SOME DETERMINANT POWER INEQUALITIES FOR POSITIVE
DEFINITE MATRICES VIA JENSEN’S INEQUALITY FOR
EXPONENTIAL FUNCTION

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. In this paper we prove among others that, if (Aj)j:1 o are

positive definite matrices of order n and p; > 0,5 =1,...,m with 37" ; p; = 1,

then
p>

0<m ‘e min _ {p;} (1 i [det (A;)] 7P — |:det 1 i Ai>
(2 m m i m i—1
_p>

-p

< ipi [det (Ai)}ip — |:det i}hAZ)
i=1 i=1

1 & _ 1 &
Smie{rlx}?fm}{pi} <m;[det(,4i)] P _ |:det mZ/M)

i=1

for all natural number p.

1. INTRODUCTION

A real square matrix A = (a;5), ¢, j = 1, ..., n is symmetric provided a;; = a;; for
all7, j = 1,...,n. A real symmetric matrix is said to be positive definite provided the
quadratic form Q (z) = =}, ajjziz; is positive for all 2 = (21, ..., z,) € R"\ {0}.
It is well known that a necessary and sufficient condition for the symmetric matrix
A to be positive definite, and we write A > 0, is that all determinants

det(Ag) =det (aij), 4, j=1,....k k=1,...,n

are positive.
It is know that the following integral representation is valid, see [1, pp. 61-62]
or [9, pp. 211-212]

(L) T (A) = /R exp(— (Az, o))dz = /_O;.../_D;exp(— (Az,2))do

7Tn/2

[det (A)]'/%
where A is a positive definite matrix of order n and (-, -) is the usual inner product
on R™.

By utilizing the representation (1.1) and Holder’s integral inequality for multiple
integrals one can prove the logarithmic concavity of the determinant that is due to
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Ky Fan ([1, p. 63] or [9, p. 212]), namely
(1.2) det (1 —A) A+ AB) > [det (A)]'* [det (B)]*

for any positive definite matrices A, B and X € [0, 1].
By mathematical induction we can get a generalization of (1.2) which was ob-
tained by L. Mirsky in [8], see also [9, p. 212]

(1.3) det Z)\jAj H [det (A m > 2,
j=1 j=1

where A\; >0, j =1,...,m with Z;nzl Aj=land 4; >0,j=1,...m
If we write (1.3) for A; = Bj_1 we get

-1

which also gives

—1
m

(1.4) [det (A7) > det | | Y N4 ,

j=1

where A\; >0, j =1,...,m with Z;n:l Aj=land 4; >0,j=1,...m
Using the representation (1.1) one can also prove the result, see [9 p. 212],
(1.5) det (A) = det (A1) < det (Ayy) det (Agsnyn), k=1,.
where the determinant det (A,.s) is defined by
det (A,s) = det (as5),i, j=r,...,5.

In particular,

(1.6) det (A) < a11a22...anp.-
We recall also the Minkowski’s type inequality,
(1.7) [det (A + B)]Y™ > [det (A)]Y™ + [det (B)]*/™

for A, B positive definite matrices of order n. For other determinant inequalities
see Chapter VIII of the classic book [9]. For some recent results see [3]-[7].

Motivated by the above results, we prove in the present paper that, if A;, ¢ €
{1,....m} are positive definite matrices, {pi},c(; _,,, are nonnegative numbers
with Z:il p; = 1, then for p a natural number > 1 we have

m m -p
1 _ 1
0< mze{rlmn {pi} - ; [det (A;)] " — [det (m zzzlAl>
m m -p
Z [det (A — [det Z piAZ—>
i=1 i=1
m -p

1 1 «
< i — d t — |det — A;
- mvé{rﬁaxm} {p m Z ¢ [ ¢ m 1221 )

i=1
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2. MAIN RESULTS
We have the following representation result:
Lemma 1. Assume that A is a positive definite matriz of order n > 2 and k > 2

a natural number, then

(2.1) [det (4)] 7%/ =

k
1
ﬂ-kn/Q/ / exp(— Z (Ayj,yi))dyr...dyp,
n " =

and

k
(2.2) [det (A)]k/2 = ’]'['k}l/2 /Rn /n exp(— Zl (A7 Y, 5))dyr ..dyg.

Proof. By taking the power k in (1.1) we get

_ 1 g
2.3 er (] = s ([ expl= (v, apyas )
Using the multiple integrals, we have
k
(2.4) (/ exp(— <Ax,x>)dm)

— [ exp(= Ay o)y | exp(= (Au)dm

k
:/ / exp(— Z (Ayj,y;))dy:...dy.
n n J:l

where y1, ...,y € R™.
By utilizing (2.3) and (2.4) we derive (2.1).
Since, by the properties of determinants and by (2.1) we derive

k
[det (A)]*? = [det (A~1)] 7" = ﬁ ( /R _exp(— <A‘1xaw>)dw>

k
= // exp(— Z(A yg,y] )dy...dyy,

which proves (2.2). O

Remark 1. If k = 2p, p a natural number > 1, then we have

25) (7= [ e (e

and

(2.6) [det (A)]P = o /" /n exp(— Z (A yj,y5))dys .. dysyp.

Jj=1
If k =2p+ 1, p a natural number, then we have

+
L 1
(27) [det (A)] p—1/2 _ Wkn/2/ / exp Z Ay]7yj dy1 dy2p+1
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and

(2.8)  [det (A)PTY? =

hn/2

We observe that for p =1 we get

2p+1
/ / exp(— Z <A_1yj,yj>)dy1...
n n =

dy2p+1 .

z,z))dydz.

(2.9) [det (A /n /n exp(— (Ay,y) — (Az, z))dydz
and
(2.10) det (4) = ﬂin /n /n exp(— <A_1y7y> — <A_1

Our main result is as follows:

Theorem 1. Assume that A;, i € {1,...,

{piticq1,..my are nonnegative numbers with Srpio= 1

number > 1 we have

. 1 & B
@11) 0= " el m) {pi} (m 2 [det (A7)] " — [det
m m -p
< Zpi [det (A;)] " — [det ZpiAi>
=1 i=1
1 m
<m mex {pi} (m§[det (A4)] 7P - [det
Also,
1 m
2.12 < 1
( ) 0<m Ilmn {pi} - ; [det (A;)]" ldet

m} are positive definite matrices and

Then for p a natural
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Proof. Observe that, by (2.5) we have

-p

(2.13) [det (i pw‘h‘)

= %/n /n exp(i < <ipzz4 > ijyj>)dy1--~dy2p

J=1 i=1
1 m 2p
= / exp(— ) _pi (Aiyj,ys) | )dyr-..dyap
Vs Rn n = =
1 2p
= WW / €Xp Zpl Z zy;,yﬁ )dyl...dyzp,
Rn n
j=1

We recall the following result obtained by the author in [2] that provides a refine-
ment and a reverse for the weighted Jensen’s discrete inequality:

(2.14) 0<m {mln X {pi} [7711 Z D(z;)— P (7711 Z zl>1
et i=1 i=1
< sz zl (Z plzl>
< mie{r{lax {pi} [ Z@ 2i) ( Zzz)] ,

.....

where ® : C'— R is a convex function defined on the convex subset C of the linear
space X, {2zi};cqq, ) C C arevectors and {p;};c(; ) are nonnegative numbers

Now, if we take @ (2) = expz, z; := Z?il (—A;y;,y;) where yq,...,yx € R™ in
(2.14) then we get

m

0<m min {p}

i€{l,...,m}
2p 1 2p
ZGXP > (=Aws.ys) | —exp EZZ Aiyjy)
Jj=1 i=1j=1
2p
<szexp Z Aiyjayj — €Xp szz zy]7yj>
j=1 = j=1
< .
=m iE{T?.??m} {pZ}
2p m  2p

Zexp Z zyJ7yJ> — €xXp ZZ zyj7yj )

j=1 11]1
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namely

0<m min {p;}

i€{l,...,m}
2p 2p 1 m

23w (Xt ) e (3 { (£ )
Jj=1 j=1 i=1

m 2p 2p m
< piexp [ =D (Ayjy) | —exp _Z<<Zpif4i> ijyj>
i=1 ;

Jj=1 J=1

<m max {p;}

i€{l,...,m}
2p 2p 1 m

EOILEY () i HAE) IR 0 oI () okt PPy
j=1 j=1 i=1

for all y1,...,yr € R™.
If we take the multiple integral on R™ x ... x R™, then we get

0< i .
sm, min  {pi}

1w 1 2p
E Zl mbn /n ‘/n exp | — Zl <A’Lyj7 yj> dyl...dygp
1= =

2p m
1 1
,ﬂ_pn /n .../n exp — Zl < (m ZAL> yjayj> dyl...dygp
j: =

1=1

2p
< Z;m/n /neXp = (Aiys,y5) | dyr-.dysy
J=1

7rpn /n /n exp _Z < (szAi> ijyj> dyl...dygp
=1

<m max }{pz

ie{1,....,m
2p
Z 7Tpn/ / exp Z 1yj7yj dyl...dygp
n n le
1 m
- gpn / / exp | — < (m Z/h) ijyj> dyl...dyzp ,
n n — p

and by representation (2.5) we get (2.11).

The inequality (2.12) follows by (2.11) by replacing A; with A; ', i € {1,...
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Remark 2. Assume that A, B are positive definite matrices and p > 1, then for
all t € [0,1]

(2.15) 0<2min{t,1—t}

<; ([det (A)] 7" + [det (B)]—p) B {det (; " B))] _p>

(1 —t)[det (A)] " +t[det (B)] ¥ —[det (1 —t) A+tB)] "
max {¢,1 — t}

2
( det + [det (B)]” ) - {det (; (A+ B))]p> .

X

<
<

Also,
(2.16) 0 < 2min{t,1 ¢t}
X (; ([det (A)]” + [det (B)]") — [det (; (A~ + B—l)ﬂ . >

(1 —t) [det (A)]” + t[det (B)]” — [det (1 —t) At +tB~H)] "
2max {t,1 —t}

X (; ([det (A)]” + [det (B)]?) — [det <; (A~ + Bl)ﬂ p) .

Corollary 1. Assume that A, B are positive definite matrices and p > 1, then for
all t € [0,1]

<
<

1
2

< 5 (1det ()7 + fdet (B)] ") - /0 [det (1 —1) A+tB)]"" dt
3
2

(; (1t 07+ et (B) ) = e (54 3)) ) |

Also

(218 0<3 (; (et (A7 + et (B)Y) — [aet (5 (4 + 57| )
< % ([det (A)]” + [det (B)]") — /01 [det (1 —t) A~ +¢B7Y)] P at
<3 (; ([det (A))” + [det (B)]?) - {det (; (A1 4 Bl)ﬂ . ) |
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Proof. We take the integral over t € [0, 1] to get Assume that A, B are positive
definite matrices and p > 1, then for all ¢ € [0, 1]

1
(2.19) 0< 2/ min {t,1 — t} dt
0

X

N |

(et (A)]77 + [det (B)] 7)) = {det (; (A+ B))] _p>
< </01 (1-1) dt) [det (A)] 77 + (/01 tdt) [det (B)] "
- /01 [det (1 —t)A+¢B)| "dt
< 2/01max{t,1—t}dt
y % (det ()7 + [det (B)] ) ~ {det (; (A+ B))] _p> .
Since
/01 min {¢,1 —t}dt = i and /Olmax{t,l —t}dt = ;
hence by (2.19) we derive (2.17). O

We also have:

Theorem 2. Assume that A;, i € {1,...,m} are positive definite matrices and
{p,-}ie{1 .m} are nonnegative numbers with Y. pi = 1. Then for p a natural
number, we have

2.20 0< ' .
(2.20) _mie{rlr}}gm}{p}
18 1 & i
=N T det (AP 2 det =N 4,
X (m;[ et (A;)] e m;

—-p—1/2

epax A}

< (ﬂll Zm: [det (4;)] 712 — [det ;i&)

-p—1/2

i=1 i=1
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Also,
(2.21) 0<m min {p;}
ie{1,...,m}
m m +1/2
5 [det (47 ldet <1ZA1> "
m 4 m 4 ?
i=1 i=1
m m p+1/2
< Zpl [det (Ai)]p+1/2 — [det <ZP¢A11>
=1 =1
<m max i
- {1,....m} {p }
1 m , 1 m p+1/2
- ANPHY2 R e
|\ ; [det (A;)] det - ; ;

The proof is similar to the one above by utilizing the representation (2.7) and
we omit the details.

3. THE CASE OF HERMITIAN MATRICES

A complex square matrix H = (h;;), ¢, = 1,...,n is said to be Hermitian
provided h;; = hTZ for all 4, 7 = 1,...,n. A Hermitian matrix is said to be posi-
tive definite if the Hermitian form P (z) = szzl ai;%%; is positive for all z =
(zla ey Zn) eCr \ {0} :

It is known that, see for instance [9, p. 215], for a positive definite Hermitian
matrix H, we have

T n

(3.1) K, (H):= /n /n exp (— (z, Hz)) dedy = det (H)

where z = = + ¢y and dz and dy denote integration over real n-dimensional space
R™. Here the inner product (x,y) is understood in the real sense, i.e. (z,y) =

Zzzl TrYk-
As shown in Lemma 1 we can show that if H is a positive definite Hermitian
matrix of order n > 2 and k > 2 a natural number, then

(3.2) [det (H)] "

k
1
:W/ / / / exp fZ@j,Hzﬁ dxidy;...drgdy

Jj=1

where 2 = xj + 1y, and dxy and dyi denote integration over real n-dimensional
space R".
Also, we have

(3.3)  [det (H)¥

k
1
- W/n /n/n /n exp _Z<zj7H712’j> d$1dy1d$kdyk

j=1

By utilizing these representations we can obtain the corresponding inequalities
for positive definite Hermitian matrices. However the details are nor provided here.
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