RGMA

SOME DETERMINANT POWER INEQUALITIES FOR POSITIVE DEFINITE MATRICES VIA JENSEN'S INEQUALITY FOR EXPONENTIAL FUNCTION

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. In this paper we prove among others that, if $(A_j)_{j=1,...,m}$ are positive definite matrices of order n and $p_j \geq 0, j=1,...,m$ with $\sum_{j=1}^m p_j = 1$, then

$$0 \le m \min_{i \in \{1, \dots, m\}} \left\{ p_i \right\} \left(\frac{1}{m} \sum_{i=1}^m \left[\det \left(A_i \right) \right]^{-p} - \left[\det \frac{1}{m} \sum_{i=1}^m A_i \right) \right]^{-p} \right)$$

$$\le \sum_{i=1}^m p_i \left[\det \left(A_i \right) \right]^{-p} - \left[\det \sum_{i=1}^m p_i A_i \right) \right]^{-p}$$

$$\le m \max_{i \in \{1, \dots, m\}} \left\{ p_i \right\} \left(\frac{1}{m} \sum_{i=1}^m \left[\det \left(A_i \right) \right]^{-p} - \left[\det \frac{1}{m} \sum_{i=1}^m A_i \right) \right]^{-p} \right)$$

for all natural number p.

1. Introduction

A real square matrix $A = (a_{ij})$, i, j = 1, ..., n is symmetric provided $a_{ij} = a_{ji}$ for all i, j = 1, ..., n. A real symmetric matrix is said to be positive definite provided the quadratic form $Q(x) = \sum_{i,j=1}^{n} a_{ij}x_ix_j$ is positive for all $x = (x_1, ..., x_n) \in \mathbb{R}^n \setminus \{0\}$. It is well known that a necessary and sufficient condition for the symmetric matrix A to be positive definite, and we write A > 0, is that all determinants

$$\det(A_k) = \det(a_{ij}), i, j = 1, ..., k; k = 1, ..., n$$

are positive.

It is know that the following integral representation is valid, see [1, pp. 61-62] or [9, pp. 211-212]

(1.1)
$$J_n(A) := \int_{\mathbb{R}^n} \exp(-\langle Ax, x \rangle) dx := \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \exp(-\langle Ax, x \rangle) dx$$
$$= \frac{\pi^{n/2}}{\left[\det(A)\right]^{1/2}},$$

where A is a positive definite matrix of order n and $\langle \cdot, \cdot \rangle$ is the usual inner product on \mathbb{R}^n .

By utilizing the representation (1.1) and Hölder's integral inequality for multiple integrals one can prove the *logarithmic concavity* of the determinant that is due to

 $^{1991\} Mathematics\ Subject\ Classification.\ 47A63,\ 26D15,\ 46C05.$

Key words and phrases. Positive definite matrices, Determinants, Inequalities.

S. S. DRAGOMIR

Ky Fan ([1, p. 63] or [9, p. 212]), namely

$$\det\left(\left(1-\lambda\right)A + \lambda B\right) \ge \left[\det\left(A\right)\right]^{1-\lambda} \left[\det\left(B\right)\right]^{\lambda}$$

for any positive definite matrices A, B and $\lambda \in [0, 1]$.

By mathematical induction we can get a generalization of (1.2) which was obtained by L. Mirsky in [8], see also [9, p. 212]

(1.3)
$$\det\left(\sum_{j=1}^{m} \lambda_j A_j\right) \ge \prod_{j=1}^{m} \left[\det\left(A_j\right)\right]^{\lambda_j}, \ m \ge 2,$$

where $\lambda_j > 0$, j = 1, ..., m with $\sum_{j=1}^{m} \lambda_j = 1$ and $A_j > 0$, j = 1, ..., m. If we write (1.3) for $A_j = B_j^{-1}$ we get

$$\det\left(\sum_{j=1}^{m} \lambda_j B_j^{-1}\right) \ge \prod_{j=1}^{m} \left[\det\left(B_j^{-1}\right)\right]^{\lambda_j} = \left(\prod_{j=1}^{m} \left[\det\left(B_j\right)\right]^{\lambda_j}\right)^{-1},$$

which also gives

2

(1.4)
$$\prod_{j=1}^{m} \left[\det \left(A_{j} \right) \right]^{\lambda_{j}} \ge \det \left[\left(\sum_{j=1}^{m} \lambda_{j} A_{j}^{-1} \right)^{-1} \right],$$

where $\lambda_j > 0$, j = 1, ..., m with $\sum_{j=1}^{m} \lambda_j = 1$ and $A_j > 0$, j = 1, ..., m.

Using the representation (1.1) one can also prove the result, see [9, p. 212],

(1.5)
$$\det(A) = \det(A_{1n}) \le \det(A_{1k}) \det(A_{(k+1)n}), \ k = 1, ..., n;$$

where the determinant $\det(A_{rs})$ is defined by

$$\det(A_{rs}) = \det(a_{ij}), i, j = r, ..., s.$$

In particular,

$$(1.6) det(A) \le a_{11}a_{22}...a_{nn}.$$

We recall also the Minkowski's type inequality,

$$[\det(A+B)]^{1/n} \ge [\det(A)]^{1/n} + [\det(B)]^{1/n}$$

for A, B positive definite matrices of order n. For other determinant inequalities see Chapter VIII of the classic book [9]. For some recent results see [3]-[7].

Motivated by the above results, we prove in the present paper that, if A_i , $i \in \{1,...,m\}$ are positive definite matrices, $\{p_i\}_{i\in\{1,...,m\}}$ are nonnegative numbers with $\sum_{i=1}^m p_i = 1$, then for p a natural number ≥ 1 we have

$$0 \le m \min_{i \in \{1, \dots, m\}} \left\{ p_i \right\} \left(\frac{1}{m} \sum_{i=1}^m \left[\det \left(A_i \right) \right]^{-p} - \left[\det \left(\frac{1}{m} \sum_{i=1}^m A_i \right) \right]^{-p} \right)$$

$$\le \sum_{i=1}^m p_i \left[\det \left(A_i \right) \right]^{-p} - \left[\det \sum_{i=1}^m p_i A_i \right) \right]^{-p}$$

$$\le m \max_{i \in \{1, \dots, m\}} \left\{ p_i \right\} \left(\frac{1}{m} \sum_{i=1}^m \left[\det \left(A_i \right) \right]^{-p} - \left[\det \frac{1}{m} \sum_{i=1}^m A_i \right) \right]^{-p} \right).$$

2. Main Results

We have the following representation result:

Lemma 1. Assume that A is a positive definite matrix of order $n \geq 2$ and $k \geq 2$ a natural number, then

(2.1)
$$[\det(A)]^{-k/2} = \frac{1}{\pi^{kn/2}} \int_{\mathbb{R}^n} \dots \int_{\mathbb{R}^n} \exp(-\sum_{j=1}^k \langle Ay_j, y_j \rangle) dy_1 \dots dy_k$$

and

(2.2)
$$[\det(A)]^{k/2} = \frac{1}{\pi^{kn/2}} \int_{\mathbb{R}^n} \dots \int_{\mathbb{R}^n} \exp(-\sum_{j=1}^k \langle A^{-1}y_j, y_j \rangle) dy_1 \dots dy_k.$$

Proof. By taking the power k in (1.1) we get

$$(2.3) \qquad \left[\det\left(A\right)\right]^{-k/2} = \frac{1}{\pi^{kn/2}} \left(\int_{\mathbb{R}^n} \exp(-\langle Ax, x\rangle) dx\right)^k.$$

Using the multiple integrals, we have

(2.4)
$$\left(\int_{\mathbb{R}^n} \exp(-\langle Ax, x \rangle) dx\right)^k$$

$$= \int_{\mathbb{R}^n} \exp(-\langle Ay_1, y_1 \rangle) dy_1 \dots \int_{\mathbb{R}^n} \exp(-\langle Ay_k, y_k \rangle) dy_k$$

$$= \int_{\mathbb{R}^n} \dots \int_{\mathbb{R}^n} \exp(-\sum_{j=1}^k \langle Ay_j, y_j \rangle) dy_1 \dots dy_k.$$

where $y_1, ..., y_k \in \mathbb{R}^n$.

By utilizing (2.3) and (2.4) we derive (2.1).

Since, by the properties of determinants and by (2.1) we derive

$$[\det(A)]^{k/2} = [\det(A^{-1})]^{-k/2} = \frac{1}{\pi^{kn/2}} \left(\int_{\mathbb{R}^n} \exp(-\langle A^{-1}x, x \rangle) dx \right)^k$$
$$= \int_{\mathbb{R}^n} \dots \int_{\mathbb{R}^n} \exp(-\sum_{j=1}^k \langle A^{-1}y_j, y_j \rangle) dy_1 \dots dy_k,$$

which proves (2.2).

Remark 1. If k = 2p, p a natural number ≥ 1 , then we have

(2.5)
$$[\det(A)]^{-p} = \frac{1}{\pi^{pn}} \int_{\mathbb{R}^n} \dots \int_{\mathbb{R}^n} \exp(-\sum_{j=1}^{2p} \langle Ay_j, y_j \rangle) dy_1 \dots dy_{2p}$$

and

(2.6)
$$\left[\det (A) \right]^p = \frac{1}{\pi^{pn}} \int_{\mathbb{R}^n} \dots \int_{\mathbb{R}^n} \exp(-\sum_{j=1}^{2p} \left\langle A^{-1} y_j, y_j \right\rangle) dy_1 \dots dy_{2p}.$$

If k = 2p + 1, p a natural number, then we have

(2.7)
$$[\det(A)]^{-p-1/2} = \frac{1}{\pi^{kn/2}} \int_{\mathbb{R}^n} \dots \int_{\mathbb{R}^n} \exp(-\sum_{j=1}^{2p+1} \langle Ay_j, y_j \rangle) dy_1 \dots dy_{2p+1}$$

and

4

$$(2.8) \qquad \left[\det\left(A\right)\right]^{p+1/2} = \frac{1}{\pi^{kn/2}} \int_{\mathbb{R}^n} \dots \int_{\mathbb{R}^n} \exp(-\sum_{j=1}^{2p+1} \left\langle A^{-1} y_j, y_j \right\rangle) dy_1 \dots dy_{2p+1}.$$

We observe that for p = 1 we get

$$(2.9) \qquad \left[\det\left(A\right)\right]^{-1} = \frac{1}{\pi^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \exp\left(-\left\langle Ay, y \right\rangle - \left\langle Az, z \right\rangle\right) dy dz$$

and

(2.10)
$$\det(A) = \frac{1}{\pi^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \exp(-\langle A^{-1}y, y \rangle - \langle A^{-1}z, z \rangle) dy dz.$$

Our main result is as follows:

Theorem 1. Assume that A_i , $i \in \{1,...,m\}$ are positive definite matrices and $\{p_i\}_{i \in \{1,...,m\}}$ are nonnegative numbers with $\sum_{i=1}^m p_i = 1$. Then for p a natural number ≥ 1 we have

$$(2.11) 0 \leq m \min_{i \in \{1, \dots, m\}} \{p_i\} \left(\frac{1}{m} \sum_{i=1}^m \left[\det (A_i) \right]^{-p} - \left[\det \frac{1}{m} \sum_{i=1}^m A_i \right) \right]^{-p}$$

$$\leq \sum_{i=1}^m p_i \left[\det (A_i) \right]^{-p} - \left[\det \sum_{i=1}^m p_i A_i \right) \right]^{-p}$$

$$\leq m \max_{i \in \{1, \dots, m\}} \{p_i\} \left(\frac{1}{m} \sum_{i=1}^m \left[\det (A_i) \right]^{-p} - \left[\det \frac{1}{m} \sum_{i=1}^m A_i \right) \right]^{-p} \right).$$

Also,

$$(2.12) 0 \leq m \min_{i \in \{1, \dots, m\}} \{p_i\} \left(\frac{1}{m} \sum_{i=1}^m \left[\det (A_i) \right]^p - \left[\det \frac{1}{m} \sum_{i=1}^m A_i^{-1} \right) \right]^{-p}$$

$$\leq \sum_{i=1}^m p_i \left[\det (A_i) \right]^p - \left[\det \sum_{i=1}^m p_i A_i^{-1} \right) \right]^{-p}$$

$$\leq m \max_{i \in \{1, \dots, m\}} \{p_i\} \left(\frac{1}{m} \sum_{i=1}^m \left[\det (A_i) \right]^p - \left[\det \frac{1}{m} \sum_{i=1}^m A_i^{-1} \right) \right]^{-p} \right).$$

Proof. Observe that, by (2.5) we have

$$(2.13) \qquad \left[\det\left(\sum_{i=1}^{m} p_{i} A_{i}\right)\right]^{-p}$$

$$= \frac{1}{\pi^{pn}} \int_{\mathbb{R}^{n}} \dots \int_{\mathbb{R}^{n}} \exp\left(-\sum_{j=1}^{2p} \left\langle \left(\sum_{i=1}^{m} p_{i} A_{i}\right) y_{j}, y_{j}\right\rangle\right) dy_{1} \dots dy_{2p}$$

$$= \frac{1}{\pi^{pn}} \int_{\mathbb{R}^{n}} \dots \int_{\mathbb{R}^{n}} \exp\left(-\sum_{i=1}^{m} p_{i} \left(\sum_{j=1}^{2p} \left\langle A_{i} y_{j}, y_{j}\right\rangle\right)\right) dy_{1} \dots dy_{2p}$$

$$= \frac{1}{\pi^{pn}} \int_{\mathbb{R}^{n}} \dots \int_{\mathbb{R}^{n}} \exp\left(\sum_{i=1}^{m} p_{i} \left(\sum_{j=1}^{2p} \left\langle -A_{i} y_{j}, y_{j}\right\rangle\right)\right) dy_{1} \dots dy_{2p}.$$

We recall the following result obtained by the author in [2] that provides a refinement and a reverse for the weighted Jensen's discrete inequality:

$$(2.14) 0 \leq m \min_{i \in \{1, \dots, m\}} \{p_i\} \left[\frac{1}{m} \sum_{i=1}^{m} \Phi(z_i) - \Phi\left(\frac{1}{m} \sum_{i=1}^{m} z_i\right) \right]$$

$$\leq \sum_{i=1}^{m} p_i \Phi(z_i) - \Phi\left(\sum_{i=1}^{m} p_i z_i\right)$$

$$\leq m \max_{i \in \{1, \dots, m\}} \{p_i\} \left[\frac{1}{m} \sum_{i=1}^{m} \Phi(z_i) - \Phi\left(\frac{1}{m} \sum_{i=1}^{m} z_i\right) \right],$$

where $\Phi: C \to \mathbb{R}$ is a convex function defined on the convex subset C of the linear space $X, \{z_i\}_{i \in \{1, ..., m\}} \subset C$ are vectors and $\{p_i\}_{i \in \{1, ..., m\}}$ are nonnegative numbers with $\sum_{i=1}^m p_i = 1$.

Now, if we take $\Phi(z) = \exp z$, $z_i := \sum_{j=1}^{2p} \langle -A_i y_j, y_j \rangle$ where $y_1, ..., y_k \in \mathbb{R}^n$ in (2.14) then we get

$$\begin{split} 0 &\leq m \min_{i \in \{1, \dots, m\}} \left\{ p_i \right\} \\ &\times \left[\frac{1}{m} \sum_{i=1}^m \exp \left(\sum_{j=1}^{2p} \left\langle -A_i y_j, y_j \right\rangle \right) - \exp \left(\frac{1}{m} \sum_{i=1}^m \sum_{j=1}^{2p} \left\langle -A_i y_j, y_j \right\rangle \right) \right] \\ &\leq \sum_{i=1}^m p_i \exp \left(\sum_{j=1}^{2p} \left\langle -A_i y_j, y_j \right\rangle \right) - \exp \left(\sum_{i=1}^m p_i \sum_{j=1}^{2p} \left\langle -A_i y_j, y_j \right\rangle \right) \\ &\leq m \max_{i \in \{1, \dots, m\}} \left\{ p_i \right\} \\ &\times \left[\frac{1}{m} \sum_{i=1}^m \exp \left(\sum_{j=1}^{2p} \left\langle -A_i y_j, y_j \right\rangle \right) - \exp \left(\frac{1}{m} \sum_{i=1}^m \sum_{j=1}^{2p} \left\langle -A_i y_j, y_j \right\rangle \right) \right], \end{split}$$

6

namely

$$\begin{split} &0 \leq m \min_{i \in \{1, \dots, m\}} \left\{ p_i \right\} \\ &\times \left[\frac{1}{m} \sum_{i=1}^m \exp \left(-\sum_{j=1}^{2p} \left\langle A_i y_j, y_j \right\rangle \right) - \exp \left(-\sum_{j=1}^{2p} \left\langle \left(\frac{1}{m} \sum_{i=1}^m A_i \right) y_j, y_j \right\rangle \right) \right] \\ &\leq \sum_{i=1}^m p_i \exp \left(-\sum_{j=1}^{2p} \left\langle A_i y_j, y_j \right\rangle \right) - \exp \left(-\sum_{j=1}^{2p} \left\langle \left(\sum_{i=1}^m p_i A_i \right) y_j, y_j \right\rangle \right) \\ &\leq m \max_{i \in \{1, \dots, m\}} \left\{ p_i \right\} \\ &\times \left[\frac{1}{m} \sum_{i=1}^m \exp \left(-\sum_{j=1}^{2p} \left\langle A_i y_j, y_j \right\rangle \right) - \exp \left(-\sum_{j=1}^{2p} \left\langle \left(\frac{1}{m} \sum_{i=1}^m A_i \right) y_j, y_j \right\rangle \right) \right], \end{split}$$

for all $y_1, ..., y_k \in \mathbb{R}^n$.

If we take the multiple integral on $\mathbb{R}^n \times ... \times \mathbb{R}^n$, then we get

$$\begin{split} 0 &\leq m \min_{i \in \{1, \dots, m\}} \{p_i\} \\ &\times \left[\frac{1}{m} \sum_{i=1}^m \frac{1}{\pi^{pn}} \int_{\mathbb{R}^n} \dots \int_{\mathbb{R}^n} \exp\left(-\sum_{j=1}^{2p} \left\langle A_i y_j, y_j \right\rangle \right) dy_1 \dots dy_{2p} \\ &- \frac{1}{\pi^{pn}} \int_{\mathbb{R}^n} \dots \int_{\mathbb{R}^n} \exp\left(-\sum_{j=1}^{2p} \left\langle \left(\frac{1}{m} \sum_{i=1}^m A_i \right) y_j, y_j \right\rangle dy_1 \dots dy_{2p} \right) \right] \\ &\leq \frac{1}{\pi^{pn}} \sum_{i=1}^m p_i \int_{\mathbb{R}^n} \dots \int_{\mathbb{R}^n} \exp\left(-\sum_{j=1}^{2p} \left\langle A_i y_j, y_j \right\rangle \right) dy_1 \dots dy_{2p} \\ &- \frac{1}{\pi^{pn}} \int_{\mathbb{R}^n} \dots \int_{\mathbb{R}^n} \exp\left(-\sum_{j=1}^{2p} \left\langle \left(\sum_{i=1}^m p_i A_i \right) y_j, y_j \right\rangle \right) dy_1 \dots dy_{2p} \\ &\leq m \max_{i \in \{1, \dots, m\}} \{p_i\} \\ &\times \left[\frac{1}{m} \sum_{i=1}^m \frac{1}{\pi^{pn}} \int_{\mathbb{R}^n} \dots \int_{\mathbb{R}^n} \exp\left(-\sum_{j=1}^{2p} \left\langle A_i y_j, y_j \right\rangle \right) dy_1 \dots dy_{2p} \\ &- \frac{1}{\pi^{pn}} \int_{\mathbb{R}^n} \dots \int_{\mathbb{R}^n} \exp\left(-\sum_{j=1}^{2p} \left\langle \left(\frac{1}{m} \sum_{i=1}^m A_i \right) y_j, y_j \right\rangle dy_1 \dots dy_{2p} \right) \right], \end{split}$$

and by representation (2.5) we get (2.11).

The inequality (2.12) follows by (2.11) by replacing A_i with A_i^{-1} , $i \in \{1, ..., n\}$.

Remark 2. Assume that A, B are positive definite matrices and $p \ge 1$, then for all $t \in [0,1]$

(2.15)
$$0 \leq 2 \min\{t, 1 - t\}$$

$$\times \left(\frac{1}{2} \left([\det(A)]^{-p} + [\det(B)]^{-p} \right) - \left[\det\left(\frac{1}{2} (A + B)\right) \right]^{-p} \right)$$

$$\leq (1 - t) \left[\det(A) \right]^{-p} + t \left[\det(B) \right]^{-p} - \left[\det((1 - t) A + tB) \right]^{-p}$$

$$\leq 2 \max\{t, 1 - t\}$$

$$\times \left(\frac{1}{2} \left([\det(A)]^{-p} + [\det(B)]^{-p} \right) - \left[\det\left(\frac{1}{2} (A + B)\right) \right]^{-p} \right).$$

Also,

$$(2.16) 0 \leq 2 \min\{t, 1 - t\}$$

$$\times \left(\frac{1}{2} \left(\left[\det(A) \right]^p + \left[\det(B) \right]^p \right) - \left[\det\left(\frac{1}{2} \left(A^{-1} + B^{-1} \right) \right) \right]^{-p} \right)$$

$$\leq (1 - t) \left[\det(A) \right]^p + t \left[\det(B) \right]^p - \left[\det\left((1 - t) A^{-1} + t B^{-1} \right) \right]^{-p}$$

$$\leq 2 \max\{t, 1 - t\}$$

$$\times \left(\frac{1}{2} \left(\left[\det(A) \right]^p + \left[\det(B) \right]^p \right) - \left[\det\left(\frac{1}{2} \left(A^{-1} + B^{-1} \right) \right) \right]^{-p} \right).$$

Corollary 1. Assume that A, B are positive definite matrices and $p \ge 1$, then for all $t \in [0, 1]$

$$(2.17) 0 \leq \frac{1}{2} \left(\left[\det(A) \right]^{-p} + \left[\det(B) \right]^{-p} \right) - \left[\det\left(\frac{1}{2} (A+B) \right) \right]^{-p} \right)$$

$$\leq \frac{1}{2} \left(\left[\det(A) \right]^{-p} + \left[\det(B) \right]^{-p} \right) - \int_{0}^{1} \left[\det\left((1-t) A + tB \right) \right]^{-p} dt$$

$$\leq \frac{3}{2} \left(\frac{1}{2} \left(\left[\det(A) \right]^{-p} + \left[\det(B) \right]^{-p} \right) - \left[\det\left(\frac{1}{2} (A+B) \right) \right]^{-p} \right).$$

Also,

$$(2.18) 0 \leq \frac{1}{2} \left(\frac{1}{2} \left(\left[\det \left(A \right) \right]^p + \left[\det \left(B \right) \right]^p \right) - \left[\det \left(\frac{1}{2} \left(A^{-1} + B^{-1} \right) \right) \right]^{-p} \right)$$

$$\leq \frac{1}{2} \left(\left[\det \left(A \right) \right]^p + \left[\det \left(B \right) \right]^p \right) - \int_0^1 \left[\det \left(\left(1 - t \right) A^{-1} + t B^{-1} \right) \right]^{-p} dt$$

$$\leq \frac{3}{2} \left(\frac{1}{2} \left(\left[\det \left(A \right) \right]^p + \left[\det \left(B \right) \right]^p \right) - \left[\det \left(\frac{1}{2} \left(A^{-1} + B^{-1} \right) \right) \right]^{-p} \right).$$

Proof. We take the integral over $t \in [0,1]$ to get Assume that A, B are positive definite matrices and $p \ge 1$, then for all $t \in [0,1]$

$$(2.19) 0 \leq 2 \int_{0}^{1} \min\{t, 1 - t\} dt$$

$$\times \frac{1}{2} \left([\det(A)]^{-p} + [\det(B)]^{-p} \right) - \left[\det\left(\frac{1}{2}(A + B)\right) \right]^{-p} \right)$$

$$\leq \left(\int_{0}^{1} (1 - t) dt \right) [\det(A)]^{-p} + \left(\int_{0}^{1} t dt \right) [\det(B)]^{-p}$$

$$- \int_{0}^{1} [\det((1 - t) A + tB)]^{-p} dt$$

$$\leq 2 \int_{0}^{1} \max\{t, 1 - t\} dt$$

$$\times \frac{1}{2} \left([\det(A)]^{-p} + [\det(B)]^{-p} \right) - \left[\det\left(\frac{1}{2}(A + B)\right) \right]^{-p} \right).$$

Since

8

$$\int_0^1 \min\{t, 1 - t\} dt = \frac{1}{4} \text{ and } \int_0^1 \max\{t, 1 - t\} dt = \frac{3}{4},$$

hence by (2.19) we derive (2.17).

We also have:

Theorem 2. Assume that A_i , $i \in \{1,...,m\}$ are positive definite matrices and $\{p_i\}_{i \in \{1,...,m\}}$ are nonnegative numbers with $\sum_{i=1}^m p_i = 1$. Then for p a natural number, we have

$$(2.20) 0 \leq m \min_{i \in \{1, \dots, m\}} \{p_i\}$$

$$\times \left(\frac{1}{m} \sum_{i=1}^{m} \left[\det (A_i) \right]^{-p-1/2} - \left[\det \frac{1}{m} \sum_{i=1}^{m} A_i \right) \right]^{-p-1/2} \right)$$

$$\leq \sum_{i=1}^{m} p_i \left[\det (A_i) \right]^{-p-1/2} - \left[\det \sum_{i=1}^{m} p_i A_i \right) \right]^{-p-1/2}$$

$$\leq m \max_{i \in \{1, \dots, m\}} \{p_i\}$$

$$\times \left(\frac{1}{m} \sum_{i=1}^{m} \left[\det (A_i) \right]^{-p-1/2} - \left[\det \frac{1}{m} \sum_{i=1}^{m} A_i \right) \right]^{-p-1/2} \right) .$$

Also,

$$(2.21) 0 \leq m \min_{i \in \{1, \dots, m\}} \{p_i\}$$

$$\times \left(\frac{1}{m} \sum_{i=1}^{m} \left[\det (A_i) \right]^{p+1/2} - \left[\det \left(\frac{1}{m} \sum_{i=1}^{m} A_i^{-1} \right) \right]^{p+1/2} \right)$$

$$\leq \sum_{i=1}^{m} p_i \left[\det (A_i) \right]^{p+1/2} - \left[\det \left(\sum_{i=1}^{m} p_i A_i^{-1} \right) \right]^{p+1/2}$$

$$\leq m \max_{i \in \{1, \dots, m\}} \{p_i\}$$

$$\times \left(\frac{1}{m} \sum_{i=1}^{m} \left[\det (A_i) \right]^{p+1/2} - \left[\det \left(\frac{1}{m} \sum_{i=1}^{m} A_i^{-1} \right) \right]^{p+1/2} \right).$$

The proof is similar to the one above by utilizing the representation (2.7) and we omit the details.

3. The Case of Hermitian Matrices

A complex square matrix $H=(h_{ij})$, i,j=1,...,n is said to be Hermitian provided $h_{ij}=\overline{h_{ji}}$ for all i,j=1,...,n. A Hermitian matrix is said to be positive definite if the Hermitian form $P(z)=\sum_{i,j=1}^n a_{ij}z_i\overline{z_j}$ is positive for all $z=(z_1,...,z_n)\in\mathbb{C}^n\setminus\{0\}$.

It is known that, see for instance [9, p. 215], for a positive definite Hermitian matrix H, we have

(3.1)
$$K_n(H) := \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \exp\left(-\langle \overline{z}, Hz \rangle\right) dx dy = \frac{\pi^n}{\det(H)},$$

where z = x + iy and dx and dy denote integration over real n-dimensional space \mathbb{R}^n . Here the inner product $\langle x, y \rangle$ is understood in the real sense, i.e. $\langle x, y \rangle = \sum_{k=1}^n x_k y_k$.

As shown in Lemma 1 we can show that if H is a positive definite Hermitian matrix of order $n \geq 2$ and $k \geq 2$ a natural number, then

(3.2)
$$\left[\det(H)\right]^{-k} = \frac{1}{\pi^{kn}} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \dots \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \exp\left(-\sum_{j=1}^k \langle \overline{z}_j, Hz_j \rangle\right) dx_1 dy_1 \dots dx_k dy_k$$

where $z_k = x_k + iy_k$ and dx_k and dy_k denote integration over real *n*-dimensional space \mathbb{R}^n .

Also, we have

$$(3.3) \qquad [\det(H)]^k$$

$$= \frac{1}{\pi^{kn}} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \dots \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \exp\left(-\sum_{j=1}^k \left\langle \overline{z}_j, H^{-1} z_j \right\rangle \right) dx_1 dy_1 \dots dx_k dy_k.$$

By utilizing these representations we can obtain the corresponding inequalities for positive definite Hermitian matrices. However the details are nor provided here.

S. S. DRAGOMIR

10

References

- [1] E. F. Beckenbach and R. Bellman, Inequalities, Berlin-Heidelberg-New York, 1971.
- [2] S. S. Dragomir, Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74 (3) (2006), 471-476.
- [3] Y. Li, L. Yongtao, Z. Huang Feng and W. Liu, Inequalities regarding partial trace and partial determinant. Math. Inequal. Appl. 23 (2020), no. 2, 477-485.
- [4] M. Lin and G. Sinnamon, Revisiting a sharpened version of Hadamard's determinant inequality. Linear Algebra Appl. 606 (2020), 192-200
- [5] J.-T. Liu, Q.-W. Wang and F.-F. Sun, Determinant inequalities for Hadamard product of positive definite matrices. Math. Inequal. Appl. 20 (2017), no. 2, 537-542.
- [6] W. Luo, Further extensions of Hartfiel's determinant inequality to multiple matrices. Spec. Matrices 9 (2021), 78–82.
- [7] M. Ito, Estimations of the weighted power mean by the Heron mean and related inequalities for determinants and traces. Math. Inequal. Appl. 22 (2019), no. 3, 949-966.
- L. Mirsky, An inequality for positive definite matricies, Amer. Math. Monthly, 62 (1955), 428-430.
- [9] D. S. Mitrinović, J. E. Pečarić and A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Acedemi Publishers, 1993

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES, School of Computer Science, & Applied Mathematics, University of the Witwater-SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA