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1 Introduction

Suppose that f : I — R is a convex function on the interval I of real numbers and a,b €
along with a < b. There are a lot of generalizations of the concept of convex functions
see [II, Bl 14, 5]. One way to generalize the concept of convex functions is to replace linear
functions by another family of functions in the sense of Beckenbach [2]. In 2016, Mohamed
S. S. Ali [1] introduced sub E-functions by dealing with a family {E(x)} of exponential

functions
E(r) = Aexp Bz,

where A, B are arbitrary constants. More precisely, [I], 6] a positive function f : I — (0, 00)
is said to be a sub E-function on [, if for all z € [a,b] C I,

f(z) < E(z)

where A and B are chosen such that E(a) = f(a), and E(b) = f(b). In this paper, we deal
with this family {E(z)} of exponential functions which is called sub E-functions.

2 Definitions and Preliminary Results

This section is devoted to introduce the main definitions and results about sub F-functions
see [11, 6] [7], which will be used in the following.
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Definition 2.1. A positive function f : 1 — (0,00) is said to be a sub E-function on I, if
for all a,b € I with a < b, the graph of f(x) for a < x < b, lies on or under the graph of a

function
E(x) = AeP?,

where A and B are taken so that E(a) = f(a), and E(b) = f(b).
Equivalently, for all x € [a, b

f(z) < E(z)

= exp

(b—2)Infla) +(z —a)In f(b) |

— (2.1)

There is more than one form for the function E(x) other than that stated in ; for

l7
example ~ Inf(b) —In f(a)
o b—a

E(z) = f(a)e"; B

or in a multiplicative formula

Remark 2.1. The sub E-functions possess a number of properties analogous to those of
convez functions. For example: Let f : I — (0,00) be a sub E-function, then for all a,b € I,
the inequality f(x) > E(x) holds outside the interval |a, b].

Definition 2.2. Assume that f: 1 — (0,00) is a sub E-function, then a function
T, (z) = AeP=
is called a supporting function for f(x) at the point u € (a,b) if
1. Tu(u) = f(u)
2. Tu(x) < f(z) Ve e 1.

That is, if f(x) and T, () agree at x = u, then the graph of f(x) lies on or above the support

curve.

Definition 2.3. Let f : I — R, f is said to satisfy a Lipschitz condition if there exists a
constant K > 0 such that for every x,y € I we have

|f(z) = f(y)] < K|z -yl

Theorem 2.1. A function f that is F p-convexr satisfies a Lipschitz condition in every
compact subinterval J of (a,b), and thus is absolutely continuous and has a derivative almost

everywhere that is bounded in J.

Theorem 2.2. If f : [a,b] — R satisfies a Lipschitz condition on [a,b] with constant K,
then f € Vla,b| and V2(f) < K(b— a).



Proposition 2.1. Let f : I — R be a differentiable sub E-function, then the supporting
function for f(z) at the point uw € I has the formula

T.(z) = f(u)exp [(x —u) ‘;léz))} : (2.2)

Proposition 2.2. For a sub E-function f : I — (0,00), the supporting function at u € I is
written in the following formula

i) = e (o - 0 32|

The constant M, ¢ is equal to f'(u) if f is differentiable at the point u € I; otherwise
fl(u) < My p < fi(u).

Theorem 2.3. If f : I — (0,00) is a two-times continuously differentiable function. The
function f is a sub E-function on I if and only if f(x)f"(x) — (f'(x))*> >0 for all x in I.

Theorem 2.4. Suppose that a function f: 1 — (0,00) is a sub E-function on I if and only
if there exist a supporting function for f(x) at each point x € I.

3 Main Results

Theorem 3.1. If f: I — (0,00) and g : I — (0,00) are sub E-functions and o > 0 then

f4+g and af are sub E-functions on I.
Proof.
Let h(z) = f(z) + g(z), h(x)h"(z) — (h’(x))2 > 0, hence

) )+ (e (5) ) 7(6)+ F ) — 7(5)— )~ 2 )
o) o)+ o) 0 o0 + )21

> 01" = 50) + o0l @) - 570+ oo Tk po L o

- HEE)  1700) o) () L L) 2 ) ) o)
_ T //I g2 T T //x 2 T (g(x)f’(x)—f(m)g’(x)

— ) ) = £70) + ala)g0) - o) + LD

Hence, f+ g is a sub E-function.
(v = 2)In f(u) + (= w)In f(v)

@) < exp] )L |
<e [U_ilnf(u) _ulnf(v)]
< expl[ln f(u)® —u+1nf( )o=u]
< exp(ln f(u) = f() ]
< f(w) = f )



Since a > 0, then

T—u

af(z) < af (u)ﬁf ()
QIS () =T ()
= (af(u)) == (af(v))»s

= explln(af(u)) = (af(v) =]
= expln(af ()= + In(af(v)) =]
_ exp[z - z In(af(u)) + = - Z In(evf(v))]

(v —x) In(af(u)) + (x — u) In(af (v))
(v —u)

= exp

Hence, af(x) is a sub E-function.

Theorem 3.2. If f: [ — (0,00) is a sub E-function then f is convex.
Proof.
Since, f is a sub E-function, then

v—xT r—u

fl@) < [fl)]=[f(o)]=, v <z <v

Let x = Au+ (1 — XN)v, A € [0,1]. Since by arithmetic-geometric mean inequality, we have

Fut (1= A0) < ()] 5 )=
= [F@P P
< M)+ (1= N ).

Hence, f is convex function.

Theorem 3.3. Assume that f: I — (0,00) and g : J — (0,00) where range(f) C J, Let f
and g are both non-negative, sub E-functions, two times continuously differentiable and g is
increasing, then the composite function gof is sub E-functions on I.

Proof.

Since, g is increasing, then

g(x)>0vVe e J (3.1)
Since, f and g are sub E-functions, then by using Theorem[2.3, we have

f@)f'(z) = (f'(@))* 20, Vo e 1 (3.2)
9(2)g"(x) = (¢'(x))* 2 0, Va € J. (3.3)

We have,



Then,

h(z)h" () — (W (2))* = g(f(2))g" (F (@) (2))* + g(f(@)g (F(@)) " (@) = g (f (@) f'(2)]*
= [9(f(@)g"(f(z) = g (f@)IL (@) + g'(f (@) f" (2)g(f ()

Now using , , , we conclude that
h(z)l'(x) = (K (x))* = 0.
Hence, h(zx) is a sub E-function.

Definition 3.1. Let BE]a,b] be the class of functions f : [a,b] — (0,00) representable as
difference of two sub E-functions in the the form f = g—h where g and h are sub E-functions
on [a,b] and ¢’ (a), g"(b), W, (a), K_(b) are all finite.

Theorem 3.4. The Class BE[a,b] is closed under addition, subtraction and scalar multipli-

cation.
Proof.

Let f,g € BE[a,b], f = fi — fo, g = g1 — 92

For addition:

fro=h—fotoan—g=(fi+q)— (fa+g)

Since fi1 + g1, f2 + g2 are sub E-functions by Theorem[3.1].
Then f + g € BE[a,b].

For subtraction:
f—9=f—-fo—gn+tg=(+g)—(fotq)

Since fi + go, fo + g1 are sub E-functions.

Then f — g € BE[a,b].

For scalar multiplication: Case(1) let o > 0

af =afi —afs.

Since afy, afs are sub E-functions by Theorem [3.1]

Then of € BE|[a,b|.

Case(2) let o <0 .

af =afi —afs=—afy — (—a)fi.

Since —afy, —afy are sub E-functions.

Then of € BE|[a,b].

It is clear that all the previous functions have finite endpoint derivatives.

Corollary 3.1. BE[a,b] is a linear space.

Theorem 3.5. If f € BE[a,b] , then f satisfies lipschitz condition and consequently abso-
lutely continuous on |a, b.

Proof.

Let f € BE[a,b], f = f1 — fa. Since f1 and fy are sub E-functions.

Then from Theorem [2.1] f1, fo satisfy lipschitz condition.

|fi(z) = fiy)] <klz —y[  and  |fo(z) — foly)] < mlz —yl.



Va,y € [a,b],

() = fily) = (fa(2) = fa(y))]
< (@) = h)l + | = (fal2) = f2()]
< |fi(@) = L)l + | fa(z) = f2(y)]

|f(x) = f(y)] < klz —y| +m|z —y|
= (k+m)lz -y
= hlz -y,

where, h = k+m
then  [f(z) = f(y)| < hlz —y|  Va,y € la,b]

Hence, f satisfies lipschitz condition.
let e >0, choose § = 1 such that for any collection {(x;,y;) : 1 = 1,2, ....,n} of disjoint open
subinterval of [a,b] with Y\ | |z; — yi| <0

n n n €
then Y | f(x:) = f(yi)] < D hlwi =yl =h )|z =yl < he =e¢
1 1 1
Hence, f is absolutely continuous on [a,b].

Corollary 3.2. If f € BE[a,b] then V*(f) < .
Proof.

Let f € BE]a,b].

Then, from Theorem[2.1] f satisfies lipschitz condition.
Then, from Theorem[2.9 f € V]a,b].

Hence, V2(f) < oc.
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