OPERATOR CONVEXITY OF THE CONVEX INTEGRAL
TRANSFORM FOR POSITIVE OPERATORS IN HILBERT
SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. For a continuous and positive function w(A), A > 0 and p a
positive measure on (0, co) we consider the following convex integral transform

¢ (M) = [Tu T A1) dn (),

where the integral is assumed to exist for T" a positive operator on a complex
Hilbert space H.
We show among others that
€ (w, ) (A) + € (w, 1) (B) A+B

- %/Ooo (A -0 s ) (s e )
X ((A+A)—1 — (A+B)_1> A2w (A) dp (M)
> 0.

for all A, B > 0, implying that C (w, p) (¢) is operator convex on (0, o) . Several
examples involving the exponential and logarithmic functions are also given.

1. INTRODUCTION

Consider a complex Hilbert space (H, (-, -}). An operator T is said to be positive
(denoted by T > 0) if (T'z,z) > 0 for all z € H and also an operator T is said to
be strictly positive (denoted by T > 0) if T is positive and invertible.

We have the following integral representation for the power function when ¢ > 0,
r € (0,1], see for instance [1, p. 145]

i [e's) )\rfl
11 ro1_ Sin (rm) / .
(1.1) t ™ 0o A+ td/\

Observe that for t > 0, ¢t # 1, we have

/“ d\ Int 1 u+t
= + In

o A+tH(A+1)  t—1 "1—t \u+1

for all u > 0.

By taking the limit over u — oo in this equality, we derive

Int _/°° d\
t—1  Jo A+t)(A+1)
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which gives the representation for the logarithm

o0 A
(1.2) lnt:(t—l)/o CESIeE

for all ¢ > 0.
Motivated by these representations, we introduce, for a continuous and positive
function w (A), A > 0, the following integral transform

(13) Dl 0= [ a3, >0

where p is a positive measure on (0, 00) and the integral (1.3) exists for all ¢ > 0.
For p the Lebesgue usual measure, we put

(1.4) D(w) (t) == /OOO %d)\, t>0.

If we take p to be the usual Lebesgue measure and the kernel w, () = A",
€ (0,1], then
sin (rm)

(1.5) tr1 = - D (w,) (t), t > 0.

For the same measure, if we take the kernel wy, (A\) = (A+1)"", ¢ > 0, we have
the representation

(1.6) Int = (t—1)D (ww) (t), t > 0.

Assume that T' > 0, then by the continuous functional calculus for selfadjoint
operators, we can define the positive operator

(L7) Dwo) ()= [ w4 1) du ),

where w and p are as above. Also, when g is the usual Lebesgue measure, then
(1.8) D (w) (T) = /Ooow ) +T) " dx,

for T'> 0.

A real valued continuous function f on (0,00) is said to be operator monotone
if f(A) > f(B) holds for any A > B > 0.

We have the following representation of operator monotone functions [8], see for
instance [1, p. 144-145]:

Theorem 1. A function f : (0,00) — R is operator monotone in (0,00) if and
only if it has the representation

A
1.9 t) = bt ——dp (A
(19) Fy=asber [ i),
where a € R, b > 0 and a positive measure p on (0,00) such that
A
1.10 ——dp (A .
(1.10) | i <o

If f is operator monotone in [0,00), then a = f (0) in (1.9).
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A real valued continuous function f on an interval [ is said to be operator convex
(operator concave) on I if

(0C) f(A=XNA+AB) < (2)(1=A) f(A)+Af(B)

in the operator order, for all A € [0,1] and for every selfadjoint operator A and B
on a Hilbert space H whose spectra are contained in I. Notice that a function f is
operator concave if — f is operator convex.

We have the following representation of operator convex functions [1, p. 147]:

Theorem 2. A function f : (0,00) — R is operator convex in (0,00) if and only if
it has the representation

2\
_ 2
(1.11) ft)=a+0bt+ct +/0 —H/\du(A),

where a, b € R, ¢ > 0 and a positive measure p on (0,00) such that (1.2) holds. If
[ is operator convex in [0,00), then a = f(0) and b = f! (0), the right derivative,
in (1.11).

For a continuous and positive function w (\), A > 0 and a positive measure p
on (0,00), we can define the following mapping, which we call the convex integral
transform,

(1.12) C(w, p) (t) == t*D(w,p) (t), t > 0.
For ¢t > 0 we have

(113)  Clop) @)= [ w e+ du )
:/Ooow(A)(t—s—)\—>\)2(t+/\)_1du(>\)
:/Ooowm [+ 00 = 27 (0 ) + 4% (64 2) 7 e ()
:/Ooow(x) [+ =22 22 (040 du (Y

= [Com-a e au.
0

Using the continuous functional calculus for selfadjoint operators in Hilbert
spaces we can introduce the following convex integral transform of the positive
operator T’

) ()= w2 O+ T) (1),

provided the integral exist.
In this paper, we show among others that

C (w,p) (A) +C (w, p) (B) A+ B
R ‘C(ww(z)

- ;/OOO (()\ T AT O+ B)—l) (()\ FAT O+ B)-l)

-1

X (()\ AT O B)’l) Nw (A) dp (N)
> 0.
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for all A, B > 0, implying that C (w, u) (¢) is operator convex on (0,00). Several
examples involving the exponential and logarithmic functions are also given.
2. SOME PRELIMINARY FACTS

We start with the following elementary identity that give a simple proof for the
fact that the function f (¢) = ¢t~! is operator convex on (0, 00), see for instance [6,

p. 8]
Lemma 1. For any A, B > 0 we have

@) A'4 Bl (A+B\T!
’ 2 2
-1_ p-1 -1 -1\ Lg-1_pa
_(@Aat-Bh(4 +QB ) (A'-B )20'

If more assumptions are made for the operators A and B, then one can obtain
the following lower and upper bounds:

Corollary 1. Assume that 0 < a < A< f and 0 <y < B < § for some constants
a, B, 7, 0. Then

(2.2) (@ '+ ) (A = BT

2<A*1+B*1 A+ B\ !
- 2 2

N | =

1 _
<5 (B8 (A - B,
Proof. We have 7' < A~' <o ' and 6 ' < B~ <~ !, which gives
Bl4o <A 4B l<alyqyt

namely
1

(@l 4y ) <@ 4B ) (B )T
By multiplying both sides by (A’l — B’l) and dividing by 2, we get
AP =B Y (At 4B ) (A — B
2
-1 —1\—1/ 1 —1\2
B+ (AP =-B7Y).

b e

<

N =

We know that for T' > 0, we have the operator inequalities
(2.3) o< | <T<|T).
Indeed, it is well known that, if P > 0, then
|(Pa,y)* < (Pz,z) (Py,y)

for all z, y € H.
Therefore, if T > 0, then

0< (m,x>2 = <T_1Tx733>2 = <Tm7T_1:1c>2
< (Tx,z)(TT 2, T 'z) = (Tx,z) (x, T ')
for all x € H.
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If x € H, ||z|| = 1, then
1< (Ta,z) (z, T 2) < (T, x) sup (x,T 'a) = (Tz,z)||T~"

llzll=1

)

which implies the following operator inequality
|t <
The second inequality in (2.3) is obvious.
Remark 1. If A, B> 0 and B — A > 0, then by taking o = ||A’1||71, 8 =14,
v = HB_1H_1 and § = ||B|| in (2.2), we get

(= + 1)~ (At = B

Al BY (A+B\T
2 2

(2.4) %

<

1 _ S\, 12
<5 (Il + 1Bt (AT -
A continuous function g : SA; (H) — B (H) is said to be Gdteauz differentiable
in A € SA; (H), the class of selfadjoint operators on I, along the direction B €
B (H) if the following limit exists in the strong topology of B (H)

g(A+SB)—g<A) GB(H)

(2.5) Vga (B) = lim

If the limit (2.5) exists for all B € B (H) , then we say that g is Gateauz differentiable
in A and we can write g € G (A). If this is true for any A in an open set S from
SA; (H) we write that g € G (S).

If g is a continuous function on I, by utilising the continuous functional calculus
the corresponding function of operators will be denoted in the same way.

For two distinct operators A, B € SA; (H) we consider the segment of selfadjoint
operators

[A,Bl:={(1—-t)A+tB |te[0,1]}.

We observe that A, B € [A,B] and [A,B] C SA; (H).

We have the following gradient inequalities, see for instance

Lemma 2. Let [ be an operator convex function on I and A, B € SA; (H), with
A#B.If feG([A, B]), then

(2.6) Vaf(B—A) = f(B)—f(A)=Vaf(B-A4).

Let T, S > 0. The function f(t) = t~! is operator Gateaux differentiable and
the Gateaux derivative is given by

(2.7) Vir(S):=lim f(T+15) - f(T)

t—0 t

=-T'sT!

for T, S > 0.
Using (2.7) for the operator convex function f (t) =¢~1, we get

-D*D-C)D'>D*t'-Cct>-c ' D-C)C!
that is equivalent to

(2.8) DY D-C)Dl<Cct-Dt<Cc N (D-C)C
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for all C;, D > 0.
If
m<D-C<M
for some constants m, M, then
mD™2< D Y(D-C)D™*
and
c'(b-c)ct < MC?
and by (2.8) we derive
(2.9) mD™2<C'-D'<MC2
Moreover, if C' > a > 0 and D < §, then we get
C?<a?and D%2>572,

which implies that
(2.10) —<Ccl'-DpDl<=

Corollary 2. Assume that 0 < a < A< B, 0<yv<B<dand 0<m<B—-—A<
M for some constants «, B, v, d, m, M. Then

2
(211)  0<i(ati )t
2 5
1 1 —1
< ety g e AT (A;B>

_ -1 M?
(87 +07) T

IN

(76T B e

| =

Proof. From (2.10) we have

R E

which implies that

[\

2

m -1 —1)\2
0<tr (At -B) < 0y
and by (2.2) we get (2.11). O
Remark 2. If the positive operators A, B are separated, namely 0 < a < A< B <
v < B <4 for some constants «, B, 7y, §, then obviously0 < y—f < B—-A<{§—«
and by (2.11) form =~ —f and M = § — «, we get

(=87 _1

s T2
<A‘H—B—l_ A+ B\ !
- 2 2

(212 0<g(a 4y (0 ty ) (A - By

—1 (5701)2.

<G @A B S (5 )

|~

«
If 0 < ||A]|[|B7Y]| < 1, then

o<|Aa7 <A< A< |BY T < B<|B
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and by (2.12) we get

(2.13)

(s =)’
iy ey P 141)

I1BI*
<5 (a7 (a7 =37

A'4+B! (A+B -1
2 2

>—lw\>—l

2

(141~ +1817) (a7~ B’

SE e (1Bl a7 A

We can present now our main results.

I /\

3. MAIN RESULTS
We have the following identity for the Jensen’s difference:
Theorem 3. For all A, B > 0 we have
C(w,pu)(A)+C(w, 1) (B A+ B
o CONDIC@NE) o, (A2E)

2 2

- ;/OOO (G+a7 =0+ B™) ()™ + 0 +B)_1)71

X (()\ T AT O+ B)*l) A2 (A) dp (V)
> 0.
The function D (w, i) is an operator convex function on (0, 00)

Proof. We have for all A, B >0

pz) CEMAICE@OB) () (425)

zf/mwQ)P—A+AﬂA+AY1duQ)
0

+/Oo°w(x) {B—A+A2(B+>\)_1} dp (N)

2
A+ B A+ B -1
; —/\+>\2( ;r +/\)

- [Tww

:Amwo\){ {A A+ X% (A+N) 1]+ [B A+ X (B+A)” ]

AJZFB_A+>\2<A+B ”du

/OOOA%U(A)

dp (N)

—1 —1
A+ A) "+ (A +B) <HA+B>
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Since, by (2.1)
At B)™* A+B\!
A+A) " +(A+DB) _(A+ + )

2 2
S 1CER S IO
(a7 -0+ B)7)
>0

for all A > 0, then by (3.2) we obtain the representation (3.1).
Since C (w, u) is continuous in B (H) and satisfies Jensen’s inequality (3.1), it
follows that C (w, ) is an operator convex function on (0, c0) . O

Corollary 3. Assume that function f : (0,00) — R is operator monotone in (0,00)
and has the representation (1.9). Then for all A, B > 0,we have

A+Bf<A+B) 736(]3714)2

63 larw+BrE)- 52 (5

2
X (()\ FAT (0t B)’1> Ndu(\) >0

_ 1/000 b+ 037 (0r v

namely, the function tf (t) — bt? is operator convex on (0,00).

Proof. If we multiply (1.9) by ¢ > 0 then we get

tf(t):at+bt2+t2/ %du(/\):at—&-th—i—C(ﬁ,,u)
0

for a real, b > 0 and p a positive measure on (0,00). This gives
C(lyp) =tf(t) —at —bt?, t > 0.
If A, B> 0, then
C(w A +C w B A+ B
(1, ) (4) +C (w, ) >_C(W)< )

2

= (Ar( A)—aA—bAQ) 5 (BF(B) —aB —bB?)
_A+B_(A+B A+B A+ B\?

2 f( ) 2 +b< 2 >
sl s srmi- 252 (452

—b

B2 + A2 A+ B\?
2 2

—sUra s - 250 (457) - ]

2
5 5 Zb(BfA)

and the inequality (3.3) is obtained. O
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Corollary 4. Assume that function f : (0,00) — R is operator convez in (0,00)

and has the representation (1.11). Then for all A, B > 0,we have

B U@+ @)= () - jem - A7

_;/OOO((MLA) ~(A+B) 1)(>\+A (>\+B)_1)71
(

x((/\+A) —(A+B)~ >A3du ) >

namely, the function f (t) — ct? is operator convex on (0,00).

The proof follows by Theorem 3 and the representation (1.11).
When more assumptions are imposed on the operators A and B, then the fol-
lowing improvement and refinement of Jensen’s inequality hold:

Theorem 4. Assumethat0 < a <A< B,0<y<B<d§dand0<m<B-A<M
for some constants a, B, v, §, m, M. Then

1, vy [ Nw())
(3.5) 0<§m onr'y/ (5+>\)4d,u()\)
§C(wau)(A);rC(wM)(B)_C(wvﬂ) <A+B>
LM (BN GEN
T2B8+46 o (a+)*

Proof. We have 0 < a+ A < A4+ A< FB4+AN0< v+ A< B+AX<§d+ A and
0<m<B+A—A—-A=B—-—A<M forall A\ >0. By (2.11) we get

1/ 1 1 \7' m?
3.6 0< =
(36) 2(a+A+7+A> CESNk
-1 -1 _
S(AJr)\) +(B+X\) _(/\+A+B)
2 2
1( L1 )1 M?
T2\ B4+X S+ CEDV
We have that
1 1\
B+ 4+ B+0+2\ B+6
and )
1 1 B +A)(a+ A
N _GEN@EN
at+A v+ a+y+ 22
We have
g,()\)i(a+’y+2)\)272(’y+)\)(a+)\)7(a+>\)2+(’y+)\)2
(@ +7y+2))° (o +7y+2))° ’
which shows that g is increasing on [0, 00).
Therefore
(3.8) g(A)>g(0) = for all A > 0.

o+ 7y
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By (3.4)-(3.8) we derive that

1 ya m?

2047 (5 +\)*
A+N'+ B+ (A+A+B>1

IN

2 2
1B+N(E+A) M2
T2 B4 (a+ W)Y

which implies that

1m2 Yo > A (N)
(3.9) 0<2 a+7/0 (5+)\)4d,u(/\)

g/w A+N"+ B+ ()\+A+B)1
0

5 5 Nw (N) dp (N)

<1M2 /°°(B+A)(5+/\)
T 2B8+40 o (a+N)*

Nw (N dp (N) .

By making use of the identity (3.1), we derive the desired result (3.5). O

Corollary 5. Assume that function f : (0,00) — R is operator monotone in (0, 00)
and has the representation (1.9). Then for all A, B > 0 satisfying the conditions
in Theorem 4,

}mQ o © N
(3.10) 0<3 a+7/0 (5+)\)4d,u()\)
<glaray+ B @) - 250 (AEE) - fos -4y
1 M? [ (B+XNGE+N) .5
§§6+6/o (a+\)* N ()

Also,

Corollary 6. Assume that function f : (0,00) — R is operator convex in (0,00)
and has the representation (1.11). Then for all A, B > 0 satisfying the conditions
in Theorem 4,

1 5 ya [~ N
(3.11) O<§m a+7/0 ((5—&—)\)46[”(/\)
<3l +rE0-1(252) - je - a7
1M T EENGEN 5

<5 4
28406 Jo (a+N)
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Remark 3. If we consider the kernel w () = M)\Pa r € (0,1] in (8.5) and
use the representation (1.1) then we get the power inequality

(3.12) 0 < lmQ ~ya  sin (rw) /00 ! N
2 at+y 7 Jo 6+
_ AT+l 4 prtl (A+B>T+1
- 2 2 '

Forr =1/2 we have

o) 3/2
/ A 7dA = 71-3 2
o (64N 166%/

Yo A3/2 4 B3/2 (A+B)3/2
_ 5 )

and by (3.12) we derive

1
3.13 0< —m?
( ) < 32m (Ol+’)/)53/2 - 2

4. MORE EXAMPLES

We define the upper incomplete Gamma function as [11]

I(a,z) = / t*te~tat,
which for z = 0 gives Gamma function
I'(a) ::/ t*te~tdt for Rea > 0.
0

We have the integral representation [12]

2% % o trap—t
41 T(a,7) = dt
(4.1) @) == | T

for Rea < 1 and |[phz| < 7.
Now, we consider the weight w.—a.— (\) := A™%~* for A > 0. Then by (4.1) we
obtain

oo Afae_)\
4.2 D e — A =T(1 - —a tp
(42) o) 0 = AN =T - e (o)
for a < 1 and ¢t > 0.
For a =0 in (4.2) we get
0o LA
(4.3) D (w,) (t) = / © 7 aN = D(1)e'T(0, ) = e'Ey (1)
o t+A

for t > 0, where the exponential integral F; is defined by

E; (t) ::/ ¢ du.
¢

u

Let a =1 — n, with n a natural number with n > 0, then by (3.2) we have

(4.4) D (wn-1e-) (t) = /0 S
= (n— 1" e T(1 - n,t).

[ee] Anfl -\
€ dx=Tn)t" el T(1 — n,t)
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If we define the generalized exponential integral [13] by

00—t
_ _ e
E,(2):=2P"'T (1 —p,2) = 2P 1/2: t—pdt
then
t" 01 —n,t) = E, ()
forn>1and ¢t > 0.
Using the identity [13, Eq 8.19.7], for n > 2
B - CL o m e S ke
" (n—1)1 " (n—1) & ’
we then obtain
(4.5) D (wn-1.--)(t) = (n—1)e'E, (1)
=(n—1)l!
n— — n—2
(""" et k
E(t —k—=2)1 (-t
Xl(n—l)! HOF Ty M=)
n—2
=S (=D n—k=2F+ (=) et By (1)
k=0
forn>2and ¢t > 0.
For n = 2, we derive by (4.5) that
(4.6) D(w, ) (t) = / AN (4 A)LdA = 1 — texp (8) By (1)
0

for t > 0.
We have, by the definition of the convex integral transform,

C(W.—ae—) (t) =T(1 —a)t* “exp (t) T(a,t)

for a <1 and t > 0.
By utilising Theorem 3 we can state:

Proposition 1. For a < 1 the function t>~exp (t) I'(a,t) is operator convex on
(0,00) . In particular t? exp (t) E1 (t) and t*(1 —t)exp (t) By (t) are operator convex
on (0,00).

1

374z for A >0 and a > 0.

We can also consider the weight w221 (A) :=
Then, by simple calculations, we get

D (w('2+a2)*1> (t) := /Ooo A +10) (1>\2 + a2) dA

1 7t 1 t
| —— —_— n p—
t2+a2 | 2a a
for ¢ > 0 and a > 0. Therefore

2 [t ¢
C (W(.2+a2)71) (t) = m |:2a — ln <a>:|

and we can also state that:
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Proposition 2. For a > 0 the function tQj_% [”—t —In (%)] 18 operator convexr on

2a
tQtj_l (%t —Int) is operator convex on (0,00).

(0,00) . In particular,

The interested reader can obtain other similar results by employing the exam-
ples of operator monotone/convex functions from [2]-[5], [9]-[10] and the references
therein.
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