AN EXTENSION OF BROWN-PLUM INEQUALITY TO
FUNCTIONS WITH VALUES IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish an extension and a weighted general-
ization of Brown-Plum inequality to functions with values in Hilbert spaces.

Examples for trapezoid type inequalities are also given.

1. INTRODUCTION

We recall the following Opial type inequalities:

Theorem 1. Assume that u : [a,b] C R — R is an absolutely continuous function

on the interval |a, b] and such that v’ € Lo [a,b].
(i) Ifu(a) = =0, then

(1.1) /|u |dt< _a/\u )2 dt,

with equality if and only if
c(t—a) ifa<t< el

u(t) =
cb—t) if <t <b

where ¢ s an arbitrary constant;
(ii) Ifu(a) =0, then

(1.2) /|u ()] dt < = b—a/\u )2 dt,

with equality if and only if u (t) = ¢(t — a) for some constant c;

he inequality (1.1) was obtained by Olech in [7] in which he gave a simplified
proof of an inequality originally due in a slightly less general form to Zdzislaw Opial

8]

Embedded in Olech’s proof is the half-interval form of Opial’s inequality, also
discovered by Beesack [1], which is satisfied by those u vanishing only at a.
In 2005, Brown and Plum [4] obtained the following result as well:

Theorem 2. Assume that v : [a,b] CR — R is an absolutely continuous function
on the interval [a,b] and such that u' € Lo [a,b]. Iff t)dt = 0, then the inequality

(1.1) holds with equality if and only if

u(t)zc(t—a;rb>
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for any constant c.

In 1975, G. G. Vranceanu extended Opial’s inequality (1.2) for functions with
values in Hilbert spaces (H;(-,-)) as follows:

Theorem 3. Assume that the function f : [a,b] — H has a continuous derivative
and f (a) =0, then

(1.3) /\ i < —a/nf )2 dt.

In the recent paper [5] we obtain the follovvmg refinement of (1.3):

Theorem 4. Assume that f : [a,b] — H, H a complex Hilbert space, is absolutely
continuous on [a,b] and f' € Ls ([a,b], H).
(i) If either f(a) =0 or f (b) =0, then

b
(1.4) / () F (1)t

b 1/2 b 1/2
<</ <t—a>||f'<>||2dt) (/ <b—t>||f'<t>|2dt)

<1 b—a/nf )2 d.
(i) If £ (a

a5 [ e s

! B Wt] " V

= f(b) =0, then

O"\_/

) 1/2
a +
—t] Tao! dt]

t—aifagtgaT'H’,
K(t):=
tif o <t <b.

Let (H;(-,-)) be a complex Hilbert space. If {e4},¢;, (U is a certain index set),
is a complete orthonormal system in a Hilbert space H, then for any element x € H,
Parseval’s equality holds:

(1.6) lz)* = > [z, ea)l®

acU

and the sum on the right-hand side is to be understood as supy, > ey, [(Z) €a) |*where
the supremum is taken over all finite subsets Uy of U.

Assume that H is a separable Hilbert space and x, y € H. If {e;, } nen is an ortho-
normal basis of H and if a,, = (z,e,) and b, = (y, e,) are the Fourier coefficients
of z and y, then

(L.7) @)= anbn,

n=1
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the so-called generalized Parseval equality.

Motivated by the above results, in this paper we establish an extension and a
weighted generalization of Brown-Plum inequality to functions with values in real
Hilbert spaces. Examples for trapezoid type inequalities are also given.

2. MAIN RESULTS

We assume in what follows that H is a separable real Hilbert space.

Theorem 5. Assume that f : [a,b] — H is absolutely continuous on [a,b] and
f' € Lo ([a,b] , H) . If [ f(t)dt =0, then

(2.1) /\ )| dt < - b—a/||f )12 dt.

The constant i s best possible.

Proof. Let {en}nen be an orthonormal basis of H. Define u : [a,b] — R, u(t) =
(f(t),en). Then

b b b
[uwa= [ <f(t)7en>dt=</ f(t)dt,en>:o
for all n € N.

Also o' (t) = ((f (t),en)) = (f (t),ey) for all n € N.
Writing the inequality (1.1) for this function, we get

/|<f<t>,en> (1) et < 7 —a/| e dt,
namely

b
(2.2) /|<f<t>,en><en, ‘O)ldi < 3 (b—a /| ) el dt,

for all n € N.
Summing over n in (2.2), we get

>/ ) {en, £ () dE < 7 (b a) 'S [ 1 @) et

n=174a n=1794

which gives

/ <Z| en) (en, f' (¢ )>|> dt<411 / <Z| o) >dt.

By the triangle inequality we have

o0

D (F (1) en) lens f

n=1

and by (2.3) we get

Z €n,f/ (t)>‘

b| o© b [*S)
ey [ X0 e 0 <30-a <Z|<f’<t>,en>|2> it
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Using Parseval’s identity (1.7) we have for ¢ € [a, b] that

S U0 ) lens £10) = £ (0), 7 0)

n=1

and
oo

ST e =11 O

n=1
and by (2.4) we derive the desired result (2.1).
The sharpness of the constant follows by the scalar case. O

We have:
Theorem 6. Let h: [a,b] — [h(a),h(b)] be a continuous strictly increasing func-
tion that is of class C* on (a,b). Assume that f : [a,b] C R —H is an absolutely

continuous function on the interval [a,b] and such that —L € Ly[a,b]. If

(r']

(2.5) /b F )R (t)dt =0,

then

(2.6) / It 0)ldt < < / ”f/ .

Proof. Consider the function u := foh™! : [h(a),h(b)] — H The function w is
absolutely continuous on [h(a),h ()], u (h ( ) = f “Y(h(a)) = f(a) = 0 and
u(h (b)) = foh ' (h(b))=f(b) =0.

Using the chain rule and the derivative of inverse functions we have

2.7) (foh ™) (2) = (f oh™) (2) (h™Y) (2) = m

for almost every (a.e.) z € [h(a),h (b)].
Also by the change of variable t = h™! (2), z € [h(a),h(b)], then z = h(t),

dz =1/ (t)dt, and
h(b) b
/ fohfl(z)dz:/f(t)h’(t)dt:
h(a) a

If we apply the inequality (2.1) for the function uw = f o h™! on the interval
[h(a),h(b)], then we get

h(b) . . (f/ o hfl) (Z) i
(28) /h(a) <f h <>,(h,oh_1)(z)> d
<glhe-n@) [ (h, I
If we make the change of variable t = h™ , 2 € [h(a),h(D)], then
o) -1 ( ’ f/ (t) /
/h(a) <f0h (Z) (W oh=1)(2) > / f(t)’h’(t)>‘h (6)di

/| 0)] dt
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and
R®) || (o p-1 2 b £ () (|2 TN
/ (770h7") ) :/ /'(t) M@ﬁ:/nﬁwnﬁ
n@ || (B oh™1)(2) a |17 (1) o N(t)
By utilising (2.8), we then get the desired inequality (2.6). O

In what follows we consider the identity function £ (¢) = ¢.
a). If we take h : [a,b] C (0,00) — R, h(t) = Int and assume that f is an

absolutely continuous function with fb I gt = 0 and (/2" € Ly (Ja,b], H) , then
by (2.6) we get

(2.9) / I(f )| dt < iln <Z) /bt|f’(t)||2dt.

b). If we take h : [a,b] C R — (0, oo) h(t) = expt and assume that f is
an absolutely continuous function with f f(t)exptdt = 0 and exp (féﬁ) e
Ls ([a,b], H) , then by (2.6) we get

b

(2.10) / \(f )| dt < i(epr—expa)/ exp (=) Il (1)]2 dt.

c). If we take h : [a,b] C (0,00) — R, h(t) =t", r > 0 and assume that f is an
absolutely continuous function with f: f)tr—tdt = 0 and £A="/2f" € Ly[a,b],
then by (2.1) we get

b / 2
(2.11) / f 1) dt < 41T G fa’“)/ ”ftr(i_?”dt

Ifw : [a,b] — Ris continuous and positive on the interval [a, b] , then the function
W :[a,b] — [0,00), W () := [ w(s)ds is strictly increasing and differentiable on
(a,b). We have W' (z) = w (z) for any = € (a,b).

Corollary 1. Assume thatw : [a,b] — (0, 00) is continuous on [a, b] with ff w(s)ds =
1 and that f : [a,b) C R —H is an absolutely continuous function on the interval

[a,b] and such that 1/2 € Ly ([a,b],H). If

(2.12) / FHwt)dt =0,
then

b b / 2
(213) [ onesg [0

Similar results may be stated for the probability distributions that are supported
on the whole axis R =(—00,00). Namely, if f:R—> H is locally absolutely
continuous on R, w (s) > 0 for s € R, [7_w(s)ds =1 with 1/2 € Ly (R,H) and

(2.14) /OO £ w () dt =0,
then

* I @IE
(215) | . onasg [ 0O

In what follows we give an example.
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The probability density of the normal distribution on (—o0,00) is

1 (x—p)’
W02 (T) 1= o expl -5 3|7 e R,

where 1 is the mean or expectation of the distribution (and also its median and
mode), o is the standard deviation, and o2 is the variance.
The cumulative distribution function is

1 1 T — U
I/Vw,z(:c):2-1-2erf(0\/§)7

where the error function erf is defined by

erf (z) = % /Oz exp (—t°) dt.

So, if —lz € Lo (R, H) with

2

(2.16) /Z £ (t) exp ( (t 2_0_’2‘)2) dt = 0,
then
e [ o ala < 2 [T oo (“ L ) .

3. APPLICATIONS
We have:

Proposition 1. Assume that w : [a,b] — (0,00) is continuous on [a,b] with
f;w(s) ds =1 and that h : [a,b] C R —H is an absolutely continuous function
on the interval [a,b] and such that w’f% € Ly ([a,b],H) . Then

(3.1) Kh@;h@_/ngM@mm@_h@>gi/HZ%HM

Proof. Consider the function

Then

and by the Corollary 1 we have

b b
(3.2) / <<h@y—/)wQNM$d%,h%ﬂ>

1 b / 2
it < ,/ I
4/ w(?)
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By the modulus and integral properties, we also have

(33) / <<h<t>—/ﬂbw<s>h<s>ds> ,h'<t>>
> /ab<(h<t>—/abw<s>h<s>ds>,h’<t>>dt
- /ab<h<t>,h’<t>>dt—</:w<s>h(s)ds,/abh'<t>dt>‘

=15 (IO - Ih @) - </abw<s>h<s> ds, h (b) - h<a>>'

_ <W,h(b)h(a)></abw(s)h(s)ds,h(b)h(a)>‘.

By utilising (3.2) and (3.3) we get the desired result (3.1). O

dt

In the case of scalar functions, namely if H = R, then we have the following
trapezoid type inequality:

Corollary 2. Assume thatw : [a,b] — (0, 00) is continuous on [a, b] with ff w(s)ds =
1 and that h : [a,b)) CR — R is an absolutely continuous function on the interval
[a,b] with h(b) # h(a) and such that 1/2 € Lyla,b]. Then

h(a) + h (b) b
f_/ w(s)h(s)ds

1 h’
=17 <b ] / “ar

(3.4)

Corollary 3. Assume that h : [a, b} C R — R is an absolutely continuous function

on the interval [a,b] with h (b) # h(a) and such that h' € Ly [a,b]. Then
h(a)+h(®) 1 [

(3.5) 5 5 / h(s)ds

1 b—a
< !
1T ‘/ ()] dt.

In 1906, Fejér [6], while studymg trlgonometrlc polynomials, obtained the fol-
lowing inequalities which generalize that of Hermite & Hadamard:

Theorem 7 (Fejér’s Inequality). Consider the integral f; h(z)w () dz, where h
is a convex function in the interval (a,b) and w is a positive function in the same
interval such that

w(z)=w(a+b—1x), for any x € [a,b]

,Y=w (x) is a symmetric curve with respect to the straight line which contains
the point ( (a+0b), O) and is normal to the x-axis. Under those conditions the
following inequalities are valid:

a b a
(3.6) h< ;b)gfbwzx)dx/a h(x)w(x)dxgw.
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If h is concave on (a,b), then the inequalities reverse in (3.6).
If w =1, then (3.6) becomes the well known Hermite-Hadamard inequality

(3.7) h(a;b>§bia/abh(x)dx§h(a);h(b).

We have the following reverse of Fejér’s inequality:

Corollary 4. Let h : [a,b] — R be a convex function with h (b) ;é h( ) and w :

[a,b] — (0,00) be continuous, symmetrical on [a,b] and such that 1/2 € Ly[a,b].
Then

(3.8) 0< - — / ’ w (t) h(t)dt
2 J,w U@

it i

In particular, we have the followmg reverse of the Hermite-Hadamard inequality

(3.9) 0<h(a);h(b)—bia/abh(t)dt

1 b—a b )2
< Tw L WO

provided that h' € Lo [a,b] .
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