. From (1.13) we have for \(T > 0 \) that

\[
(f (T) - a) T^{-1} - b - cT = M(\ell, \mu) (T),
\]

for some positive measure \(\mu \). Therefore

\[
M(w, \mu) (B) - M(w, \mu) (A) = (f (B) - a) B^{-1} - (f (A) - a) A^{-1} - c(B - A)
\]

and by (2.1) we get (2.10).
Remark 1. If \(f : [0, \infty) \to \mathbb{R} \) is operator convex in \([0, \infty) \), then we can take \(a = f(0) \) and by (2.10) we get
\[
(2.12) \quad f(B)B^{-1} - f(A)A^{-1} - f(0)B^{-1} - A^{-1}) - c(B - A)
= \int_0^\infty \left(\int_0^1 (\lambda + (1-t)A+A)^{-1}B - A) \right) (\lambda + (1-t)A+A)^{-1} dt \right) \times \lambda^2d\mu(\lambda).
\]
If \(B \geq A \), then
\[
(2.13) \quad f(B)B^{-1} - f(A)A^{-1} - f(0)B^{-1} - A^{-1}) \geq c(B - A) \geq 0.
\]

3. Lower and Upper Bounds

Let \(f \) be an operator convex function on \(I \). For \(A, B \in SA_I(H) \), the class of all selfadjoint operators with spectra in \(I \), we consider the auxiliary function \(\varphi_{(A,B)} : [0, 1] \to B(H) \) defined by
\[
(3.1) \quad \varphi_{(A,B)}(t) := f((1-t)A+tB).
\]
For \(x \in H \) we can also consider the auxiliary function \(\varphi_{(A,B);x} : [0, 1] \to \mathbb{R} \) defined by
\[
(3.2) \quad \varphi_{(A,B);x}(t) := \langle \varphi_{(A,B)}(t) x, x \rangle = \langle f((1-t)A+tB) x, x \rangle.
\]

We have the following basic fact [3]:

Lemma 1. Let \(f \) be an operator convex function on \(I \). For any \(A, B \in SA_I(H) \), \(\varphi_{(A,B)} \) is well defined and convex in the operator order. For any \(A, B \in SA_I(H) \) and \(x \in H \) the function \(\varphi_{(A,B);x} \) is convex in the usual sense on \([0, 1]\).

A continuous function \(g : SA_I(H) \to B(H) \) is said to be Gâteaux differentiable in \(A \in SA_I(H) \) along the direction \(B \in B(H) \) if the following limit exists in the strong topology of \(B(H) \)
\[
(3.3) \quad \nabla g_A(B) := \lim_{s \to 0} \frac{g(A+sB) - g(A)}{s} \in B(H).
\]

If the limit (3.3) exists for all \(B \in B(H) \), then we say that \(g \) is Gâteaux differentiable in \(A \) and we can write \(g \in G(A) \). If this is true for any \(A \) in an open set \(S \) from \(SA_I(H) \) we write that \(g \in G(S) \).

If \(g \) is a continuous function on \(I \), by utilising the continuous functional calculus the corresponding function of operators will be denoted in the same way.

For two distinct operators \(A, B \in SA_I(H) \) we consider the segment of selfadjoint operators
\[
[A, B] := \{(1-t)A+tB \mid t \in [0, 1]\}.
\]
We observe that \(A, B \in [A, B] \) and \([A, B] \subset SA_I(H) \).

We also have [3]:

Lemma 2. Let \(f \) be an operator convex function on \(I \) and \(A, B \in SA_I(H) \), with \(A \neq B \). If \(f \in G([A, B]) \), then the auxiliary function \(\varphi_{(A,B)} \) is differentiable on \((0, 1)\) and
\[
(3.4) \quad \varphi'_{(A,B)}(t) = \nabla f_{(1-t)A+tB}(B-A).
\]
In particular,
\[(3.5)\]
\[\phi'_{(A,B)}(0^+) = \nabla f_A (B - A)\]
and
\[(3.6)\]
\[\phi'_{(A,B)}(1^-) = \nabla f_B (B - A).\]

and, see [3],

Lemma 3. Let \(f \) be an operator convex function on \(I \) and \(A, B \in \mathcal{SA}_I (H) \), with \(A \neq B \). If \(f \in \mathcal{G} ([A, B]) \), then for \(0 < t_1 < t_2 < 1 \)
\[(3.7)\]
\[\nabla f_{(1-t_1)A+t_1B} (B - A) \leq \nabla f_{(1-t_2)A+t_2B} (B - A)\]
in the operator order.

In particular,
\[(3.8)\]
\[\nabla f_A (B - A) \leq \nabla f_{(1-t_1)A+t_1B} (B - A)\]
and
\[(3.9)\]
\[\nabla f_{(1-t_2)A+t_2B} (B - A) \leq \nabla f_B (B - A).\]

Also, we have
\[(3.10)\]
\[\nabla f_A (B - A) \leq \nabla f_{(1-t)A+tB} (B - A) \leq \nabla f_B (B - A)\]
for all \(t \in (0, 1) \).

We have the following gradient inequalities:

Lemma 4. Let \(f \) be an operator convex function on \(I \) and \(A, B \in \mathcal{SA}_I (H) \), with \(A \neq B \). If \(f \in \mathcal{G} ([A, B]) \), then
\[(3.11)\]
\[\nabla_B f (B - A) \geq f (B) - f (A) \geq \nabla_A f (B - A).\]

Proof. By the properties of Bochner integral, we have
\[f (B) - f (A) = \varphi_{(A,B)} (1) - \varphi_{(A,B)} (0) = \int_0^1 \varphi'_{(A,B)} (t) dt \]
\[= \int_0^1 \nabla f_{(1-t)A+tB} (B - A) dt.\]

From (3.10) we have, by integration, that
\[\nabla f_A (B - A) \leq \int_0^1 \nabla f_{(1-t)A+tB} (B - A) dt \leq \nabla f_B (B - A),\]
and the inequality (3.11) is proved. \(\square \)

Let \(T, S > 0 \). The function \(f (t) = t^{-1} \) is operator Gâteaux differentiable and the Gâteaux derivative is given by
\[(3.12)\]
\[\nabla f_T (S) := \lim_{t \to 0} \left[\frac{f(T + tS) - f(T)}{t} \right] = -T^{-1}ST^{-1}\]
for \(T, S > 0 \).

Using (3.11) for the operator convex function \(f (t) = t^{-1} \), we get
\[-D^{-1} (D - C) D^{-1} \geq D^{-1} - C^{-1} \geq -C^{-1} (D - C) C^{-1}\]
that is equivalent to
\[(3.13)\]
\[D^{-1} (D - C) D^{-1} \leq C^{-1} - D^{-1} \leq C^{-1} (D - C) C^{-1}\]
for all \(C, D > 0\).

When more assumptions are made about the operators \(A\) and \(B\), then we have the following lower and upper bounds for the difference \(\mathcal{M}(w, \mu)(B) - \mathcal{M}(w, \mu)(A)\).

Theorem 5. Assume that \(A \geq \alpha > 0, \delta \geq B > 0\) and \(0 < m \leq B - A \leq M\) for some constants \(\alpha, \delta, m, M\). Then

\[
0 \leq m \mathcal{M}'(w, \mu) (\delta) \leq \mathcal{M}(w, \mu)(B) - \mathcal{M}(w, \mu)(A) \leq M \mathcal{M}'(w, \mu) (\alpha),
\]

where \(\mathcal{D}'(w, \mu)\) is the derivative of \(\mathcal{M}(w, \mu)(t)\) as a function of \(t > 0\).

Proof. We have for \(A, B > 0\) that

\[
\mathcal{M}(w, \mu)(B) - \mathcal{M}(w, \mu)(A) = \int_0^\infty \lambda w(\lambda) \left[(A + \lambda)^{-1} - (B + \lambda)^{-1}\right] d\mu(\lambda).
\]

From (3.13) we get for \(C = \lambda + A\) and \(D = \lambda + B\) that

\[
(\lambda + B)^{-1} (B - A) (\lambda + B)^{-1} \leq (\lambda + A)^{-1} - (\lambda + B)^{-1} \leq (\lambda + A)^{-1} (B - A) (\lambda + A)^{-1}
\]

for all \(\lambda \geq 0\).

If we multiply (3.16) by \(\lambda w(\lambda) \geq 0\) and integrate over \(\mu(\lambda)\) we get

\[
\int_0^\infty \lambda w(\lambda) (\lambda + B)^{-1} (B - A) (\lambda + B)^{-1} d\mu(\lambda) \leq \mathcal{M}(w, \mu)(B) - \mathcal{M}(w, \mu)(A) \leq \int_0^\infty \lambda w(\lambda) (\lambda + A)^{-1} (B - A) (\lambda + A)^{-1} d\mu(\lambda).
\]

Since \(m \leq B - A \leq M\) hence

\[
m (\lambda + B)^{-2} \leq (\lambda + B)^{-1} (B - A) (\lambda + B)^{-1},
\]

which implies, by integration that

\[
m \int_0^\infty \lambda w(\lambda) (\lambda + B)^{-2} d\mu(\lambda) \leq \int_0^\infty \lambda w(\lambda) (\lambda + B)^{-1} (B - A) (\lambda + B)^{-1} d\mu(\lambda).
\]

Also

\[
(\lambda + A)^{-1} (B - A) (\lambda + A)^{-1} \leq M (\lambda + A)^{-2},
\]

which implies, by integration, that

\[
\int_0^\infty \lambda w(\lambda) (\lambda + A)^{-1} (B - A) (\lambda + A)^{-1} d\mu(\lambda) \leq M \int_0^\infty \lambda w(\lambda) (\lambda + A)^{-2} d\mu(\lambda).
\]

Since \(B \leq \delta\), then \(\lambda + B \leq \lambda + \delta\) for all \(\lambda \geq 0\) which implies that \((\lambda + B)^{-1} \geq (\lambda + \delta)^{-1}\) and therefore \((\lambda + B)^{-2} \geq (\lambda + \delta)^{-2}\). Consequently

\[
m \int_0^\infty \lambda w(\lambda) (\lambda + B)^{-2} d\mu(\lambda) \geq m \int_0^\infty \lambda w(\lambda) (\lambda + \delta)^{-2} d\mu(\lambda).
\]
Also, since $A \geq \alpha > 0$, then $\lambda + A \geq \lambda + \alpha > 0$, which implies that $(\lambda + A)^{-1} \leq (\lambda + \alpha)^{-1}$, therefore $(\lambda + A)^{-2} \leq (\lambda + \alpha)^{-2}$ and

\begin{equation}
M \int_0^\infty \lambda w (\lambda) (\lambda + A)^{-2} d\mu (\lambda) \leq M \int_0^\infty \lambda w (\lambda) (\lambda + \alpha)^{-2} d\mu (\lambda).
\end{equation}

From (3.17)-(3.21) we get

\begin{equation}
(3.22) \quad m \int_0^\infty \lambda w (\lambda) (\lambda + \delta)^{-2} d\mu (\lambda) \leq M(w, \mu) (A) - M(w, \mu) (B)
\end{equation}

\begin{equation*}
\leq M \int_0^\infty \lambda w (\lambda) (\lambda + \alpha)^{-2} d\mu (\lambda).
\end{equation*}

For $h \neq 0$ small,

\begin{align*}
\frac{M(w, \mu) (t + h) - M(w, \mu) (t)}{h} &= \frac{1}{h} \int_0^\infty \lambda w (\lambda) \left(\frac{1}{t + \lambda} - \frac{1}{t + h + \lambda} \right) d\mu (\lambda) \\
&= \int_0^\infty \frac{\lambda w (\lambda)}{(t + h + \lambda) (t + \lambda)} d\mu (\lambda).
\end{align*}

By taking the limit over $h \to 0$ and using the properties of limits and integrals, we get the derivative of $M(w, \mu)$ as

\begin{equation}
(3.23) \quad M'(w, \mu) (t) = \int_0^\infty \frac{\lambda w (\lambda)}{(t + \lambda)^2} d\mu (\lambda) \geq 0, \quad t > 0.
\end{equation}

From (3.22) and (3.23) we derive (3.14). \hfill \Box

The case of operator monotone functions is as follows:

Corollary 5. Assume that the function $f : (0, \infty) \to \mathbb{R}$ is operator monotone in $(0, \infty)$ and it has the representation (1.9). If $A \geq \alpha > 0$, $\delta \geq B > 0$ and $0 < m \leq B - A \leq M$ for some constants α, δ, m, M, then

\begin{equation}
0 \leq mf' (\delta) - b \leq f (B) - f (A) \leq M f' (\alpha) - b.
\end{equation}

Proof. From (1.9) we have

\begin{equation*}
M(w, \mu) (t) = f (t) - at - bt, \quad t > 0.
\end{equation*}

By taking the derivative, we get

\begin{equation*}
M'(w, \mu) (t) = f' (t) - b, \quad t > 0.
\end{equation*}

From (3.14) we get

\begin{equation*}
0 \leq mf' (\delta) - b \leq f (B) - f (A) - b (B - A) \leq M [f' (\alpha) - b],
\end{equation*}

which is equivalent to

\begin{equation*}
m [f' (\delta) - b] + b (B - A) \leq f (B) - f (A) \leq M [f' (\alpha) - b] + b (B - A).
\end{equation*}

Since

\begin{equation*}
bm \leq b (B - A) \leq Mb,
\end{equation*}

hence

\begin{equation*}
mf' (\delta) \leq m [f' (\delta) - b] + b (B - A)
\end{equation*}
and

\[M \left[f' (\alpha) - b \right] + b (B - A) \leq M f' (\alpha) \]

and the inequalities in (3.24) are proved. \(\Box \)

The case of operator convex functions is as follows:

Corollary 6. Assume that the function \(f : (0, \infty) \to \mathbb{R} \) is operator convex in \((0, \infty)\) and it has the representation (1.13). If \(A \geq \alpha > 0, \delta \geq B > 0 \) and \(0 < m \leq B - A \leq M \) for some constants \(\alpha, \delta, m, M, \) then

\[0 \leq m \left(\frac{f' (\delta) \delta - f (\delta) + a}{\delta^2} - c \right) + c (B - A) \]

\[\leq f (B) B^{-1} - f (A) A^{-1} - a (B^{-1} - A^{-1}) \]

\[\leq M \left(\frac{f' (\alpha) \alpha - f (\alpha) + a}{\alpha^2} - c \right) + c (B - A) \]

\[\leq M \left(\frac{f' (\alpha) \alpha - f (\alpha) + a}{\alpha^2} \right). \]

Proof. From (1.13) we get

\[\mathcal{M}(w, \mu) (t) = \frac{f (t) - a}{t} - b - ct, \ t > 0. \]

If we take the derivative in this equality, then we get

\[\mathcal{M}'(w, \mu) (t) = \frac{f' (t) t - f (t) + a}{t^2} - c. \]

By (3.14) we get

\[0 \leq m \left(\frac{f' (\delta) \delta - f (\delta) + a}{\delta^2} - c \right) \]

\[\leq f (B) B^{-1} - f (A) A^{-1} - f (0) (B^{-1} - A^{-1}) \]

\[\leq M \left(\frac{f' (\alpha) \alpha - f (\alpha) + a}{\alpha^2} - c \right), \]

which is equivalent to

\[m \left(\frac{f' (\delta) \delta - f (\delta) + a}{\delta^2} - c \right) + c (B - A) \]

\[\leq f (B) B^{-1} - f (A) A^{-1} - f (0) (B^{-1} - A^{-1}) \]

\[\leq M \left(\frac{f' (\alpha) \alpha - f (\alpha) + a}{\alpha^2} - c \right) + c (B - A). \]

Since

\[m \left(\frac{f' (\delta) \delta - f (\delta) + a}{\delta^2} - c \right) + c (B - A) \]

\[\geq m \left(\frac{f' (\delta) \delta - f (\delta) + a}{\delta^2} - c \right) + cm = m \left(\frac{f' (\delta) \delta - f (\delta) + a}{\delta^2} \right) \geq 0 \]
and
\[
M \left[\frac{f'(\alpha) \alpha - f(\alpha) + a}{\alpha^2} - c \right] + c(B - A) \\
\leq M \left[\frac{f'(\alpha) \alpha - f(\alpha) + a}{\alpha^2} - c \right] + cM = M \left(\frac{f'(\alpha) \alpha - f(\alpha) + a}{\alpha^2} \right),
\]
the proof of (3.25) is thus completed. \qed

Remark 2. If \(f : [0, \infty) \to \mathbb{R} \) is operator convex in \([0, \infty)\) then we can take \(a = f(0) \) and by (3.25) we get
\[
0 \leq m \left(\frac{f'(\delta) \delta - f(\delta) + f(0)}{\delta^2} \right) \\
\leq f(B) B^{-1} - f(A) A^{-1} - f(0) (B^{-1} - A^{-1}) \\
\leq M \left(\frac{f'(\alpha) \alpha - f(\alpha) + f(0)}{\alpha^2} - c \right) + c(B - A) \\
\leq M \left(\frac{f'(\alpha) \alpha - f(\alpha) + f(0)}{\alpha^2} \right).
\]

It is well known that, if \(P \succeq 0 \), then
\[
\|P_{x, y}\|^2 \leq \langle Px, x \rangle \langle Py, y \rangle
\]
for all \(x, y \in H \).

Therefore, if \(T > 0 \), then
\[
0 \leq \langle x, x \rangle^2 = \langle T^{-1}Tx, x \rangle^2 = \langle Tx, T^{-1}x \rangle^2 \\
\leq \langle Tx, x \rangle \langle TT^{-1}x, T^{-1}x \rangle = \langle Tx, x \rangle \langle x, T^{-1}x \rangle
\]
for all \(x \in H \).

If \(x \in H \), \(\|x\| = 1 \), then
\[
1 \leq \langle Tx, x \rangle \langle x, T^{-1}x \rangle \leq \langle Tx, x \rangle \sup_{\|x\|=1} \langle x, T^{-1}x \rangle = \langle Tx, x \rangle \|T^{-1}\|,
\]
which implies the first inequality below
\[
\|T^{-1}\|^{-1} \leq T \leq \|T\|.
\]
The second inequality is obvious.

Proposition 1. Let \(B > A > 0 \). Then
\[
0 \leq \left\| (B - A)^{-1} \right\|^{-1} M'(w, \mu)(\|B\|) \leq M(w, \mu)(B) - M(w, \mu)(A) \\
\leq \|B - A\| M'(w, \mu) \left(\|A^{-1}\|^{-1} \right).
\]

Proof. Since, by (3.27), \(A \geq \|A^{-1}\|^{-1}, \|B\| \geq B \) and \(\|B - A\| \geq B - A \geq \|B - A\|^{-1} \) then by (3.14) for \(\alpha = \|A^{-1}\|^{-1}, \delta = \|B\|, m = \left\| (B - A)^{-1} \right\|^{-1} \) and \(M = \|B - A\| \) we get (3.28). \qed

In the case of operator monotone functions we have:
Corollary 7. Assume that the function $f : (0, \infty) \to \mathbb{R}$ is operator monotone in $(0, \infty)$ and $B > A > 0$. Then

$$0 \leq \frac{f'(\|B\|)}{(B-A)^{-1}} \leq f(B) - f(A) \leq \|B - A\| f'(\|A^{-1}\|^{-1}).$$

We also have:

Corollary 8. Assume that the function $f : [0, \infty) \to \mathbb{R}$ is operator convex in $[0, \infty)$ and $B > A > 0$. Then

$$0 \leq \frac{1}{\|B\|^2 \|B - A\|^{-1}} (f'(\|B\|) \|B\| - f(\|B\|) + f(0))$$

$$\leq f(B) B^{-1} - f(A) A^{-1} - f(0) (B^{-1} - A^{-1})$$

$$\leq \|B - A\| \|A^{-1}\|^2 \left(f'(\|A^{-1}\|^{-1}) \|A^{-1}\|^{-1} - f(\|A^{-1}\|^{-1}) + f(0) \right).$$

4. Some Examples

We consider the operator monotone function $f(t) = t^r$, $r \in (0, 1]$, then for all A, $B \geq 0$ we have

$$B^r - A^r = \frac{\sin(r\pi)}{\pi}$$

$$\times \int_0^\infty \left(\int_0^1 (\lambda + (1-t) A + tB)^{-1} (B - A) (\lambda + (1-t) A + tB)^{-1} dt \right) \lambda^r d\lambda,$$

which proves in one line the Löwner-Heinz inequality $B^r \geq A^r$ if $B \geq A$.

For logarithmic function we have the following representation for the difference:

Proposition 2. For all A, $B > 0$ we have

$$\ln B - \ln A = \int_0^{\infty} \int_0^1 (B - A) (\lambda + (1-t) A + tB)^{-1} \lambda^r d\lambda.$$

Proof. We have from (1.18) for A, $B > 0$ that

$$\ln B - \ln A = \int_0^{\infty} \frac{1}{\lambda + 1} \left[(B - 1) (\lambda + B)^{-1} - (A - 1) (\lambda + A)^{-1} \right] d\lambda.$$

Since

$$(B - 1) (\lambda + B)^{-1} - (A - 1) (\lambda + A)^{-1} = B (\lambda + B)^{-1} - A (\lambda + A)^{-1} - (\lambda + B)^{-1} - (\lambda + A)^{-1}$$

and

$$B (\lambda + B)^{-1} - A (\lambda + A)^{-1} = (B + \lambda - \lambda) (\lambda + B)^{-1} - (A + \lambda - \lambda) (\lambda + A)^{-1}$$

$$= 1 - \lambda (\lambda + B)^{-1} - 1 + \lambda (\lambda + A)^{-1} = \lambda (\lambda + A)^{-1} - \lambda (\lambda + B)^{-1},$$
hence
\[(B - 1) (\lambda + B)^{-1} - (A - 1) (\lambda + A)^{-1}
= \lambda (\lambda + A)^{-1} - (\lambda + B)^{-1} - (\lambda + B)^{-1} - (\lambda + A)^{-1}
= (\lambda + 1) \left[(\lambda + A)^{-1} - (\lambda + B)^{-1} \right]
\]
and by (4.3) we get
(4.4) \[\ln B - \ln A = \int_0^\infty \left[(\lambda + A)^{-1} - (\lambda + B)^{-1} \right] d\lambda.\]
Since, by (2.7) we have
(4.5) \[(\lambda + A)^{-1} - (\lambda + B)^{-1}
= \int_0^1 (\lambda + (1 - t) A + tB)^{-1} (B - A) (\lambda + (1 - t) A + tB)^{-1} dt,
\]
for all \(\lambda \geq 0\), hence by (4.4) and (4.5) we get (4.2).

\[\text{Assume that } A \geq \alpha > 0, \delta \geq B > 0 \text{ and } 0 < m \leq B - A \leq M \text{ for some constants } \alpha, \delta, m, M. \text{ Then by (3.24) we get}\]

(4.6) \[r m \delta^{-1} \leq B^r - A^r \leq r M \alpha^{r-1}.\]
If \(B > A > 0\), then
(4.7) \[\frac{r}{\| (B - A)^{-1} \|^{1-r} \| B \|^{1-r}} \leq B^r - A^r \leq r \| B - A \| \| A^{-1} \|^{1-r}.\]

The function \(f(t) = \ln t, t > 0\) is operator monotone on \((0, \infty)\) and if we assume that \(A \geq \alpha > 0, \delta \geq B > 0 \text{ and } 0 < m \leq B - A \leq M \text{ for some constants } \alpha, \delta, m, M, \text{ then by (3.24) we get}\]

(4.8) \[\frac{m}{\delta} \leq \ln B - \ln A \leq \frac{M}{\alpha}.\]
If \(B > A > 0\), then
(4.9) \[\frac{1}{\| (B - A)^{-1} \| \| B \|} \leq \ln B - \ln A \leq \| B - A \| \| A^{-1} \|.\]

We consider the operator convex function \(f(t) = -\ln (t + 1) \text{ on } [0, \infty).\) Then by (3.26),

(4.10) \[0 \leq m \left(\frac{(\delta + 1) \ln (\delta + 1) - \delta}{\delta^2 (\delta + 1)} \right) \leq B^{-1} \ln (B + 1) - A^{-1} \ln (A + 1)
\leq M \left(\frac{(\alpha + 1) \ln (\alpha + 1) - \alpha}{\alpha^2 (\alpha + 1)} \right),\]
where \(A \geq \alpha > 0, \delta \geq B > 0 \text{ and } 0 < m \leq B - A \leq M \text{ for some constants } \alpha, \delta, m, M.\)

We define the upper incomplete Gamma function as \([11]\]
\[\Gamma(a, z) := \int_z^\infty t^{a-1} e^{-t} dt,\]
which for \(z = 0 \) gives \textit{Gamma function}

\[
\Gamma(a) := \int_0^\infty t^{a-1}e^{-t}dt \quad \text{for} \quad \Re a > 0.
\]

We have the integral representation [12]

\[
(4.11) \quad \Gamma(a, z) = \frac{z^a e^{-z}}{\Gamma(1-a)} \int_0^\infty \frac{t^{-a}e^{-t}}{z+t}dt
\]

for \(\Re a < 1 \) and \(|\text{ph} z| < \pi \).

Now, we consider the weight \(w_{-a e^{-\cdot}} (\lambda) := \lambda^{-a} e^{-\lambda} \) for \(\lambda > 0 \). Then by (4.11) we have

\[
(4.12) \quad D(w_{-a e^{-\cdot}})(t) = \int_0^\infty \frac{\lambda^{-a} e^{-\lambda}}{t+\lambda}d\lambda = \Gamma(1-a)t^{-a}e^t \Gamma(a, t)
\]

for \(a < 1 \) and \(t > 0 \).

For \(a = 0 \) in (4.12) we get

\[
(4.13) \quad D\left(w_{e^{-\cdot}} \right)(t) = \int_0^\infty \frac{e^{-\lambda}}{t+\lambda}d\lambda = \Gamma(1) e^t \Gamma(0, t) = e^t E_1(t)
\]

for \(t > 0 \), where

\[
E_1(t) := \int_t^\infty \frac{e^{-u}}{u}du.
\]

We then have

\[
(4.14) \quad M\left(w_{-a e^{-\cdot}} \right)(T) = \Gamma(1-a) T^{1-a} \exp(T) \Gamma(a, T)
\]

for \(a < 1 \) and

\[
(4.15) \quad M\left(w_{e^{-\cdot}} \right)(T) = T \exp(T) E_1(T)
\]

for \(T > 0 \).

For all \(A, B > 0 \) we have the representation

\[
(4.16) \quad M\left(w_{-a e^{-\cdot}} \right)(B) - M\left(w_{-a e^{-\cdot}} \right)(A)
= \int_0^\infty \left(\int_0^1 (\lambda + (1-t) A + tB)^{-1}(B-A)(\lambda + (1-t) A + tB)^{-1}dt \right) \times \lambda^{-a} e^{-\lambda}d\mu(\lambda).
\]

If \(B \geq A > 0 \), then

\[
B^{1-a} \exp(B) \Gamma(a, B) \geq A^{1-a} \exp(A) \Gamma(a, A),
\]

namely the function \(g_a(t) := t^{1-a} \exp(t) \Gamma(a, t) \) is operator monotone on \((0, \infty) \).

Since \(E_1^t(t) = -\frac{e^{-t}}{t} \), \(t > 0 \), then

\[
M'(w_{e^{-\cdot}})(t) = (t \exp(t))' E_1(t) + t \exp(t) E_1'(t)
= (\exp t + t \exp t) E_1(t) - t \exp(t) \left(e^{-t} \frac{1}{t} \right)
= (1 + t) \exp t E_1(t) - 1
\]

for \(t > 0 \).
From (3.24) we get

\begin{equation}
0 \leq m [(1 + \delta) \exp \delta E_1 (\delta) - 1] \leq B \exp (B) E_1 (B) - A \exp (A) E_1 (A) \\
\leq M [(1 + \alpha) \exp \alpha E_1 (\alpha) - 1],
\end{equation}

when \(A \geq \alpha > 0, \delta \geq B > 0 \) and \(0 < m \leq B - A \leq M \) for some constants \(\alpha, \delta, m, M \).

References

[6] T. Furuta, Precise lower bound of \(f(A) - f(B) \) for \(A > B > 0 \) and non-constant operator monotone function \(f \) on \([0, \infty) \). *J. Math. Inequal.* 9 (2015), no. 1, 47–52.

1 Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia. E-mail address: sever.dragomir@vu.edu.au URL: http://rgmia.org/dragomir

2 DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, & Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa.