AN EXTENSION OF BROWN-PLUM INEQUALITY TO FUNCTIONS WITH VALUES IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. In this paper we establish an extension and a weighted generalization of Brown-Plum inequality to functions with values in Hilbert spaces. Examples for trapezoid type inequalities are also given.

1. INTRODUCTION

We recall the following Opial type inequalities:

Theorem 1. Assume that $u : [a, b] \subset \mathbb{R} \to \mathbb{R}$ is an absolutely continuous function on the interval [a, b] and such that $u' \in L_2[a, b]$.

(i) If
$$u(a) = u(b) = 0$$
, then

(1.1)
$$\int_{a}^{b} |u(t)u'(t)| dt \leq \frac{1}{4} (b-a) \int_{a}^{b} |u'(t)|^{2} dt,$$

with equality if and only if

$$u(t) = \begin{cases} c(t-a) & \text{if } a \le t \le \frac{a+b}{2}, \\ c(b-t) & \text{if } \frac{a+b}{2} < t \le b \end{cases}$$

where c is an arbitrary constant;

(ii) If u(a) = 0, then

(1.2)
$$\int_{a}^{b} |u(t)u'(t)| dt \leq \frac{1}{2} (b-a) \int_{a}^{b} |u'(t)|^{2} dt,$$

with equality if and only if u(t) = c(t-a) for some constant c;

he inequality (1.1) was obtained by Olech in [7] in which he gave a simplified proof of an inequality originally due in a slightly less general form to Zdzisław Opial [8].

Embedded in Olech's proof is the half-interval form of Opial's inequality, also discovered by Beesack [1], which is satisfied by those u vanishing only at a.

In 2005, Brown and Plum [4] obtained the following result as well:

Theorem 2. Assume that $u : [a, b] \subset \mathbb{R} \to \mathbb{R}$ is an absolutely continuous function on the interval [a, b] and such that $u' \in L_2[a, b]$. If $\int_a^b u(t) dt = 0$, then the inequality (1.1) holds with equality if and only if

$$u\left(t\right) = c\left(t - \frac{a+b}{2}\right)$$

¹⁹⁹¹ Mathematics Subject Classification. 46C05, 26D15.

Key words and phrases. Opial's inequality, Vector-valued functions, Hilbert spaces.

for any constant c.

In 1975, G. G. Vrânceanu extended Opial's inequality (1.2) for functions with values in Hilbert spaces $(H; \langle \cdot, \cdot \rangle)$ as follows:

Theorem 3. Assume that the function $f : [a, b] \to H$ has a continuous derivative and f(a) = 0, then

(1.3)
$$\int_{a}^{b} |\langle f(t), f'(t) \rangle| \, dt \leq \frac{1}{2} \, (b-a) \int_{a}^{b} \left\| f'(t) \right\|^{2} \, dt.$$

In the recent paper [5] we obtain the following refinement of (1.3):

Theorem 4. Assume that $f : [a, b] \to H$, H a complex Hilbert space, is absolutely continuous on [a, b] and $f' \in L_2([a, b], H)$.

(i) If either f(a) = 0 or f(b) = 0, then

(1.4)
$$\int_{a}^{b} |\langle f'(t), f(t) \rangle| dt$$
$$\leq \left(\int_{a}^{b} (t-a) ||f'(t)||^{2} dt \right)^{1/2} \left(\int_{a}^{b} (b-t) ||f'(t)||^{2} dt \right)^{1/2}$$
$$\leq \frac{1}{2} (b-a) \int_{a}^{b} ||f'(t)||^{2} dt.$$

(ii) If f(a) = f(b) = 0, then c^{b}

(1.5)
$$\int_{a}^{b} |\langle f'(t), f(t) \rangle| dt$$

$$\leq \left[\int_{a}^{b} K(t) ||f'(t)||^{2} dt \right]^{1/2} \left[\int_{a}^{b} \left| \frac{a+b}{2} - t \right| ||f'(t)||^{2} dt \right]^{1/2}$$

$$\leq \frac{1}{4} (b-a) \int_{a}^{b} ||f'(t)||^{2} dt,$$
where
$$(t = a, if a \leq t \leq a+b)$$

$$K(t) := \begin{cases} t - a & \text{if } a \le t \le \frac{a+b}{2}, \\ b - t & \text{if } \frac{a+b}{2} < t \le b. \end{cases}$$

Let $(H; \langle \cdot, \cdot \rangle)$ be a complex Hilbert space. If $\{e_{\alpha}\}_{\alpha \in \mathcal{U}}$ (\mathcal{U} is a certain index set), is a complete orthonormal system in a Hilbert space H, then for any element $x \in H$, Parseval's equality holds:

(1.6)
$$||x||^{2} = \sum_{\alpha \in \mathcal{U}} |\langle x, e_{\alpha} \rangle|^{2}$$

and the sum on the right-hand side is to be understood as $\sup_{\mathcal{U}_0} \sum_{\alpha \in \mathcal{U}_0} |\langle x, e_\alpha \rangle|^2$ where the supremum is taken over all finite subsets \mathcal{U}_0 of \mathcal{U} .

Assume that H is a separable Hilbert space and $x, y \in H$. If $\{e_n\}_{n \in \mathbb{N}}$ is an orthonormal basis of H and if $a_n = \langle x, e_n \rangle$ and $b_n = \langle y, e_n \rangle$ are the Fourier coefficients of x and y, then

(1.7)
$$\langle x, y \rangle = \sum_{n=1}^{\infty} a_n \overline{b_n},$$

2

the so-called generalized Parseval equality.

Motivated by the above results, in this paper we establish an extension and a weighted generalization of Brown-Plum inequality to functions with values in real Hilbert spaces. Examples for trapezoid type inequalities are also given.

2. Main Results

We assume in what follows that H is a separable real Hilbert space.

Theorem 5. Assume that $f : [a,b] \to H$ is absolutely continuous on [a,b] and $f' \in L_2([a,b], H)$. If $\int_a^b f(t) dt = 0$, then

(2.1)
$$\int_{a}^{b} |\langle f'(t), f(t) \rangle| \, dt \leq \frac{1}{4} \, (b-a) \int_{a}^{b} \|f'(t)\|^2 \, dt$$

The constant $\frac{1}{4}$ is best possible.

Proof. Let $\{e_n\}_{n\in\mathbb{N}}$ be an orthonormal basis of H. Define $u: [a,b] \to \mathbb{R}, u(t) = \langle f(t), e_n \rangle$. Then

$$\int_{a}^{b} u(t) dt = \int_{a}^{b} \langle f(t), e_{n} \rangle dt = \left\langle \int_{a}^{b} f(t) dt, e_{n} \right\rangle = 0$$

for all $n \in \mathbb{N}$.

Also $u'(t) = (\langle f(t), e_n \rangle)' = \langle f'(t), e_n \rangle$ for all $n \in \mathbb{N}$.

Writing the inequality (1.1) for this function, we get

$$\int_{a}^{b} \left| \left\langle f\left(t\right), e_{n} \right\rangle \left\langle f'\left(t\right), e_{n} \right\rangle \right| dt \leq \frac{1}{4} \left(b-a\right) \int_{a}^{b} \left| \left\langle f'\left(t\right), e_{n} \right\rangle \right|^{2} dt,$$

namely

(2.2)
$$\int_{a}^{b} \left| \left\langle f\left(t\right), e_{n} \right\rangle \left\langle e_{n}, f'\left(t\right) \right\rangle \right| dt \leq \frac{1}{4} \left(b-a\right) \int_{a}^{b} \left| \left\langle f'\left(t\right), e_{n} \right\rangle \right|^{2} dt,$$

for all $n \in \mathbb{N}$.

Summing over n in (2.2), we get

$$\sum_{n=1}^{\infty} \int_{a}^{b} \left| \left\langle f\left(t\right), e_{n} \right\rangle \left\langle e_{n}, f'\left(t\right) \right\rangle \right| dt \leq \frac{1}{4} \left(b-a\right) \sum_{n=1}^{\infty} \int_{a}^{b} \left| \left\langle f'\left(t\right), e_{n} \right\rangle \right|^{2} dt,$$

which gives

$$(2.3) \quad \int_{a}^{b} \left(\sum_{n=1}^{\infty} \left| \langle f(t), e_n \rangle \langle e_n, f'(t) \rangle \right| \right) dt \leq \frac{1}{4} \left(b - a \right) \int_{a}^{b} \left(\sum_{n=1}^{\infty} \left| \langle f'(t), e_n \rangle \right|^2 \right) dt.$$

By the triangle inequality we have

$$\left|\sum_{n=1}^{\infty} \left\langle f\left(t\right), e_{n}\right\rangle \left\langle e_{n}, f'\left(t\right)\right\rangle \right| \leq \sum_{n=1}^{\infty} \left|\left\langle f\left(t\right), e_{n}\right\rangle \left\langle e_{n}, f'\left(t\right)\right\rangle\right|$$

and by (2.3) we get

(2.4)
$$\int_{a}^{b} \left| \sum_{n=1}^{\infty} \left\langle f\left(t\right), e_{n} \right\rangle \left\langle e_{n}, f'\left(t\right) \right\rangle \right| \leq \frac{1}{4} \left(b-a \right) \int_{a}^{b} \left(\sum_{n=1}^{\infty} \left| \left\langle f'\left(t\right), e_{n} \right\rangle \right|^{2} \right) dt.$$

Using Parseval's identity (1.7) we have for $t \in [a, b]$ that

$$\sum_{n=1}^{\infty} \left\langle f\left(t\right), e_{n}\right\rangle \left\langle e_{n}, f'\left(t\right)\right\rangle = \left\langle f\left(t\right), f'\left(t\right)\right\rangle$$

and

$$\sum_{n=1}^{\infty} \left| \left\langle f'\left(t\right), e_{n} \right\rangle \right|^{2} = \left\| f'\left(t\right) \right\|^{2}$$

and by (2.4) we derive the desired result (2.1).

The sharpness of the constant follows by the scalar case.

We have:

Theorem 6. Let $h : [a, b] \to [h(a), h(b)]$ be a continuous strictly increasing function that is of class C^1 on (a, b). Assume that $f : [a, b] \subset \mathbb{R} \to H$ is an absolutely continuous function on the interval [a, b] and such that $\frac{f'}{|h'|^{1/2}} \in L_2[a, b]$. If

(2.5)
$$\int_{a}^{b} f(t) h'(t) dt = 0,$$

then

(2.6)
$$\int_{a}^{b} |\langle f(t), f'(t) \rangle| dt \leq \frac{1}{4} [h(b) - h(a)] \int_{a}^{b} \frac{||f'(t)||^{2}}{h'(t)} dt$$

Proof. Consider the function $u := f \circ h^{-1} : [h(a), h(b)] \to H$. The function u is absolutely continuous on $[h(a), h(b)], u(h(a)) = f \circ h^{-1}(h(a)) = f(a) = 0$ and $u(h(b)) = f \circ h^{-1}(h(b)) = f(b) = 0$.

Using the chain rule and the derivative of inverse functions we have

(2.7)
$$(f \circ h^{-1})'(z) = (f' \circ h^{-1})(z)(h^{-1})'(z) = \frac{(f' \circ h^{-1})(z)}{(h' \circ h^{-1})(z)}$$

for almost every (a.e.) $z \in [h(a), h(b)]$.

Also by the change of variable $t = h^{-1}(z)$, $z \in [h(a), h(b)]$, then z = h(t), dz = h'(t) dt, and

$$\int_{h(a)}^{h(b)} f \circ h^{-1}(z) \, dz = \int_{a}^{b} f(t) \, h'(t) \, dt = 0.$$

If we apply the inequality (2.1) for the function $u = f \circ h^{-1}$ on the interval [h(a), h(b)], then we get

(2.8)
$$\int_{h(a)}^{h(b)} \left| \left\langle f \circ h^{-1}(z), \frac{(f' \circ h^{-1})(z)}{(h' \circ h^{-1})(z)} \right\rangle \right| dz$$
$$\leq \frac{1}{4} \left[h(b) - h(a) \right] \int_{h(a)}^{h(b)} \left\| \frac{(f' \circ h^{-1})(z)}{(h' \circ h^{-1})(z)} \right\|^2 dz.$$

If we make the change of variable $t = h^{-1}(z), z \in [h(a), h(b)]$, then

$$\int_{h(a)}^{h(b)} \left| \left\langle f \circ h^{-1}(z), \frac{\left(f' \circ h^{-1}\right)(z)}{\left(h' \circ h^{-1}\right)(z)} \right\rangle \right| dz = \int_{a}^{b} \left| \left\langle f(t), \frac{f'(t)}{h'(t)} \right\rangle \right| h'(t) dt$$
$$= \int_{a}^{b} \left| \left\langle f(t), f'(t) \right\rangle \right| dt$$

4

$$\int_{h(a)}^{h(b)} \left\| \frac{\left(f' \circ h^{-1}\right)(z)}{\left(h' \circ h^{-1}\right)(z)} \right\|^2 dz = \int_a^b \left\| \frac{f'(t)}{h'(t)} \right\|^2 h'(t) \, dt = \int_a^b \frac{\left\| f'(t) \right\|^2}{h'(t)}^2 dt$$

By utilising (2.8), we then get the desired inequality (2.6).

5

In what follows we consider the identity function $\ell(t) = t$.

a). If we take $h : [a,b] \subset (0,\infty) \to \mathbb{R}$, $h(t) = \ln t$ and assume that f is an absolutely continuous function with $\int_a^b \frac{f(t)}{t} dt = 0$ and $\ell^{1/2} f' \in L_2([a,b], H)$, then by (2.6) we get

(2.9)
$$\int_{a}^{b} |\langle f(t), f'(t) \rangle| \, dt \leq \frac{1}{4} \ln\left(\frac{b}{a}\right) \int_{a}^{b} t \left\| f'(t) \right\|^{2} \, dt.$$

b). If we take $h : [a,b] \subset \mathbb{R} \to (0,\infty)$, $h(t) = \exp t$ and assume that f is an absolutely continuous function with $\int_a^b f(t) \exp t dt = 0$ and $\exp\left(-\frac{1}{2}\ell\right) f' \in L_2\left([a,b],H\right)$, then by (2.6) we get

(2.10)
$$\int_{a}^{b} |\langle f(t), f'(t) \rangle| dt \leq \frac{1}{4} (\exp b - \exp a) \int_{a}^{b} \exp(-t) ||f'(t)||^{2} dt.$$

c). If we take $h: [a,b] \subset (0,\infty) \to \mathbb{R}$, $h(t) = t^r$, r > 0 and assume that f is an absolutely continuous function with $\int_a^b f(t) t^{r-1} dt = 0$ and $\ell^{(1-r)/2} f' \in L_2[a,b]$, then by (2.1) we get

(2.11)
$$\int_{a}^{b} |\langle f(t), f'(t) \rangle| dt \leq \frac{1}{4r} (b^{r} - a^{r}) \int_{a}^{b} \frac{\|f'(t)\|^{2}}{t^{r-1}} dt.$$

If $w : [a, b] \to \mathbb{R}$ is continuous and positive on the interval [a, b], then the function $W : [a, b] \to [0, \infty), W(x) := \int_a^x w(s) \, ds$ is strictly increasing and differentiable on (a, b). We have W'(x) = w(x) for any $x \in (a, b)$.

Corollary 1. Assume that $w : [a,b] \to (0,\infty)$ is continuous on [a,b] with $\int_a^b w(s) ds = 1$ and that $f : [a,b] \subset \mathbb{R} \to H$ is an absolutely continuous function on the interval [a,b] and such that $\frac{f'}{w^{1/2}} \in L_2([a,b], H)$. If

(2.12)
$$\int_{a}^{b} f(t) w(t) dt = 0.$$

then

(2.13)
$$\int_{a}^{b} |\langle f(t), f'(t) \rangle| \, dt \leq \frac{1}{4} \int_{a}^{b} \frac{\|f'(t)\|^{2}}{w(t)} dt.$$

Similar results may be stated for the probability distributions that are supported on the whole axis $\mathbb{R} = (-\infty, \infty)$. Namely, if $f : \mathbb{R} \to H$ is locally absolutely continuous on \mathbb{R} , w(s) > 0 for $s \in \mathbb{R}$, $\int_{-\infty}^{\infty} w(s) ds = 1$ with $\frac{f}{w^{1/2}} \in L_2(\mathbb{R}, H)$ and

(2.14)
$$\int_{-\infty}^{\infty} f(t) w(t) dt = 0,$$

then

(2.15)
$$\int_{-\infty}^{\infty} |\langle f(t), f'(t) \rangle| \, dt \le \frac{1}{4} \int_{-\infty}^{\infty} \frac{\|f'(t)\|^2}{w(t)} dt$$

In what follows we give an example.

The probability density of the normal distribution on $(-\infty, \infty)$ is

$$w_{\mu,\sigma^{2}}\left(x\right) := \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\left(x-\mu\right)^{2}}{2\sigma^{2}}\right), \ x \in \mathbb{R},$$

where μ is the mean or expectation of the distribution (and also its median and mode), σ is the standard deviation, and σ^2 is the variance.

The cumulative distribution function is

$$W_{\mu,\sigma^{2}}\left(x\right) = \frac{1}{2} + \frac{1}{2}\operatorname{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right),$$

where the *error function* erf is defined by

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp\left(-t^2\right) dt.$$

So, if $\frac{f}{w_{\mu,\sigma^2}^{1/2}} \in L_2(\mathbb{R}, H)$ with

(2.16)
$$\int_{-\infty}^{\infty} f(t) \exp\left(-\frac{(t-\mu)^2}{2\sigma^2}\right) dt = 0,$$

then

(2.17)
$$\int_{-\infty}^{\infty} \left| \left\langle f\left(t\right), f'\left(t\right) \right\rangle \right| dt \leq \frac{\sqrt{2\pi\sigma}}{4} \int_{-\infty}^{\infty} \left\| f'\left(t\right) \right\|^2 \exp\left(\frac{\left(t-\mu\right)^2}{2\sigma^2}\right) dt.$$

3. Applications

We have:

Proposition 1. Assume that $w : [a,b] \to (0,\infty)$ is continuous on [a,b] with $\int_{a}^{b} w(s) ds = 1$ and that $h : [a,b] \subset \mathbb{R} \to H$ is an absolutely continuous function on the interval [a,b] and such that $\frac{h'}{w^{1/2}} \in L_2([a,b],H)$. Then

(3.1)
$$\left| \left\langle \frac{h(a) + h(b)}{2} - \int_{a}^{b} w(s) h(s) \, ds, h(b) - h(a) \right\rangle \right| \leq \frac{1}{4} \int_{a}^{b} \frac{\|h'(t)\|^{2}}{w(t)} dt.$$

Proof. Consider the function

$$f(t) := h(t) - \int_{a}^{b} w(s) h(s) ds, \ t \in [a, b].$$

Then

$$\int_{a}^{b} \left(h\left(t\right) - \int_{a}^{b} w\left(s\right) h\left(s\right) ds \right) w\left(t\right) dt = 0,$$

and by the Corollary 1 we have

(3.2)
$$\int_{a}^{b} \left| \left\langle \left(h\left(t\right) - \int_{a}^{b} w\left(s\right) h\left(s\right) ds \right), h'\left(t\right) \right\rangle \right| dt \leq \frac{1}{4} \int_{a}^{b} \frac{\left\| h'\left(t\right) \right\|^{2}}{w\left(t\right)} dt.$$

By the modulus and integral properties, we also have

$$(3.3) \qquad \int_{a}^{b} \left| \left\langle \left(h\left(t\right) - \int_{a}^{b} w\left(s\right) h\left(s\right) ds \right), h'\left(t\right) \right\rangle \right| dt \\ \geq \left| \int_{a}^{b} \left\langle \left(h\left(t\right) - \int_{a}^{b} w\left(s\right) h\left(s\right) ds \right), h'\left(t\right) \right\rangle dt \right| \\ = \left| \int_{a}^{b} \left\langle h\left(t\right), h'\left(t\right) \right\rangle dt - \left\langle \int_{a}^{b} w\left(s\right) h\left(s\right) ds, \int_{a}^{b} h'\left(t\right) dt \right\rangle \right| \\ = \left| \frac{1}{2} \left(\left\| h\left(b\right) \right\|^{2} - \left\| h\left(a\right) \right\|^{2} \right) - \left\langle \int_{a}^{b} w\left(s\right) h\left(s\right) ds, h\left(b\right) - h\left(a\right) \right\rangle \right| \\ = \left| \left\langle \frac{h\left(a\right) + h\left(b\right)}{2}, h\left(b\right) - h\left(a\right) \right\rangle - \left\langle \int_{a}^{b} w\left(s\right) h\left(s\right) ds, h\left(b\right) - h\left(a\right) \right\rangle \right|.$$

By utilising (3.2) and (3.3) we get the desired result (3.1).

In the case of scalar functions, namely if $H = \mathbb{R}$, then we have the following trapezoid type inequality:

Corollary 2. Assume that $w : [a, b] \to (0, \infty)$ is continuous on [a, b] with $\int_a^b w(s) ds = 1$ and that $h : [a, b] \subset \mathbb{R} \to \mathbb{R}$ is an absolutely continuous function on the interval [a, b] with $h(b) \neq h(a)$ and such that $\frac{h'}{w^{1/2}} \in L_2[a, b]$. Then

(3.4)
$$\left| \frac{h(a) + h(b)}{2} - \int_{a}^{b} w(s) h(s) ds \right|$$
$$\leq \frac{1}{4} \frac{1}{|h(b) - h(a)|} \int_{a}^{b} \frac{[h'(t)]^{2}}{w(t)} dt.$$

Corollary 3. Assume that $h : [a, b] \subset \mathbb{R} \to \mathbb{R}$ is an absolutely continuous function on the interval [a, b] with $h(b) \neq h(a)$ and such that $h' \in L_2[a, b]$. Then

(3.5)
$$\left|\frac{h(a) + h(b)}{2} - \frac{1}{b-a} \int_{a}^{b} h(s) ds\right| \le \frac{1}{4} \frac{b-a}{|h(b) - h(a)|} \int_{a}^{b} [h'(t)]^{2} dt.$$

In 1906, Fejér [6], while studying trigonometric polynomials, obtained the following inequalities which generalize that of Hermite & Hadamard:

Theorem 7 (Fejér's Inequality). Consider the integral $\int_a^b h(x) w(x) dx$, where h is a convex function in the interval (a, b) and w is a positive function in the same interval such that

$$w(x) = w(a+b-x)$$
, for any $x \in [a,b]$

i.e., y = w(x) is a symmetric curve with respect to the straight line which contains the point $(\frac{1}{2}(a+b), 0)$ and is normal to the x-axis. Under those conditions the following inequalities are valid:

(3.6)
$$h\left(\frac{a+b}{2}\right) \le \frac{1}{\int_{a}^{b} w(x) \, dx} \int_{a}^{b} h(x) \, w(x) \, dx \le \frac{h(a)+h(b)}{2}.$$

If h is concave on (a, b), then the inequalities reverse in (3.6).

If $w \equiv 1$, then (3.6) becomes the well known Hermite-Hadamard inequality

(3.7)
$$h\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} h\left(x\right) dx \le \frac{h\left(a\right)+h\left(b\right)}{2}$$

We have the following reverse of Fejér's inequality:

Corollary 4. Let $h : [a,b] \to \mathbb{R}$ be a convex function with $h(b) \neq h(a)$ and $w : [a,b] \to (0,\infty)$ be continuous, symmetrical on [a,b] and such that $\frac{h'}{w^{1/2}} \in L_2[a,b]$. Then

(3.8)
$$0 \leq \frac{h(a) + h(b)}{2} - \frac{1}{\int_{a}^{b} w(s) \, ds} \int_{a}^{b} w(t) \, h(t) \, dt$$
$$\leq \frac{1}{4} \frac{\int_{a}^{b} w(s) \, ds}{|h(b) - h(a)|} \int_{a}^{b} \frac{[h'(t)]^{2}}{w(t)} dt.$$

In particular, we have the following reverse of the Hermite-Hadamard inequality

(3.9)
$$0 \leq \frac{h(a) + h(b)}{2} - \frac{1}{b-a} \int_{a}^{b} h(t) dt$$
$$\leq \frac{1}{4} \frac{b-a}{|h(b) - h(a)|} \int_{a}^{b} [h'(t)]^{2} dt,$$

provided that $h' \in L_2[a, b]$.

References

- P. R. Beesack, On an integral inequality of Z. Opial. Trans. Am. Math. Soc. 104 (1962), 470–475.
- [2] D. W. Boyd, Best constants in a class of integral inequalities, *Pacific J. Math.* 30 (1969), 367-383.
- [3] R. C. Brown and D. B. Hinton, Opial's inequality and oscilation of 2nd order equations, Proc. Amer. Math. Soc. 125 (1997), Number 4, 1123-1129.
- [4] R. C. Brown and M. Plum, An Opial-type inequality with an integral boundary condition, Proc. R. Soc. A 461 (2005), 2635–2651. doi:10.1098/rspa.2005.1449.
- [5] S. S. Dragomir, Some inequalities related to Vrânceanu's extension of Opial's result, Preprint RGMIA Res. Rep. Coll. 24 (2021), Art.
- [6] L. Fejér, Über die Fourierreihen, II, (In Hungarian) Math. Naturwiss, Anz. Ungar. Akad. Wiss., 24 (1906), 369-390.
- [7] C. Olech, A simple proof of a certain result of Z. Opial. Ann. Polon. Math. 8 (1960), 61-63.
- [8] Z. Opial, Sur une inégalité. Ann. Polon. Math. 8 (1960), 29–32.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA

8