
AN EXTENSION OF BROWN-PLUM INEQUALITY TO
FUNCTIONS WITH VALUES IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we establish an extension and a weighted general-
ization of Brown-Plum inequality to functions with values in Hilbert spaces.
Examples for trapezoid type inequalities are also given.

1. Introduction

We recall the following Opial type inequalities:

Theorem 1. Assume that u : [a; b] � R! R is an absolutely continuous function
on the interval [a; b] and such that u0 2 L2 [a; b] :

(i) If u (a) = u (b) = 0; then

(1.1)
Z b

a

ju (t)u0 (t)j dt � 1

4
(b� a)

Z b

a

ju0 (t)j2 dt;

with equality if and only if

u (t) =

8<: c (t� a) if a � t � a+b
2 ;

c (b� t) if a+b2 < t � b
where c is an arbitrary constant;

(ii) If u (a) = 0; then

(1.2)
Z b

a

ju (t)u0 (t)j dt � 1

2
(b� a)

Z b

a

ju0 (t)j2 dt;

with equality if and only if u (t) = c (t� a) for some constant c;

he inequality (1.1) was obtained by Olech in [7] in which he gave a simpli�ed
proof of an inequality originally due in a slightly less general form to Zdzislaw Opial
[8].
Embedded in Olech�s proof is the half-interval form of Opial�s inequality, also

discovered by Beesack [1], which is satis�ed by those u vanishing only at a.
In 2005, Brown and Plum [4] obtained the following result as well:

Theorem 2. Assume that u : [a; b] � R! R is an absolutely continuous function
on the interval [a; b] and such that u0 2 L2 [a; b] : If

R b
a
u (t) dt = 0; then the inequality

(1.1) holds with equality if and only if

u (t) = c

�
t� a+ b

2

�
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for any constant c:

In 1975, G. G. Vrânceanu extended Opial�s inequality (1.2) for functions with
values in Hilbert spaces (H; h�; �i) as follows:
Theorem 3. Assume that the function f : [a; b] ! H has a continuous derivative
and f (a) = 0; then

(1.3)
Z b

a

jhf (t) ; f 0 (t)ij dt � 1

2
(b� a)

Z b

a

kf 0 (t)k2 dt:

In the recent paper [5] we obtain the following re�nement of (1.3):

Theorem 4. Assume that f : [a; b]! H; H a complex Hilbert space, is absolutely
continuous on [a; b] and f 0 2 L2 ([a; b] ;H) :

(i) If either f (a) = 0 or f (b) = 0; thenZ b

a

jhf 0 (t) ; f (t)ij dt(1.4)

�
 Z b

a

(t� a) kf 0 (t)k2 dt
!1=2 Z b

a

(b� t) kf 0 (t)k2 dt
!1=2

� 1

2
(b� a)

Z b

a

kf 0 (t)k2 dt:

(ii) If f (a) = f (b) = 0; thenZ b

a

jhf 0 (t) ; f (t)ij dt(1.5)

�
"Z b

a

K (t) kf 0 (t)k2 dt
#1=2 "Z b

a

����a+ b2 � t
���� kf 0 (t)k2 dt

#1=2

� 1

4
(b� a)

Z b

a

kf 0 (t)k2 dt;

where

K (t) :=

8<: t� a if a � t � a+b
2 ;

b� t if a+b2 < t � b:

Let (H; h�; �i) be a complex Hilbert space. If fe�g�2U (U is a certain index set),
is a complete orthonormal system in a Hilbert space H, then for any element x 2 H;
Parseval�s equality holds:

(1.6) kxk2 =
X
�2U

jhx; e�ij2

and the sum on the right-hand side is to be understood as supU0
P

�2U0 jhx; e�ij
2where

the supremum is taken over all �nite subsets U0 of U .
Assume that H is a separable Hilbert space and x; y 2 H. If fengn2N is an ortho-

normal basis of H and if an = hx; eni and bn = hy; eni are the Fourier coe¢ cients
of x and y, then

(1.7) hx; yi =
1X
n=1

anbn;
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the so-called generalized Parseval equality.
Motivated by the above results, in this paper we establish an extension and a

weighted generalization of Brown-Plum inequality to functions with values in real
Hilbert spaces. Examples for trapezoid type inequalities are also given.

2. Main Results

We assume in what follows that H is a separable real Hilbert space.

Theorem 5. Assume that f : [a; b] ! H is absolutely continuous on [a; b] and
f 0 2 L2 ([a; b] ;H) : If

R b
a
f (t) dt = 0; then

(2.1)
Z b

a

jhf 0 (t) ; f (t)ij dt � 1

4
(b� a)

Z b

a

kf 0 (t)k2 dt:

The constant 14 is best possible.

Proof. Let fengn2N be an orthonormal basis of H: De�ne u : [a; b] ! R, u (t) =
hf (t) ; eni : ThenZ b

a

u (t) dt =

Z b

a

hf (t) ; eni dt =
*Z b

a

f (t) dt; en

+
= 0

for all n 2 N.
Also u0 (t) = (hf (t) ; eni)0 = hf 0 (t) ; eni for all n 2 N.
Writing the inequality (1.1) for this function, we getZ b

a

jhf (t) ; eni hf 0 (t) ; enij dt �
1

4
(b� a)

Z b

a

jhf 0 (t) ; enij2 dt;

namely

(2.2)
Z b

a

jhf (t) ; eni hen; f 0 (t)ij dt �
1

4
(b� a)

Z b

a

jhf 0 (t) ; enij2 dt;

for all n 2 N.
Summing over n in (2.2), we get

1X
n=1

Z b

a

jhf (t) ; eni hen; f 0 (t)ij dt �
1

4
(b� a)

1X
n=1

Z b

a

jhf 0 (t) ; enij2 dt;

which gives

(2.3)
Z b

a

 1X
n=1

jhf (t) ; eni hen; f 0 (t)ij
!
dt � 1

4
(b� a)

Z b

a

 1X
n=1

jhf 0 (t) ; enij2
!
dt:

By the triangle inequality we have�����
1X
n=1

hf (t) ; eni hen; f 0 (t)i
����� �

1X
n=1

jhf (t) ; eni hen; f 0 (t)ij

and by (2.3) we get

(2.4)
Z b

a

�����
1X
n=1

hf (t) ; eni hen; f 0 (t)i
����� � 1

4
(b� a)

Z b

a

 1X
n=1

jhf 0 (t) ; enij2
!
dt:
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Using Parseval�s identity (1.7) we have for t 2 [a; b] that
1X
n=1

hf (t) ; eni hen; f 0 (t)i = hf (t) ; f 0 (t)i

and
1X
n=1

jhf 0 (t) ; enij2 = kf 0 (t)k2

and by (2.4) we derive the desired result (2.1).
The sharpness of the constant follows by the scalar case. �
We have:

Theorem 6. Let h : [a; b]! [h (a) ; h (b)] be a continuous strictly increasing func-
tion that is of class C1 on (a; b) : Assume that f : [a; b] � R!H is an absolutely
continuous function on the interval [a; b] and such that f 0

[h0]1=2
2 L2 [a; b] : If

(2.5)
Z b

a

f (t)h0 (t) dt = 0;

then

(2.6)
Z b

a

jhf (t) ; f 0 (t)ij dt � 1

4
[h (b)� h (a)]

Z b

a

kf 0 (t)k2

h0 (t)
dt:

Proof. Consider the function u := f � h�1 : [h (a) ; h (b)] ! H. The function u is
absolutely continuous on [h (a) ; h (b)] ; u (h (a)) = f � h�1 (h (a)) = f (a) = 0 and
u (h (b)) = f � h�1 (h (b)) = f (b) = 0:
Using the chain rule and the derivative of inverse functions we have

(2.7)
�
f � h�1

�0
(z) =

�
f 0 � h�1

�
(z)
�
h�1

�0
(z) =

�
f 0 � h�1

�
(z)

(h0 � h�1) (z)
for almost every (a.e.) z 2 [h (a) ; h (b)] :
Also by the change of variable t = h�1 (z) ; z 2 [h (a) ; h (b)] ; then z = h (t) ;

dz = h0 (t) dt; and Z h(b)

h(a)

f � h�1 (z) dz =
Z b

a

f (t)h0 (t) dt = 0:

If we apply the inequality (2.1) for the function u = f � h�1 on the interval
[h (a) ; h (b)] ; then we getZ h(b)

h(a)

�����
*
f � h�1 (z) ;

�
f 0 � h�1

�
(z)

(h0 � h�1) (z)

+����� dz(2.8)

� 1

4
[h (b)� h (a)]

Z h(b)

h(a)


�
f 0 � h�1

�
(z)

(h0 � h�1) (z)


2

dz:

If we make the change of variable t = h�1 (z) ; z 2 [h (a) ; h (b)] ; thenZ h(b)

h(a)

�����
*
f � h�1 (z) ;

�
f 0 � h�1

�
(z)

(h0 � h�1) (z)

+����� dz =
Z b

a

�����f (t) ; f 0 (t)h0 (t)

�����h0 (t) dt
=

Z b

a

jhf (t) ; f 0 (t)ij dt
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and Z h(b)

h(a)


�
f 0 � h�1

�
(z)

(h0 � h�1) (z)


2

dz =

Z b

a

f 0 (t)h0 (t)

2 h0 (t) dt = Z b

a

kf 0 (t)k
h0 (t)

2

dt:

By utilising (2.8), we then get the desired inequality (2.6). �
In what follows we consider the identity function ` (t) = t:
a). If we take h : [a; b] � (0;1) ! R, h (t) = ln t and assume that f is an

absolutely continuous function with
R b
a
f(t)
t dt = 0 and `

1=2f 0 2 L2 ([a; b] ;H) ; then
by (2.6) we get

(2.9)
Z b

a

jhf (t) ; f 0 (t)ij dt � 1

4
ln

�
b

a

�Z b

a

t kf 0 (t)k2 dt:

b). If we take h : [a; b] � R ! (0;1), h (t) = exp t and assume that f is
an absolutely continuous function with

R b
a
f (t) exp tdt = 0 and exp

�
� 1
2`
�
f 0 2

L2 ([a; b] ;H) ; then by (2.6) we get

(2.10)
Z b

a

jhf (t) ; f 0 (t)ij dt � 1

4
(exp b� exp a)

Z b

a

exp (�t) kf 0 (t)k2 dt:

c). If we take h : [a; b] � (0;1) ! R, h (t) = tr; r > 0 and assume that f is an
absolutely continuous function with

R b
a
f (t) tr�1dt = 0 and `(1�r)=2f 0 2 L2 [a; b] ;

then by (2.1) we get

(2.11)
Z b

a

jhf (t) ; f 0 (t)ij dt � 1

4r
(br � ar)

Z b

a

kf 0 (t)k2

tr�1
dt:

If w : [a; b]! R is continuous and positive on the interval [a; b] ; then the function
W : [a; b]! [0;1); W (x) :=

R x
a
w (s) ds is strictly increasing and di¤erentiable on

(a; b) : We have W 0 (x) = w (x) for any x 2 (a; b) :

Corollary 1. Assume that w : [a; b]! (0;1) is continuous on [a; b] with
R b
a
w (s) ds =

1 and that f : [a; b] � R!H is an absolutely continuous function on the interval
[a; b] and such that f 0

w1=2
2 L2 ([a; b] ;H) : If

(2.12)
Z b

a

f (t)w (t) dt = 0;

then

(2.13)
Z b

a

jhf (t) ; f 0 (t)ij dt � 1

4

Z b

a

kf 0 (t)k2

w (t)
dt:

Similar results may be stated for the probability distributions that are supported
on the whole axis R =(�1;1). Namely, if f : R ! H is locally absolutely
continuous on R, w (s) > 0 for s 2 R,

R1
�1 w (s) ds = 1 with

f
w1=2

2 L2 (R;H) and

(2.14)
Z 1

�1
f (t)w (t) dt = 0;

then

(2.15)
Z 1

�1
jhf (t) ; f 0 (t)ij dt � 1

4

Z 1

�1

kf 0 (t)k2

w (t)
dt:

In what follows we give an example.
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The probability density of the normal distribution on (�1;1) is

w�;�2 (x) :=
1p
2��

exp

 
� (x� �)

2

2�2

!
; x 2 R;

where � is the mean or expectation of the distribution (and also its median and
mode), � is the standard deviation, and �2 is the variance.
The cumulative distribution function is

W�;�2 (x) =
1

2
+
1

2
erf

�
x� �
�
p
2

�
;

where the error function erf is de�ned by

erf (x) =
2p
�

Z x

0

exp
�
�t2

�
dt:

So, if f

w
1=2

�;�2

2 L2 (R;H) with

(2.16)
Z 1

�1
f (t) exp

 
� (t� �)

2

2�2

!
dt = 0;

then

(2.17)
Z 1

�1
jhf (t) ; f 0 (t)ij dt �

p
2��

4

Z 1

�1
kf 0 (t)k2 exp

 
(t� �)2

2�2

!
dt:

3. Applications

We have:

Proposition 1. Assume that w : [a; b] ! (0;1) is continuous on [a; b] withR b
a
w (s) ds = 1 and that h : [a; b] � R!H is an absolutely continuous function

on the interval [a; b] and such that h0

w1=2
2 L2 ([a; b] ;H) : Then

(3.1)

�����
*
h (a) + h (b)

2
�
Z b

a

w (s)h (s) ds; h (b)� h (a)
+����� � 1

4

Z b

a

kh0 (t)k2

w (t)
dt:

Proof. Consider the function

f (t) := h (t)�
Z b

a

w (s)h (s) ds; t 2 [a; b] :

Then Z b

a

 
h (t)�

Z b

a

w (s)h (s) ds

!
w (t) dt = 0;

and by the Corollary 1 we have

(3.2)
Z b

a

�����
* 

h (t)�
Z b

a

w (s)h (s) ds

!
; h0 (t)

+����� dt � 1

4

Z b

a

kh0 (t)k2

w (t)
dt:
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By the modulus and integral properties, we also haveZ b

a

�����
* 

h (t)�
Z b

a

w (s)h (s) ds

!
; h0 (t)

+����� dt(3.3)

�
�����
Z b

a

* 
h (t)�

Z b

a

w (s)h (s) ds

!
; h0 (t)

+
dt

�����
=

�����
Z b

a

hh (t) ; h0 (t)i dt�
*Z b

a

w (s)h (s) ds;

Z b

a

h0 (t) dt

+�����
=

�����12 �kh (b)k2 � kh (a)k2��
*Z b

a

w (s)h (s) ds; h (b)� h (a)
+�����

=

�����
�
h (a) + h (b)

2
; h (b)� h (a)

�
�
*Z b

a

w (s)h (s) ds; h (b)� h (a)
+����� :

By utilising (3.2) and (3.3) we get the desired result (3.1). �
In the case of scalar functions, namely if H = R, then we have the following

trapezoid type inequality:

Corollary 2. Assume that w : [a; b]! (0;1) is continuous on [a; b] with
R b
a
w (s) ds =

1 and that h : [a; b] � R! R is an absolutely continuous function on the interval
[a; b] with h (b) 6= h (a) and such that h0

w1=2
2 L2 [a; b] : Then�����h (a) + h (b)2

�
Z b

a

w (s)h (s) ds

�����(3.4)

� 1

4

1

jh (b)� h (a)j

Z b

a

[h0 (t)]
2

w (t)
dt:

Corollary 3. Assume that h : [a; b] � R! R is an absolutely continuous function
on the interval [a; b] with h (b) 6= h (a) and such that h0 2 L2 [a; b] : Then�����h (a) + h (b)2

� 1

b� a

Z b

a

h (s) ds

�����(3.5)

� 1

4

b� a
jh (b)� h (a)j

Z b

a

[h0 (t)]
2
dt:

In 1906, Fejér [6], while studying trigonometric polynomials, obtained the fol-
lowing inequalities which generalize that of Hermite & Hadamard:

Theorem 7 (Fejér�s Inequality). Consider the integral
R b
a
h (x)w (x) dx, where h

is a convex function in the interval (a; b) and w is a positive function in the same
interval such that

w (x) = w (a+ b� x) ; for any x 2 [a; b]
i.e., y = w (x) is a symmetric curve with respect to the straight line which contains
the point

�
1
2 (a+ b) ; 0

�
and is normal to the x-axis. Under those conditions the

following inequalities are valid:

(3.6) h

�
a+ b

2

�
� 1R b

a
w (x) dx

Z b

a

h (x)w (x) dx � h (a) + h (b)

2
:
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If h is concave on (a; b), then the inequalities reverse in (3.6).
If w � 1; then (3.6) becomes the well known Hermite-Hadamard inequality

(3.7) h

�
a+ b

2

�
� 1

b� a

Z b

a

h (x) dx � h (a) + h (b)

2
:

We have the following reverse of Fejér�s inequality:

Corollary 4. Let h : [a; b] ! R be a convex function with h (b) 6= h (a) and w :

[a; b] ! (0;1) be continuous, symmetrical on [a; b] and such that h0

w1=2
2 L2 [a; b] :

Then

0 � h (a) + h (b)

2
� 1R b

a
w (s) ds

Z b

a

w (t)h (t) dt(3.8)

� 1

4

R b
a
w (s) ds

jh (b)� h (a)j

Z b

a

[h0 (t)]
2

w (t)
dt:

In particular, we have the following reverse of the Hermite-Hadamard inequality

0 � h (a) + h (b)

2
� 1

b� a

Z b

a

h (t) dt(3.9)

� 1

4

b� a
jh (b)� h (a)j

Z b

a

[h0 (t)]
2
dt;

provided that h0 2 L2 [a; b] :

References

[1] P. R. Beesack, On an integral inequality of Z. Opial. Trans. Am. Math. Soc. 104 (1962),
470�475.

[2] D. W. Boyd, Best constants in a class of integral inequalities, Paci�c J. Math. 30 (1969),
367-383.

[3] R. C. Brown and D. B. Hinton, Opial�s inequality and oscilation of 2nd order equations, Proc.
Amer. Math. Soc. 125 (1997), Number 4, 1123-1129.

[4] R. C. Brown and M. Plum, An Opial-type inequality with an integral boundary condition,
Proc. R. Soc. A 461 (2005), 2635�2651. doi:10.1098/rspa.2005.1449.

[5] S. S. Dragomir, Some inequalities related to Vrânceanu�s extension of Opial�s result, Preprint
RGMIA Res. Rep. Coll. 24 (2021), Art.

[6] L. Fejér, Über die Fourierreihen, II, (In Hungarian) Math. Naturwiss, Anz. Ungar. Akad.
Wiss., 24 (1906), 369-390.

[7] C. Olech, A simple proof of a certain result of Z. Opial. Ann. Polon. Math. 8 (1960), 61�63.
[8] Z. Opial, Sur une inégalité. Ann. Polon. Math. 8 (1960), 29�32.

1Mathematics, College of Engineering & Science, Victoria University, PO Box 14428,
Melbourne City, MC 8001, Australia.

E-mail address : sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

2DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences,
School of Computer Science, & Applied Mathematics, University of the Witwater-
srand,, Private Bag 3, Johannesburg 2050, South Africa




