LIPSCHITZ TYPE INEQUALITIES FOR MONOTONIC
INTEGRAL TRANSFORM OF POSITIVE OPERATORS WITH
APPLICATIONS

SILVESTRU SEVER DRAGOMIR

1

Abstract. For a continuous and positive function \(w(\lambda), \lambda > 0 \) and \(\mu \) a positive measure on \((0, \infty)\) we consider the following monotonic integral transform

\[
\mathcal{M}(w, \mu)(T) := \int_0^\infty w(\lambda) T(\lambda + T)^{-1} d\mu(\lambda),
\]

where the integral is assumed to exist for \(T \) a positive operator on a complex Hilbert space \(\mathcal{H} \).

Assume that \(A \geq m_1 > 0, B \geq m_2 > 0 \), then we show that

\[
\| \mathcal{M}(w, \mu)(B) - \mathcal{M}(w, \mu)(A) \| \leq \| B - A \| \begin{cases}
\frac{\mathcal{M}(w, \mu)(m_2) - \mathcal{M}(w, \mu)(m_1)}{m_2 - m_1} & \text{if } m_1 \neq m_2, \\
\mathcal{M}'(w, \mu)(m) & \text{if } m_1 = m_2 = m,
\end{cases}
\]

where \(\mathcal{M}'(w, \mu)(t) \) is the derivative of \(\mathcal{M}(w, \mu) \) as a function of \(t \). If the function \(f : (0, \infty) \to \mathbb{R} \) is operator monotone in \((0, \infty)\), then

\[
\| f(B) - f(A) \| \leq \| B - A \| \begin{cases}
\frac{f(m_2) - f(m_1)}{m_2 - m_1} & \text{if } m_1 \neq m_2, \\
f'(m) & \text{if } m_1 = m_2 = m.
\end{cases}
\]

In particular we have the power inequalities

\[
\| B^r - A^r \| \leq \| B - A \| \begin{cases}
\frac{m_2^r - m_1^r}{m_2 - m_1} & \text{if } m_1 \neq m_2, \\
r(m_2^r - m_1^r) & \text{if } m_1 = m_2 = m,
\end{cases}
\]

and the logarithmic inequalities

\[
\| \ln B - \ln A \| \leq \| B - A \| \begin{cases}
\frac{\ln m_2 - \ln m_1}{m_2 - m_1} & \text{if } m_1 \neq m_2, \\
\frac{1}{m} & \text{if } m_1 = m_2 = m.
\end{cases}
\]

Some applications for operator convex functions and midpoint and trapezoid norm inequalities are also provided.

1. Introduction

Let \(\mathcal{B}(\mathcal{H}) \) be the Banach algebra of bounded linear operators on a complex Hilbert space \(\mathcal{H} \). The absolute value of an operator \(A \) is the positive operator \(|A| \) defined as \(|A| := (A^*A)^{1/2} \).

It is known that [3] in the infinite-dimensional case the map \(f(A) := |A| \) is not Lipschitz continuous on \(\mathcal{B}(\mathcal{H}) \) with the usual operator norm, i.e. there is no

1991 Mathematics Subject Classification. 47A63, 47A60.

Key words and phrases. Operator monotone functions, Operator inequalities, Lipschitz type inequalities.

RGMIA Res. Rep. Coll. 23 (2020), Art. 81, 16 pp. Received 09/07/20
constant $L > 0$ such that
\[\|A| - |B|\| \leq L \|A - B\| \]
for any $A, B \in \mathcal{B}(H)$.

However, as shown by Farforovskaya in [7], [8] and Kato in [14], the following inequality holds
\begin{equation}
\|A| - |B|\| \leq \frac{2}{\pi} \|A - B\| \left(2 + \log \left(\frac{\|A\| + \|B\|}{\|A - B\|} \right) \right)
\end{equation}
for any $A, B \in \mathcal{B}(H)$ with $A \neq B$.

If the operator norm is replaced with Hilbert-Schmidt norm $\|C\|_{HS} := (\text{tr} C^*C)^{1/2}$ of an operator C, then the following inequality is true [1]
\begin{equation}
\|A| - |B|\|_{HS} \leq \sqrt{2} \|A - B\|_{HS}
\end{equation}
for any $A, B \in \mathcal{B}(H)$.

The coefficient $\sqrt{2}$ is best possible for a general A and B. If A and B are restricted to be selfadjoint, then the best coefficient is 1.

It has been shown in [3] that, if A is an invertible operator, then for all operators B in a neighborhood of A we have
\begin{equation}
\|A| - |B|\| \leq a_1 \|A - B\| + a_2 \|A - B\|^2 + O \left(\|A - B\|^3 \right),
\end{equation}
where
\[a_1 = \|A^{-1}\| \|A\| \quad \text{and} \quad a_2 = \|A^{-1}\| + \|A^{-1}\|^3 \|A\|^2. \]

In [2] the author also obtained the following Lipschitz type inequality
\begin{equation}
\|f(A) - f(B)\| \leq f'(a) \|A - B\|
\end{equation}
where f is an operator monotone function on $(0, \infty)$ and $A, B \geq a > 0$.

One of the problems in perturbation theory is to find bounds for $\|f(A) - f(B)\|$ in terms of $\|A - B\|$ for different classes of measurable functions f for which the function of operator can be defined. For some results on this topic, see [4], [9] and the references therein.

We have the following representation of operator monotone functions [15], see for instance [5, p. 144-145]:

Theorem 1. A function $f : (0, \infty) \to \mathbb{R}$ is operator monotone in $(0, \infty)$ if and only if it has the representation
\begin{equation}
f(t) = a + bt + \int_0^\infty \frac{t\lambda}{t+\lambda} d\mu(\lambda),
\end{equation}
where $a \in \mathbb{R}$, $b \geq 0$ and a positive measure μ on $(0, \infty)$ such that
\begin{equation}
\int_0^\infty \frac{\lambda}{1+\lambda} d\mu(\lambda) < \infty.
\end{equation}
If f is operator monotone in $[0, \infty)$, then $a = f(0)$ in (1.5).

A real valued continuous function f on an interval I is said to be operator convex (operator concave) on I if
\begin{equation}
f((1-\lambda)A + \lambda B) \leq (\geq) (1-\lambda) f(A) + \lambda f(B)
\end{equation}
in the operator order, for all \(\lambda \in [0, 1] \) and for every selfadjoint operator \(A \) and \(B \) on a Hilbert space \(H \) whose spectra are contained in \(I \). Notice that a function \(f \) is operator concave if \(-f \) is operator convex.

We have the following representation of operator convex functions [5, p. 147]:

Theorem 2. A function \(f : (0, \infty) \to \mathbb{R} \) is operator convex in \((0, \infty) \) if and only if it has the representation

\[
 f(t) = a + bt + ct^2 + \int_0^\infty \frac{t^2 \lambda}{t + \lambda} d\mu(\lambda),
\]

where \(a, b \in \mathbb{R}, c \geq 0 \) and a positive measure \(\mu \) on \((0, \infty) \) such that (1.2) holds. If \(f \) is operator convex in \([0, \infty) \), then \(a = f(0) \) and \(b = f'_+(0) \), the right derivative, in (1.5).

We have the following integral representation for the power function when \(t > 0 \), \(r \in (0, 1] \), see for instance [5, p. 145]

\[
 t^{r-1} = \frac{\sin(r \pi)}{\pi} \int_0^\infty \frac{\lambda^{r-1}}{\lambda + t} d\lambda.
\]

Motivated by these representations, we introduce, for a continuous and positive function \(w(\lambda), \lambda > 0 \), the following integral transform

\[
 D(w, \mu)(t) := \int_0^\infty \frac{w(\lambda)}{\lambda + t} d\mu(\lambda), \quad t > 0,
\]

where \(\mu \) is a positive measure on \((0, \infty) \) and the integral (1.8) exists for all \(t > 0 \).

For \(\mu \) the Lebesgue usual measure, we put

\[
 D(w)(t) := \int_0^\infty \frac{w(\lambda)}{\lambda + t} d\lambda, \quad t > 0.
\]

Now, assume that \(T > 0 \), then by the continuous functional calculus for selfadjoint operators, we can define the positive operator

\[
 D(w, \mu)(T) := \int_0^\infty w(\lambda) (\lambda + T)^{-1} d\mu(\lambda),
\]

where \(w \) and \(\mu \) are as above. Also, when \(\mu \) is the usual Lebesgue measure, then

\[
 D(w)(T) := \int_0^\infty w(\lambda) (\lambda + T)^{-1} d\lambda,
\]

for \(T > 0 \).

If we take \(\mu \) to be the usual Lebesgue measure and the kernel \(w_r(\lambda) = \lambda^{r-1}, r \in (0, 1] \), then

\[
 t^{r-1} = \frac{\sin(r \pi)}{\pi} D(w_r)(t), \quad t > 0.
\]

For a continuous and positive function \(w(\lambda), \lambda > 0 \) and a positive measure \(\mu \) on \((0, \infty) \), we can define the following mapping, which we call monotonic integral transform, by

\[
 M(w, \mu)(t) := tD(w, \mu)(t), \quad t > 0.
\]
For \(t > 0 \) we have
\[
M(w, \mu)(t) := tD(w, \mu)(t) = \int_0^\infty w(\lambda) t (t + \lambda)^{-1} d\mu(\lambda) \\
= \int_0^\infty w(\lambda) (t + \lambda - \lambda) (t + \lambda)^{-1} d\mu(\lambda) \\
= \int_0^\infty w(\lambda) \left[1 - \lambda (t + \lambda)^{-1} \right] d\mu(\lambda).
\]

If \(\int_0^\infty w(\lambda) d\mu(\lambda) < \infty \), then
\[
M(w, \mu)(t) = \int_0^\infty w(\lambda) d\mu(\lambda) - D(\ell w, \mu)(t),
\]
where \(\ell(t) = t, t > 0 \).

Consider the kernel \(e_{-a}(\lambda) := \exp(-a\lambda), \lambda \geq 0 \) and \(a > 0 \). Then, after some calculations, we get
\[
D(e_{-a})(t) = \int_0^\infty \exp(-a\lambda) t + \lambda d\lambda = E_1(at) \exp(at), t \geq 0
\]
and
\[
\int_0^\infty w(\lambda) d\lambda = \int_0^\infty \exp(-a\lambda) d\lambda = \frac{1}{a},
\]
where the exponential integral is defined by
\[
E_1(t) := \int_t^\infty \frac{e^{-u}}{u} du.
\]
This gives that
\[
M(e_{-a})(t) = t D(w, \mu)(t) = t E_1(at) \exp(at), t \geq 0.
\]

By integration we also have
\[
D(\ell e_{-a}, \mu)(t) = \int_0^\infty \frac{\lambda \exp(-a\lambda)}{t + \lambda} d\lambda = \frac{1}{a} - t E_1(at) \exp(at)
\]
for \(t > 0 \).

One observes that
\[
M(e_{-a})(t) = \int_0^\infty w(\lambda) d\lambda - D(\ell e_{-a}, \mu)(t), t > 0
\]
and the equality (1.15) is verified in this case.

If we take \(w_r(\lambda) = \lambda^{r-1}, r \in (0, 1] \), then \(\int_0^\infty w_r(\lambda) d\lambda = \infty \) and the equality (1.15) does not hold in this case.

For all \(T > 0 \) we have, by the continuous functional calculus for selfadjoint operators, that
\[
M(w, \mu)(T) = T D(w, \mu)(T) = \int_0^\infty w(\lambda) \left[1 - \lambda (T + \lambda)^{-1} \right] d\mu(\lambda).
\]
This gives the representation
\[
T^r = \frac{\sin(r\pi)}{\pi} M(w_r, \mu)(T),
\]
where \(w_r(\lambda) = \lambda^{r-1}, r \in (0, 1] \) and \(\mu \) is the usual Lebesgue norm.
Assume that \(A = m_1 > 0, B = m_2 > 0 \), then we show that
\[
\| \mathcal{M}(w, \mu)(B) - \mathcal{M}(w, \mu)(A) \| \leq \| B - A \| \begin{cases} \frac{\mathcal{M}(w, \mu)(m_2) - \mathcal{M}(w, \mu)(m_1)}{m_2 - m_1} & \text{if } m_1 \neq m_2, \\ \mathcal{M}'(w, \mu)(m) & \text{if } m_1 = m_2 = m, \end{cases}
\]
where \(\mathcal{M}'(w, \mu)(t) \) is the derivative of \(\mathcal{M}(w, \mu) \) as a function of \(t \). If the function \(f : (0, \infty) \to \mathbb{R} \) is operator monotone in \((0, \infty) \), then
\[
\| f(B) - f(A) \| \leq \| B - A \| \begin{cases} \frac{f(m_2) - f(m_1)}{m_2 - m_1} & \text{if } m_1 \neq m_2, \\ f'(m) & \text{if } m_1 = m_2 = m. \end{cases}
\]
In particular we have the power inequalities
\[
\| B^r - A^r \| \leq \| B - A \| \begin{cases} \frac{m_2^r - m_1^r}{m_2 - m_1} & \text{if } m_1 \neq m_2, \\ rm^{r-1} & \text{if } m_1 = m_2 = m, \end{cases}
\]
and the logarithmic inequalities
\[
\| \ln B - \ln A \| \leq \| B - A \| \begin{cases} \frac{\ln m_2 - \ln m_1}{m_2 - m_1} & \text{if } m_1 \neq m_2, \\ \frac{1}{m} & \text{if } m_1 = m_2 = m. \end{cases}
\]
Some applications for operator convex functions and midpoint and trapezoid norm inequalities are also provided.

2. Main Results

We have the following equality that is of interest in itself:

Lemma 1. For all \(A, B > 0 \) we have the representation
\[
\mathcal{M}(w, \mu)(B) - \mathcal{M}(w, \mu)(A) = \int_0^1 \left(\int_0^1 (\lambda + (1 - t) A + tB)^{-1} (B - A) (\lambda + (1 - t) A + tB)^{-1} dt \right) \times \lambda w(\lambda) \ d\mu(\lambda).
\]

Proof. From (1.16) we have for all \(A, B \geq 0 \) that
\[
\mathcal{M}(w, \mu)(B) - \mathcal{M}(w, \mu)(A) = \int_0^\infty w(\lambda) \left[1 - \lambda (B + \lambda)^{-1} \right] d\mu(\lambda) - \int_0^\infty w(\lambda) \left[1 - \lambda (A + \lambda)^{-1} \right] d\mu(\lambda)
\]
\[
= \int_0^\infty \lambda w(\lambda) \left[(A + \lambda)^{-1} - (B + \lambda)^{-1} \right] d\mu(\lambda).
\]
Let \(T, S > 0 \). The function \(f(t) = -t^{-1} \) is operator monotone on \((0, \infty)\), operator Gâteaux differentiable and the Gâteaux derivative is given by
\[
\nabla f_T(S) := \lim_{\delta T \to 0} \left[\frac{f(T + \delta T) - f(T)}{\delta T} \right] = T^{-1} ST^{-1}
\]
for \(T, S > 0 \).
Consider the continuous function f defined on an interval I for which the corresponding operator function is Gâteaux differentiable on the segment $[C, D] = \{(1 - t)C + tD, \ t \in [0, 1]\}$ for C, D selfadjoint operators with spectra in I. We consider the auxiliary function defined on $[0, 1]$ by
\[
f_{C,D}(t) := f((1 - t)C + tD), \ t \in [0, 1].
\]
Then we have, by the properties of the Bochner integral, that
\[
(2.4) \quad f(D) - f(C) = \int_0^1 \frac{d}{dt} f_{C,D}(t) \, dt = \int_0^1 \nabla f_{(1-t)C+tD}(D-C) \, dt.
\]
If we write this equality for the function $f(t) = -t^{-1}$ and $C, D > 0$, then we get the representation
\[
(2.5) \quad C^{-1} - D^{-1} = \int_0^1 ((1-t)C + tD)^{-1} (D-C)((1-t)C + tD)^{-1} \, dt.
\]
Now, if we take in (2.5) $C = \lambda + A$, $D = \lambda + B$, then
\[
(2.6) \quad (\lambda + A)^{-1} - (\lambda + B)^{-1}
\]
\[
= \int_0^1 ((1-t)(\lambda + A) + t(\lambda + B))^{-1} (B-A)
\]
\[
\times ((1-t)(\lambda + A) + t(\lambda + B))^{-1} \, dt
\]
\[
= \int_0^1 (\lambda + (1-t)A + tB)^{-1} (B-A)(\lambda + (1-t)A + tB)^{-1} \, dt.
\]
By employing (2.2) and (2.6), we derive (2.1).

Corollary 1. Assume that the function $f : (0, \infty) \to \mathbb{R}$ is operator monotone in $(0, \infty)$ and it has the representation (1.5), then for all $A, B > 0$ we have the equality
\[
(2.7) \quad f(B) - f(A) = \int_0^\infty \left(\int_0^1 (\lambda + (1-t)A + tB)^{-1} (B-A)(\lambda + (1-t)A + tB)^{-1} \, dt \right) \lambda^2 \, d\mu(\lambda).
\]

Proof. From (1.5) we have for $T > 0$ that
\[
f(T) - a - bT = M(\ell, \mu)(T),
\]
for some positive measure μ, where $\ell(\lambda) = \lambda, \ \lambda \geq 0$. Therefore
\[
M(\ell, \mu)(B) - M(\ell, \mu)(A) = f(B) - f(A) - b(B - A)
\]
and by (2.1) we get (2.7).

Corollary 2. Assume that the function $f : (0, \infty) \to \mathbb{R}$ is operator convex in $(0, \infty)$ and it has the identity (1.3), then for all $A, B > 0$ we have the identity
\[
(2.8) \quad f(B)B^{-1} - f(A)A^{-1} - a(B^{-1} - A^{-1}) - c(B - A)
\]
\[
= \int_0^\infty \left(\int_0^1 (\lambda + (1-t)A + tB)^{-1} (B-A)(\lambda + (1-t)A + tB)^{-1} \, dt \right) \lambda^2 \, d\mu(\lambda).
\]
Proof. From (1.7) we have for $T > 0$ that
\[
(f(T) - a)T^{-1} - b - cT = M(\ell, \mu)(T),
\]
for some positive measure μ. Therefore
\[
M(\ell, \mu)(B) - M(\ell, \mu)(A) = (f(B) - a)B^{-1} - (f(A) - a)A^{-1} - c(B - A)
\]
and by (2.1) we get (2.8).

\[\square\]

Remark 1. If $f : [0, \infty) \to \mathbb{R}$ is operator convex in $[0, \infty)$, then we can take $a = f(0)$ and by (2.8) we get
\[
\begin{align*}
(2.9) \quad f(B)B^{-1} - f(A)A^{-1} - f(0)(B^{-1} - A^{-1}) - c(B - A) \\
= & \int_0^\infty \left(\int_0^1 (\lambda + (1 - t)A + tB)^{-1}(B - A)(\lambda + (1 - t)A + tB)^{-1}dt \right) \\
& \times \lambda^2 d\mu(\lambda).
\end{align*}
\]

Remark 2. From the representation (2.1) we observe that if $B \geq A > 0$, then
\[
M(w, \mu)(B) \geq M(w, \mu)(A)
\]
which means that $M(w, \mu)$ is operator monotone on $(0, \infty)$, see also [6].

We have the following Lipschitz type inequality:

Theorem 3. Assume that $A \geq m_1 > 0$, $B \geq m_2 > 0$, then
\[
\begin{align*}
(2.10) \quad & \|M(w, \mu)(B) - M(w, \mu)(A)\| \\
\leq & \|B - A\| \left\{ \begin{array}{ll}
\frac{M(w, \mu)(m_2) - M(w, \mu)(m_1)}{m_2 - m_1} & \text{if } m_1 \neq m_2, \\
M'(w, \mu)(m) & \text{if } m_1 = m_2 = m,
\end{array} \right.
\end{align*}
\]

where $M'(w, \mu)(t)$ is the derivative of $M(w, \mu)$ as a function of t.

Proof. From the identity (2.6) we get by taking the norm that
\[
\begin{align*}
(2.11) \quad & \|M(w, \mu)(B) - M(w, \mu)(A)\| \\
\leq & \int_0^\infty \left(\int_0^1 (\lambda + (1 - t)A + tB)^{-1}(B - A)(\lambda + (1 - t)A + tB)^{-1}dt \right) \\
& \times \lambda w(\lambda) d\mu(\lambda) \\
\leq & \int_0^\infty \left(\int_0^1 \|\lambda + (1 - t)A + tB\|^{-1}(B - A)(\lambda + (1 - t)A + tB)^{-1}dt \right) \\
& \times \lambda w(\lambda) d\mu(\lambda) \\
\leq & \|B - A\| \int_0^\infty \lambda w(\lambda) \left(\int_0^1 \|\lambda + (1 - t)A + tB\|^{-1}dt \right) d\mu(\lambda)
\end{align*}
\]

for all $A, B > 0$.

Assume that $m_2 > m_1$. Then
\[
(1 - t)A + tB + \lambda \geq (1 - t)m_1 + tm_2 + \lambda,
\]
which implies that
\[
((1 - t)A + tB + \lambda)^{-1} \leq ((1 - t)m_1 + tm_2 + \lambda)^{-1},
\]
and

\[(2.12) \quad \left\| (1-t) A + tB + \lambda \right\|^{-2} \leq ((1-t) m_1 + tm_2 + \lambda)^{-2}\]

for all \(t \in [0, 1] \) and \(\lambda \geq 0 \).

Therefore, by integrating (2.12) we derive

\[
\int_0^\infty \lambda w(\lambda) \left(\int_0^1 \left\| (1-t) A + tB + \lambda \right\|^{-2} dt \right) dw(\lambda)
\leq \int_0^\infty \lambda w(\lambda) \left(\int_0^1 ((1-t) m_1 + tm_2 + \lambda)^{-1} dt \right) dw(\lambda)
\]

\[
= \frac{1}{m_2 - m_1} \int_0^\infty \lambda w(\lambda) \left(\int_0^1 ((1-t) m_1 + tm_2 + \lambda)^{-1} dt \right) dw(\lambda)
= \frac{1}{m_2 - m_1} \left[M(w, \mu)(m_2) - M(w, \mu)(m_1) \right] \quad \text{(by (2.1))}
\]

and by (2.11) we deduce

\[(2.13) \quad \| M(w, \mu)(B) - M(w, \mu)(A) \| \leq \frac{1}{m_2 - m_1} \left[M(w, \mu)(m_2) - M(w, \mu)(m_1) \right].\]

The case \(m_2 < m_1 \) goes in a similar way and we also obtain (2.13). Let \(\epsilon > 0 \). Then \(B + \epsilon \geq m + \epsilon > m \). From (2.13) we get

\[
\| M(w, \mu)(B + \epsilon) - M(w, \mu)(A) \|
\leq \frac{1}{m + \epsilon - m} \left[M(w, \mu)(m + \epsilon) - M(w, \mu)(m) \right]
\]

and by taking the limit over \(\epsilon \to 0^+ \), using the continuity and differentiability of \(M(w, \mu) \) we deduce the second part of (2.10). \(\square \)

Corollary 3. Assume that the function \(f : (0, \infty) \to \mathbb{R} \) is operator monotone in \((0, \infty)\) and it has the representation (1.5). If \(A \geq m_1 > 0, B \geq m_2 > 0 \), then,

\[(2.14) \quad \| f(B) - f(A) - b(B - A) \|
\leq \| B - A \| \left\{ \begin{array}{ll}
(f(m_2) - f(m_1)) - b) & \text{if } m_1 \neq m_2, \\
(f'(m) - bm) & \text{if } m_1 = m_2 = m.
\end{array} \right.\]

Proof. From (1.5) we have for \(T > 0 \) that

\[
f(T) - a - bT = M(\ell, \mu)(T),
\]

for some positive measure \(\mu \), where \(\ell(\lambda) = \lambda, \lambda \geq 0 \). Therefore

\[
M(\ell, \mu)(B) - M(w, \mu)(A) = f(B) - f(A) - b(B - A),
\]

\[
M(\ell, \mu)(m_2) - M(w, \mu)(m_1) = f(m_2) - f(m_1) - b(m_2 - m_1)
\]

and

\[
M'(\ell, \mu)(m) = f'(m) - bm.
\]
By (2.10) we obtain
\[
\left\| f(B) - f(A) - b(B - A) \right\| \leq \|B - A\| \left\{ \begin{array}{ll}
\frac{f(m_2) - f(m_1)}{m_2 - m_1} & \text{if } m_1 \neq m_2, \\
(f'(m) - bm) & \text{if } m_1 = m_2 = m,
\end{array} \right.
\]
which is equivalent to (2.14).

By the properties of the norm, we have
\[
\left\| f(B) - f(A) \right\| - b \left\| B - A \right\| \leq \left\| f(B) - f(A) - b(B - A) \right\| \leq \|B - A\| \left\{ \begin{array}{ll}
\frac{f(m_2) - f(m_1)}{m_2 - m_1} & \text{if } m_1 \neq m_2, \\
(f'(m) - bm) & \text{if } m_1 = m_2 = m,
\end{array} \right.
\]
which implies the following inequalities in which the nonnegative parameter b is not involved
\[
\left\| f(B) - f(A) \right\| \leq \|B - A\| \left\{ \begin{array}{ll}
\frac{f(m_2) - f(m_1)}{m_2 - m_1} & \text{if } m_1 \neq m_2, \\
(f'(m) - bm) & \text{if } m_1 = m_2 = m,
\end{array} \right.
\]
where the function $f : (0, \infty) \rightarrow \mathbb{R}$ is operator monotone in $(0, \infty)$.

By employing this inequality for power and logarithmic functions we can state the following results of interest:

Proposition 1. If $A \geq m_1 > 0$, $B \geq m_2 > 0$, then for $r \in (0, 1]$ we have the power inequalities
\[
\left\| B^r - A^r \right\| \leq \|B - A\| \left\{ \begin{array}{ll}
m_2^r - m_1^r & \text{if } m_1 \neq m_2, \\
r m_2^{r-1} & \text{if } m_1 = m_2 = m,
\end{array} \right.
\]
and the logarithmic inequalities
\[
\left\| \ln B - \ln A \right\| \leq \|B - A\| \left\{ \begin{array}{ll}
\frac{\ln m_2 - \ln m_1}{m_2 - m_1} & \text{if } m_1 \neq m_2, \\
\frac{1}{m} & \text{if } m_1 = m_2 = m.
\end{array} \right.
\]

Corollary 4. Assume that $f : [0, \infty) \rightarrow \mathbb{R}$ is operator convex in $[0, \infty)$ that has the representation (1.7). If $A \geq m_1 > 0$, $B \geq m_2 > 0$, then
\[
\left\| f(B)B^{-1} - f(A)A^{-1} - f(0)(B^{-1} - A^{-1}) - c(B - A) \right\| \leq \|B - A\| \left\{ \begin{array}{ll}
\frac{f(m_2)m_2^{-1} - f(m_1)m_1^{-1} - f(0)(m_2^{-1} - m_1^{-1})}{m_2 - m_1} - c & \text{if } m_1 \neq m_2, \\
\frac{f'(m)m - f(m) + f(0)}{m^2} - c & \text{if } m_1 = m_2 = m.
\end{array} \right.
\]
If \(f(0) = 0 \), then we have the simpler inequalities

\[
\| f(B)B^{-1} - f(A)A^{-1} - c(B - A) \|
\leq \| B - A \| \left\{ \begin{array}{ll}
\frac{f(m_2)m_2^{-1} - f(m_1)m_1^{-1}}{m_2 - m_1} - c & \text{if } m_1 \neq m_2, \\
\frac{f'(m)m - f(m)}{m^2} - c & \text{if } m_1 = m_2 = m.
\end{array} \right.
\]

(2.19)

\[
\text{Proof. From (1.7) we have for } T > 0 \text{ that}
\]

\[
(f(T) - f(0))T^{-1} - f'_+(0) - cT = \mathcal{M}(\ell, \mu)(T),
\]

for some positive measure \(\mu \). Therefore

\[
\mathcal{M}(\ell, \mu)(B) - \mathcal{M}(\ell, \mu)(A)
= f(B)B^{-1} - f(A)A^{-1} - f(0)(B^{-1} - A^{-1}) - c(B - A),
\]

\[
\mathcal{M}(\ell, \mu)(m_2) - \mathcal{M}(\ell, \mu)(m_1)
= f(m_2)m_2^{-1} - f(m_1)m_1^{-1} - f(0)(m_2^{-1} - m_1^{-1}) - c(m_2 - m_1)
\]

and

\[
\mathcal{M}(\ell, \mu)(m) = \frac{f'(m)m - f(m) + f(0)}{m^2} - c.
\]

Then by (2.10) we get

\[
\| f(B)B^{-1} - f(A)A^{-1} - f(0)(B^{-1} - A^{-1}) - c(B - A) \|
\leq \| B - A \| \left\{ \begin{array}{ll}
\frac{f(m_2)m_2^{-1} - f(m_1)m_1^{-1} - f(0)(m_2^{-1} - m_1^{-1})}{m_2 - m_1} - c & \text{if } m_1 \neq m_2, \\
\frac{f'(m)m - f(m) + f(0)}{m^2} - c & \text{if } m_1 = m_2 = m,
\end{array} \right.
\]

and the inequality (2.18) is obtained. \qed

By the properties of the norm, we have

\[
\| f(B)B^{-1} - f(A)A^{-1} - f(0)(B^{-1} - A^{-1}) - c(B - A) \|
\leq \| B - A \| \left\{ \begin{array}{ll}
\frac{f(m_2)m_2^{-1} - f(m_1)m_1^{-1} - f(0)(m_2^{-1} - m_1^{-1})}{m_2 - m_1} - c & \text{if } m_1 \neq m_2, \\
\frac{f'(m)m - f(m) + f(0)}{m^2} - c & \text{if } m_1 = m_2 = m,
\end{array} \right.
\]

which implies the following inequalities in which the nonnegative parameter \(c \) is not involved

(2.20)

\[
\| f(B)B^{-1} - f(A)A^{-1} - f(0)(B^{-1} - A^{-1}) \|
\leq \| B - A \| \left\{ \begin{array}{ll}
\frac{f(m_2)m_2^{-1} - f(m_1)m_1^{-1} - f(0)(m_2^{-1} - m_1^{-1})}{m_2 - m_1} & \text{if } m_1 \neq m_2, \\
\frac{f'(m)m - f(m) + f(0)}{m^2} & \text{if } m_1 = m_2 = m.
\end{array} \right.
\]

By applying this inequality to the operator convex function \(f(t) = -\ln(t + 1) \),
then we can state the following result:
Proposition 2. If $A \geq m_1 > 0$, $B \geq m_2 > 0$, then we have the logarithmic inequalities

\begin{equation}
\| B^{-1} \ln (B + 1) - A^{-1} \ln (A + 1) \| \leq \| B - A \| \begin{cases}
\frac{m_2^{-1} \ln (m_2 + 1) - m_2^{-1} \ln (m_2 + 1)}{m_2 - m_1} & \text{if } m_1 \neq m_2, \\
\frac{\ln (m + 1) - m (m + 1)^{-1}}{m^2} & \text{if } m_1 = m_2 = m.
\end{cases}
\end{equation}

3. Midpoint and Trapezoid Inequalities

We have the following midpoint type inequalities:

Proposition 3. For all $A, B \geq m > 0$ we have the midpoint inequality

\begin{equation}
\int_0^1 \mathcal{M} (w, \mu) ((1 - t) A + t B) dt - \mathcal{M} (w, \mu) \left(\frac{A + B}{2} \right) \leq \frac{1}{4} \mathcal{M}' (w, \mu) (m) \| B - A \|.
\end{equation}

Proof. Since $A, B \geq m$, hence $\frac{A + B}{2} \geq m > 0$ and $(1 - t) A + t B \geq m > 0$ for all $t \in [0, 1]$ and by (2.10)

\begin{equation}
\mathcal{M} (w, \mu) ((1 - t) A + t B) - \mathcal{M} (w, \mu) \left(\frac{A + B}{2} \right) \\
\leq \mathcal{M}' (w, \mu) (m) \left((1 - t) A + t B - \frac{A + B}{2} \right) \\
= \mathcal{M}' (w, \mu) (m) \left| t - \frac{1}{2} \right| \| B - A \|
\end{equation}

for all $t \in [0, 1]$.

Taking the integral in (3.2), we get

\begin{equation}
\int_0^1 \mathcal{M} (w, \mu) ((1 - t) A + t B) dt - \mathcal{M} (w, \mu) \left(\frac{A + B}{2} \right) \leq \int_0^1 \mathcal{M} (w, \mu) ((1 - t) A + t B) - \mathcal{M} (w, \mu) \left(\frac{A + B}{2} \right) dt \\
\leq \mathcal{M}' (w, \mu) (m) \| B - A \| \int_0^1 \left| t - \frac{1}{2} \right| dt = \frac{1}{4} \mathcal{M}' (w, \mu) (m) \| B - A \|
\end{equation}

and the inequality (3.1) is proved. \hfill \square

We have the following midpoint type inequalities:

Proposition 4. For all $A, B \geq m > 0$ we have the trapezoid inequality

\begin{equation}
\left\| \mathcal{M} (w, \mu) (A) + \mathcal{M} (w, \mu) (B) \right\| - \int_0^1 \mathcal{M} (w, \mu) ((1 - t) A + t B) dt \leq \frac{1}{4} \mathcal{M}' (w, \mu) (m) \| B - A \|.
\end{equation}
Proof. Since $A, B \geq m$, hence $(1 - s) A + s \frac{A + B}{2}, s \frac{A + B}{2} + (1 - s) B \geq m > 0$ for all $s \in [0, 1]$ and by (3) we get

\begin{align}
(3.4) \quad & \left\| \mathcal{M}(w, \mu) (A) - \mathcal{M}(w, \mu) \left((1 - s) A + s \frac{A + B}{2} \right) \right\| \\
& \leq \frac{1}{2} \mathcal{M}'(w, \mu)(m) \| B - A \| s
\end{align}

and

\begin{align}
(3.5) \quad & \left\| \mathcal{M}(w, \mu) (B) - \mathcal{M}(w, \mu) \left(s \frac{A + B}{2} + (1 - s) B \right) \right\| \\
& \leq \frac{1}{2} \mathcal{M}'(w, \mu)(m) \| B - A \| s.
\end{align}

From (3.4) and (3.5) we derive by addition, division by 2 and triangle inequality that

\begin{align}
\left\| \frac{\mathcal{M}(w, \mu)(A) + \mathcal{M}(w, \mu)(B)}{2} \\
- \frac{1}{2} \left[\mathcal{M}(w, \mu) \left((1 - s) A + s \frac{A + B}{2} \right) + \mathcal{M}(w, \mu) \left(s \frac{A + B}{2} + (1 - s) B \right) \right] ds \right\| \\
\leq \frac{1}{2} \mathcal{M}'(w, \mu)(m) \| B - A \| s
\end{align}

for all $s \in [0, 1]$.

By taking the integral and using its properties, we derive

\begin{align}
(3.6) \quad & \left\| \frac{\mathcal{M}(w, \mu)(A) + \mathcal{M}(w, \mu)(B)}{2} \\
& - \frac{1}{2} \left[\mathcal{M}(w, \mu) \left((1 - t) A + t \frac{A + B}{2} \right) \\
& + \mathcal{M}(w, \mu) \left(t \frac{A + B}{2} + (1 - t) B \right) ds \right] \right\| \\
& \leq \frac{1}{2} \mathcal{M}'(w, \mu)(m) \| B - A \| \int_0^1 s ds = \frac{1}{4} \mathcal{M}'(w, \mu)(m) \| B - A \|.
\end{align}

Now, using the change of variable $t = 2s$ we have

\begin{align}
\frac{1}{2} \int_0^1 \mathcal{M}(w, \mu) \left((1 - t) A + t \frac{A + B}{2} \right) dt = \int_0^{1/2} \mathcal{M}(w, \mu) ((1 - s) A + s B) ds
\end{align}

and by the change of variable $t = 1 - v$ we have

\begin{align}
\frac{1}{2} \int_0^1 \mathcal{M}(w, \mu) \left(t \frac{A + B}{2} + (1 - t) A \right) dt \\
= \frac{1}{2} \int_0^1 \mathcal{M}(w, \mu) \left((1 - v) \frac{A + B}{2} + vB \right) dv.
\end{align}

Moreover, if we make the change of variable $v = 2s - 1$ we also have

\begin{align}
\frac{1}{2} \int_0^1 \mathcal{M}(w, \mu) \left((1 - v) \frac{A + B}{2} + vB \right) dv = \int_{1/2}^1 \mathcal{M}(w, \mu) ((1 - s) A + s B) ds.
\end{align}
Therefore
\[
\frac{1}{2} \int_0^1 \left[\mathcal{M}(w, \mu) \left((1 - s) A + s \frac{A + B}{2} \right) + \mathcal{M}(w, \mu) \left(s \frac{A + B}{2} + (1 - s) B \right) \right] ds
\]
\[
= \int_0^{1/2} \mathcal{M}(w, \mu) ((1 - s) A + sB) ds + \int_{1/2}^1 \mathcal{M}(w, \mu) ((1 - s) A + sB) ds
\]
\[
= \int_0^1 \mathcal{M}(w, \mu) ((1 - s) A + sB) ds
\]
and by (3.6) we deduce the desired result (3.3).

The case of operator monotone functions is as follows:

Corollary 5. Assume that the function \(f : (0, \infty) \to \mathbb{R} \) is operator monotone in \((0, \infty)\) and it has the representation (1.5). If \(A, B \geq m > 0 \), then we have the midpoint inequality

\[
(3.7) \quad \left\| \int_0^1 f ((1 - t) A + tB) dt - f \left(\frac{A + B}{2} \right) \right\|
\leq \frac{1}{4} [f'(m) - b] \|B - A\| \leq \frac{1}{4} f'(m) \|B - A\|
\]

and the trapezoid inequality

\[
(3.8) \quad \left\| \frac{f(A) + f(B)}{2} - \int_0^1 f ((1 - t) A + tB) dt \right\|
\leq \frac{1}{4} [f'(m) - b] \|B - A\| \leq \frac{1}{4} f'(m) \|B - A\|.
\]

Proof. From (1.5) we have for \(T > 0 \) that

\[f(T) - a - bT = \mathcal{M}(\ell, \mu)(T), \]

for some positive measure \(\mu \), where \(\ell(\lambda) = \lambda, \lambda \geq 0 \).

Therefore

\[
\int_0^1 \mathcal{M}(\ell, \mu) ((1 - t) A + tB) dt = \int_0^1 f ((1 - t) A + tB) dt - a - b \left(\frac{A + B}{2} \right),
\]

\[
\mathcal{M}(\ell, \mu) \left(\frac{A + B}{2} \right) = f \left(\frac{A + B}{2} \right) - a - b \left(\frac{A + B}{2} \right)
\]

and

\[
\mathcal{M}'(\ell, \mu)(m) = f'(m) - b.
\]

From (3.1) we derive (3.7).

Since

\[
\mathcal{M}(\ell, \mu)(A) = f(A) - a - bA, \text{ and } \mathcal{M}(\ell, \mu)(B) = f(B) - a - bB,
\]

then by (3.3) we derive (3.8).

Remark 3. If \(A, B \geq m > 0 \), then we have the midpoint inequality and the trapezoid inequality for power function with exponent \(r \in (0, 1) \)

\[
(3.9) \quad \left\| \int_0^1 ((1 - t) A + tB)^r dt - \left(\frac{A + B}{2} \right)^r \right\| \leq \frac{1}{4} rm^{r-1} \|B - A\|
\]
(3.10) \[\left\| \frac{A^r + B^r}{2} - \int_0^1 ((1-t)A + tB)^r \, dt \right\| \leq \frac{1}{4} rm^{r-1} \|B - A\|. \]

The following inequalities for logarithm also hold

(3.11) \[\left\| \int_0^1 \ln ((1-t)A + tB) \, dt - \ln \left(\frac{A + B}{2} \right) \right\| \leq \frac{1}{4m} \|B - A\| \]

and

(3.12) \[\left\| \frac{\ln A + \ln B}{2} - \int_0^1 \ln ((1-t)A + tB) \, dt \right\| \leq \frac{1}{4m} \|B - A\|. \]

Corollary 6. Assume that \(f : [0, \infty) \to \mathbb{R} \) is operator convex in \([0, \infty)\) that has the representation (1.7). If \(A \geq m > 0, B \geq m > 0 \), then

(3.13) \[\left\| \int_0^1 f((1-t)A + tB)((1-t)A + tB)^{-1} \, dt - f\left(\frac{A + B}{2} \right) \left(\frac{A + B}{2} \right)^{-1} \right\| \]

\[= f(0) \left(\int_0^1 ((1-t)A + tB)^{-1} \, dt - \left(\frac{A + B}{2} \right)^{-1} \right) \]

\[\leq \frac{1}{4} \left(\frac{f'(m) m - f(m) + f(0)}{m^2} - c \right) \|B - A\| \]

\[\leq \frac{f'(m) m - f(m) + f(0)}{4m^2} \|B - A\|. \]

and

(3.14) \[\left\| \frac{f(A)A^{-1} + f(B)B^{-1}}{2} - \int_0^1 f((1-t)A + tB)((1-t)A + tB)^{-1} \, dt \right\| \]

\[= f(0) \left(\frac{A^{-1} + B^{-1}}{2} - \int_0^1 ((1-t)A + tB)^{-1} \, dt \right) \]

\[\leq \frac{1}{4} \left(\frac{f'(m) m - f(m) + f(0)}{m^2} - c \right) \|B - A\| \]

\[\leq \frac{f'(m) m - f(m) + f(0)}{4m^2} \|B - A\|. \]

Proof. From (1.7) we have for \(T > 0 \) that

\[\mathcal{M}(\ell, \mu)(T) = (f(T) - f(0)) T^{-1} - f^*_+(0) - cT, \]

for some positive measure \(\mu \). Therefore

\[\int_0^1 \mathcal{M}(\ell, \mu)((1-t)A + tB) \, dt \]

\[= \int_0^1 f((1-t)A + tB)((1-t)A + tB)^{-1} \, dt - f(0) \int_0^1 ((1-t)A + tB)^{-1} \, dt \]

\[- f^*_+(0) - c \left(\frac{A + B}{2} \right), \]
\[
\mathcal{M}(\ell, \mu) \left(\frac{A + B}{2} \right) = f \left(\frac{A + B}{2} \right) \left(\frac{A + B}{2} \right)^{-1} - f(0) \left(\frac{A + B}{2} \right)^{-1} - f'(0) - c \left(\frac{A + B}{2} \right),
\]

and

\[
\mathcal{M}(\ell, \mu) (m) = \frac{f'(m) m - f(m) + f(0)}{m^2} - c.
\]

By utilising (3.1) we get (3.13).

Since

\[
\mathcal{M}(\ell, \mu) (A) = (f (A) - f (0)) A^{-1} - f'_+ (0) - c A
\]

and

\[
\mathcal{M}(\ell, \mu) (B) = (f (B) - f (0)) B^{-1} - f'_+ (0) - c B,
\]

hence by (3.3) we get (3.14).

\[
\text{Remark 4. In the case when } f(0) = 0 \text{ in Corollary 6, we have the simpler inequalities}
\]

\[
\left\| \int_0^1 f ((1 - t) A + tB) ((1 - t) A + tB)^{-1} dt - f \left(\frac{A + B}{2} \right) \left(\frac{A + B}{2} \right)^{-1} \right\| \leq \frac{1}{4} \left(\frac{f'(m) m - f(m)}{m^2} - c \right) \| B - A \| \leq \frac{f'(m) m - f(m)}{4m^2} \| B - A \|
\]

and

\[
\left\| \frac{f (A) A^{-1} + f (B) B^{-1}}{2} - \int_0^1 f ((1 - t) A + tB) ((1 - t) A + tB)^{-1} dt \right\| \leq \frac{1}{4} \left(\frac{f'(m) m - f(m)}{m^2} - c \right) \| B - A \| \leq \frac{f'(m) m - f(m)}{4m^2} \| B - A \|.
\]

If in these inequalities we take the operator convex function \(f(t) = -\ln (t + 1) \), then we get

\[
\left\| \int_0^1 \ln ((1 - t) A + tB + 1) ((1 - t) A + tB)^{-1} dt - \ln \left(\frac{A + B}{2} + 1 \right) \left(\frac{A + B}{2} \right)^{-1} \right\| \leq \frac{\ln (m + 1) - m (m + 1)^{-1}}{m^2} \| B - A \|
\]

and

\[
\left\| \frac{A^{-1} \ln (A + 1) + B^{-1} \ln (B + 1)}{2} - \int_0^1 \ln ((1 - t) A + tB + 1) ((1 - t) A + tB)^{-1} dt \right\| \leq \frac{\ln (m + 1) - m (m + 1)^{-1}}{m^2} \| B - A \|.
\]
References

[12] T. Furuta, Precise lower bound of \(f(A) - f(B)\) for \(A > B > 0\) and non-constant operator monotone function \(f\) on \([0, \infty)\). *J. Math. Inequal.* **9** (2015), no. 1, 47–52.

1Department of Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

2DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, & Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa.