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ABSTRACT: The aim of this work is to study the standard functional operations of

sub E-functions. Furthermore, we introduce a class BE[a, b] of functions representable as a

difference of two sub E-functions.
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1 Introduction

Suppose that f : I → R is a convex function on the interval I of real numbers and a, b ∈ I
along with a < b. There are a lot of generalizations of the concept of convex functions

see [1, 3, 4, 5]. One way to generalize the concept of convex functions is to replace linear

functions by another family of functions in the sense of Beckenbach [2]. In 2016, Mohamed

S. S. Ali [1] introduced sub E-functions by dealing with a family {E(x)} of exponential

functions

E(x) = A expBx,

where A,B are arbitrary constants. More precisely, [1, 6] a positive function f : I → (0,∞)

is said to be a sub E-function on I, if for all x ∈ [a, b] ⊂ I,

f(x) ≤ E(x)

where A and B are chosen such that E(a) = f(a), and E(b) = f(b). In this paper, we deal

with this family {E(x)} of exponential functions which is called sub E-functions.

2 Definitions and Preliminary Results

This section is devoted to introduce the main definitions and results about sub E-functions

see [1, 6, 7], which will be used in the following.
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Definition 2.1. A positive function f : I → (0,∞) is said to be a sub E-function on I, if

for all a, b ∈ I with a < b, the graph of f(x) for a ≤ x ≤ b, lies on or under the graph of a

function

E(x) = AeBx,

where A and B are taken so that E(a) = f(a), and E(b) = f(b).

Equivalently, for all x ∈ [a, b]

f(x) ≤ E(x)

= exp

[
(b− x) ln f(a) + (x− a) ln f(b)

b− a

]
. (2.1)

There is more than one form for the function E(x) other than that stated in (2.1); for

example,

E(x) = f(a)eB(x−a); B =
ln f(b)− ln f(a)

b− a
or in a multiplicative formula

E(x) = [f(a)]
b−x
b−a .[f(b)]

x−a
b−a .

Remark 2.1. The sub E-functions possess a number of properties analogous to those of

convex functions. For example: Let f : I → (0,∞) be a sub E-function, then for all a, b ∈ I,
the inequality f(x) ≥ E(x) holds outside the interval [a, b].

Definition 2.2. Assume that f : I → (0,∞) is a sub E-function, then a function

Tu(x) = AeBx

is called a supporting function for f(x) at the point u ∈ (a, b) if

1. Tu(u) = f(u)

2. Tu(x) ≤ f(x) ∀x ∈ I.

That is, if f(x) and Tu(x) agree at x = u, then the graph of f(x) lies on or above the support

curve.

Definition 2.3. Let f : I → R, f is said to satisfy a Lipschitz condition if there exists a

constant K > 0 such that for every x, y ∈ I we have

|f(x)− f(y)| ≤ K|x− y|.

Theorem 2.1. A function f that is F ρ-convex satisfies a Lipschitz condition in every

compact subinterval J of (a, b), and thus is absolutely continuous and has a derivative almost

everywhere that is bounded in J .

Theorem 2.2. If f : [a, b] → R satisfies a Lipschitz condition on [a, b] with constant K,

then f ∈ V [a, b] and V b
a (f) ≤ K(b− a).
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Proposition 2.1. Let f : I → R be a differentiable sub E-function, then the supporting

function for f(x) at the point u ∈ I has the formula

Tu(x) = f(u) exp

[
(x− u)

f ′(u)

f(u)

]
. (2.2)

Proposition 2.2. For a sub E-function f : I → (0,∞), the supporting function at u ∈ I is

written in the following formula

Tu(x) = f(u) exp

[
(x− u)

Mu,f

f(u)

]
.

The constant Mu,f is equal to f ′(u) if f is differentiable at the point u ∈ I; otherwise

f ′−(u) ≤Mu,f ≤ f ′+(u).

Theorem 2.3. If f : I → (0,∞) is a two-times continuously differentiable function. The

function f is a sub E-function on I if and only if f(x)f ′′(x)− (f ′(x))2 ≥ 0 for all x in I.

Theorem 2.4. Suppose that a function f : I → (0,∞) is a sub E-function on I if and only

if there exist a supporting function for f(x) at each point x ∈ I.

3 Main Results

Theorem 3.1. If f : I → (0,∞) and g : I → (0,∞) are sub E-functions and α ≥ 0 then

f + g and αf are sub E-functions on I.

Proof.

Let h(x) = f(x) + g(x), h(x)h′′(x)− (h′(x))2 ≥ 0, hence

[f(x) + g(x)][f ′′(x) + g′′(x)]− [f ′(x) + g′(x)]2 =

= f(x)f ′′(x) + g(x)g′′(x) + g(x)f ′′(x) + f(x)g′′(x)− f ′2(x)− g′2(x)− 2f ′(x)g′(x)

= f(x)f ′′(x)− f ′2(x) + g(x)g′′(x)− g′2(x) + g(x)f ′′(x) + f(x)g′′(x)− 2f ′(x)g′(x)

≥ f(x)f ′′(x)− f ′2(x) + g(x)g′′(x)− g′2(x) + g(x)
f ′2(x)

f(x)
+ f(x)

g′2(x)

g(x)
− 2f ′(x)g′(x)

= f(x)f ′′(x)− f ′2(x) + g(x)g′′(x)− g′2(x) +
g2(x)f ′2(x) + f 2(x)g′2(x)− 2f ′(x)g′(x)f(x)g(x)

f(x)g(x)

= f(x)f ′′(x)− f ′2(x) + g(x)g′′(x)− g′2(x) +
(g(x)f ′(x)− f(x)g′(x))2

f(x)g(x)
≥ 0.

Hence, f + g is a sub E-function.

f(x) ≤ exp[
(v − x) ln f(u) + (x− u) ln f(v)

v − u
]

≤ exp[
v − x
v − u

ln f(u) +
x− u
v − u

ln f(v)]

≤ exp[ln f(u)
v−x
v−u + ln f(v)

x−u
v−u ]

≤ exp[ln f(u)
v−x
v−uf(v)

x−u
v−u ]

≤ f(u)
v−x
v−uf(v)

x−u
v−u .
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Since α ≥ 0, then

αf(x) ≤ αf(u)
v−x
v−uf(v)

x−u
v−u

= α
v−x
v−uf(u)

v−x
v−uα

x−u
v−u f(v)

x−u
v−u

= (αf(u))
v−x
v−u (αf(v))

x−u
v−u

= exp[ln(αf(u))
v−x
v−u (αf(v))

x−u
v−u ]

= exp[ln(αf(u))
v−x
v−u + ln(αf(v))

x−u
v−u ]

= exp[
v − x
v − u

ln(αf(u)) +
x− u
v − u

ln(αf(v))]

= exp

[
(v − x) ln(αf(u)) + (x− u) ln(αf(v))

(v − u)

]
Hence, αf(x) is a sub E-function.

Theorem 3.2. If f : I → (0,∞) is a sub E-function then f is convex.

Proof.

Since, f is a sub E-function, then

f(x) ≤ [f(u)]
v−x
v−u [f(v)]

x−u
v−u , u ≤ x ≤ v

Let x = λu+ (1− λ)v, λ ∈ [0, 1]. Since by arithmetic-geometric mean inequality, we have

f(λu+ (1− λ)v) ≤ [f(u)]
v−λu−(1−λv)

v−u [f(v)]
λu+(1−λ)v−u

v−u

= [f(u)]λ[f(v)]1−λ

≤ λf(u) + (1− λ)f(v).

Hence, f is convex function.

Theorem 3.3. Assume that f : I → (0,∞) and g : J → (0,∞) where range(f) ⊆ J , Let f

and g are both non-negative, sub E-functions, two times continuously differentiable and g is

increasing, then the composite function gof is sub E-functions on I.

Proof.

Since, g is increasing, then

g′(x) ≥ 0 ∀x ∈ J (3.1)

Since, f and g are sub E-functions, then by using Theorem 2.3, we have

f(x)f ′′(x)− (f ′(x))2 ≥ 0, ∀x ∈ I (3.2)

g(x)g′′(x)− (g′(x))2 ≥ 0, ∀x ∈ J. (3.3)

We have,

h(x) = g(f(x)), (3.4)

h′(x) = g′(f(x))f ′(x), (3.5)

h′′(x) = g′′(f(x))(f ′(x))2 + g′(f(x))f ′′(x). (3.6)
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Then,

h(x)h′′(x)− (h′(x))2 = g(f(x))g′′(f(x))(f ′(x))2 + g(f(x)g′(f(x)))f ′′(x)− [g′(f(x))f ′(x)]2

= [g(f(x))g′′(f(x)− g′(f(x)))][f ′(x)]2 + g′(f(x))f ′′(x)g(f(x))

Now using (3.1), (3.2), (3.3), we conclude that

h(x)h′′(x)− (h′(x))2 ≥ 0.

Hence, h(x) is a sub E-function.

Definition 3.1. Let BE[a, b] be the class of functions f : [a, b] → (0,∞) representable as

difference of two sub E-functions in the the form f = g−h where g and h are sub E-functions

on [a, b] and g′+(a), g′−(b), h′+(a), h′−(b) are all finite.

Theorem 3.4. The Class BE[a, b] is closed under addition, subtraction and scalar multipli-

cation.

Proof.

Let f, g ∈ BE[a, b], f = f1 − f2, g = g1 − g2
For addition:

f + g = f1 − f2 + g1 − g2 = (f1 + g1)− (f2 + g2)

Since f1 + g1, f2 + g2 are sub E-functions by Theorem 3.1.

Then f + g ∈ BE[a, b].

For subtraction:

f − g = f1 − f2 − g1 + g2 = (f1 + g2)− (f2 + g1).

Since f1 + g2, f2 + g1 are sub E-functions.

Then f − g ∈ BE[a, b].

For scalar multiplication: Case(1) let α ≥ 0

αf = αf1 − αf2.
Since αf1, αf2 are sub E-functions by Theorem 3.1.

Then αf ∈ BE[a, b].

Case(2) let α < 0 .

αf = αf1 − αf2 = −αf2 − (−α)f1.

Since −αf2,−αf1 are sub E-functions.

Then αf ∈ BE[a, b].

It is clear that all the previous functions have finite endpoint derivatives.

Corollary 3.1. BE[a, b] is a linear space.

Theorem 3.5. If f ∈ BE[a, b] , then f satisfies lipschitz condition and consequently abso-

lutely continuous on [a, b].

Proof.

Let f ∈ BE[a, b], f = f1 − f2. Since f1 and f2 are sub E-functions.

Then from Theorem 2.1 f1, f2 satisfy lipschitz condition.

|f1(x)− f1(y)| ≤ k|x− y| and |f2(x)− f2(y)| ≤ m|x− y|.
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∀x, y ∈ [a, b],

f(x)− f(y) = f1(x)− f2(x)− (f1(y)− f2(y))

= f1(x)− f1(y)− (f2(x)− f2(y))

|f(x)− f(y)| = |f1(x)− f1(y)− (f2(x)− f2(y))|
≤ |f1(x)− f1(y)|+ | − (f2(x)− f2(y)|
≤ |f1(x)− f1(y)|+ |f2(x)− f2(y)|

|f(x)− f(y)| ≤ k|x− y|+m|x− y|
= (k +m)|x− y|
= h|x− y|,

where, h = k +m

then |f(x)− f(y)| ≤ h|x− y| ∀x, y ∈ [a, b]

Hence, f satisfies lipschitz condition.

let ε > 0 , choose δ = ε
h

such that for any collection {(xi, yi) : i = 1, 2, ...., n} of disjoint open

subinterval of [a, b] with
∑n

i=1 |xi − yi| < δ

then
n∑
1

|f(xi)− f(yi)| <
n∑
1

h|xi − yi| = h
n∑
1

|xi − yi| < h
ε

h
= ε

Hence, f is absolutely continuous on [a, b].

Corollary 3.2. If f ∈ BE[a, b] then V b
a (f) <∞.

Proof.

Let f ∈ BE[a, b].

Then, from Theorem 2.1 f satisfies lipschitz condition.

Then, from Theorem 2.2 f ∈ V [a, b].

Hence, V b
a (f) <∞.
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