INEQUALITIES FOR THE NORMALIZED DETERMINANT OF
POSITIVE OPERATORS IN HILBERT SPACES VIA
REFINEMENTS AND REVERSES OF YOUNG’S RESULT

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. For positive invertible operators A on a Hilbert space H and a
fixed unit vector « € H, define the normalized determinant by Ag(A) :=
exp (In Az, z). In this paper we prove among others that, if 0 <mlI < A< MI
and z € H, ||z|| =1, then
Az (4) < exp [L (MI —A)(A—mlI) x,x>:|

Mm

M—(Az,z) (Az,z)—m —
m~ M-m )N~ M-m

1<

< exp | g (O = (A2, 2)) ((A,2) = )| < oxp | o (07 = )2

1. INTRODUCTION

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [4], [5], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z| = 1, defined by A, (A) := exp (ln Az, x) and discussed it as a continuous
geometric mean and observed some inequalities around the determinant from this
point of view.

Some of the fundamental properties of normalized determinant are as follows,
[4].
For each unit vector x € H, see also [8], we have:

(i) continuity: the map A — A,(A) is norm continuous;

(ii) bounds: <A71x,:c>71 < AL(A) < (Az,z);
(iil) continuous mean: (Apm,x>1/p | Az(A) for p | 0 and (Apx,a:>1/p 1T AL(A)
for p T 0;

(iv) power equality: A, (AY) = A,(A)! for all ¢ > 0;
(v) homogeneity: Ay(tA) =tAL(A) and Ay (tI) =t for all t > 0;
(vi) monotonicity: 0 < A < B implies A, (4) < A, (B);
(vii) multiplicativity: Ay(AB) = Az(A)A4(B) for commuting A and B;
(viii) Ky Fan type inequality: A,((1 —a) A+ aB) > AL(A)} A, (B)* for 0 <

a<l1.
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We define the logarithmic mean of two positive numbers a, b by

In Z:la;la if b 7& a,
L(a,b) :=
aif b= a.

In [4] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI < A < M1, where m, M are positive
numbers,

MInm —mlIn M

(1.1) 0< (Az,z) — AL(A) < L(m,M) |InL(m, M) + Y —m -1

for all x € H, ||z|| = 1.
The famous Young inequality for scalars says that if a,b > 0 and v € [0, 1], then
(1.2) a7y < (1—-v)a+uvb

with equality if and only if @ = b. The inequality (1.2) is also called v-weighted
arithmetic-geometric mean inequality.
We recall that Specht’s ratio is defined by [10]

BT i e (0,1) U (1, 00)
13) say={ 0)

1if h=1.

It is well known that limj,; S (h) =1, S(h) = S($) > 1 for h > 0, h # 1. The
function is decreasing on (0, 1) and increasing on (1, 00).
In [5], the authors obtained the following multiplicative reverse inequality as well

(1.4) 1< fi’g <S (%)

for0<mI<A<MIandzeH,|z|=1.
Since 0 < M~ < A=t <m™'1, then by (1.4) for A= we get

v St s (3m) -5 (G 7) -5 (X),

which is equivalent to

(15) 1 S0 <5 (X)),

T (A lgz)t T m

Kittaneh and Manasrah [11], [12] provided a refinement and an additive reverse
for Young inequality as follows:

(1.6) T(\f—\/g)z§(l—y)a+ub—a1_”b”§R(f—\/5)2

where a, b > 0, v € [0,1], r = min {1 —v,v} and R = max {1 — v,v}. The case
v = % reduces (1.6) to an identity.

For some operator versions of (1.6) see [11] and [12].

We also have the following inequality that provides a refinement and a reverse
for the celebrated Young’s inequality

(b _ a‘)2 1—-vyv 1 (b _ a)2
—— < (1= — < = )
max {a,b} ~ (I=v)atvb—a™"" < 2y(1 ) min {a, b}

(1.7) %u (1-v)
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for any a, b > 0 and v € [0,1].

This result was obtained in 1978 by Cartwright and Field [1] who established a
more general result for n variables and gave an application for a probability measure
supported on a finite interval.

In this paper, motivated by the above results, we provide upper an lower bounds
for the quantities

Ax(A)

M—(Ax,x) (Az,z)—m
m M—m M M—m

and
In M—(In Az,z) (In Az,z)—Inm

InAL(A) — (Inm) ®¥-Tom™ (I[n M) ™M-Tm

under various assumptions for the positive operator A with spectrum in [m, M| and
ze H, |jof = 1.

2. MAIN RESULTS
The first result is as follows:

Theorem 1. Assume that 0 <mI < A< MI and x € H, ||z|| = 1, then

AL(A 1
(21) 1< M,(Am)( )<Am>,m < exp [Mm (MI — A)(A—mlI) x,x>}
m M—m M—m

1 1 2
< — (M- - < — (M - .
< exp U (M — (Az,z)) ((Az, ) m)} < exp [4Mm (M —m) }
Proof. In [2] we obtained the following reverses of Young’s inequality:
1-— b
1§g—;%ggﬁz—gem)kyﬂgﬁo(K(%)—1”,
where a, b > 0, v € [0, 1].
This is equivalent, by taking the logarithm, with
(b a)?
ba

0<In((l-v)a+vb)—(1—-v)lna—vinb<v(l-v)

where a, b > 0, v € [0, 1].
If we take a =m, b= M, t € [m, M] and v = L= € [0, 1], then we get

M—m
M —t t—m (M —t) (t —m) (M —m)?
<Int- 1 - InM <
0<ln M—mnm M—mIl - (]\47771)2 Mm
(M —t)(t—m)
N Mm '
Using the continuous functional calculus for selfadjoint operators, we have
0<InA_ MI_Alnm— AI_mlnM§ (MI—A)(A—mI)7
M—-m -m Mm
which is equivalent to
M — (Az, x) (Az,x) —m
< _ I _ M
0 < (ln Az, z) T —m Inm U= In M

1
< W«MI_A) (A_ml)$7$>a

for all x € H, ||z|| = 1.
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If we take the exponential, then we get

exp (In Az, )

(22) I< M—(Az,z) (Az,z)—m
exp [Wlnm+wlnM}
< exp []\41 (MI—-A)(A- mI)x,x}] ,
m

for all x € H, ||z|| = 1.
Observe that

M — (Ax,x Az, x) —m M—(Az,z) (Az,a)—m
exp 7< ) Inm + 7< ) In M| =exp [ln (m M-—m N ~M-m )}
M —m M—-m
M—(Az,z) (Az,z)—m
=m M-m M—m

and by (2.2) we obtain the first inequality in (2.1).
The function g (t) = (M —t) (t — m) is concave on [m, M] and by Jensen’s in-
equality
(9(A)z,2) < g((Az,2)), z € H, |zf| =1
we have
(MI—A)(A—mI)z,z) < (M — (Ax,x)) ({Az,z) — m))
for all z € H,||z|| = 1, which proves the third inequality in (2.1). O

Corollary 1. With the assumptions of Theorem 1,
m71—<A71m,m> <A711,1>—A171
M mI—mT gy mI-m1T
Az (A)
< exp [mM<(m_11 — A_l) (A_1 — M_ll) x,x>]
< exp [mM (m71 — <A71:13,:1:>) (<A71x,x> — Mﬁl)}
< exp imM (M —m)?|,

(2.3) 1<

forx e H, ||z|| = 1.

Proof. Observe that 0 < mI < A < MI implies that 0 < M~ T < A~' <m™'I. If
we write the inequality (2.1) for A~!, then we get

AL (AT
1 S 7771,_1—(A_1w,a‘,> 7<A_1m,m>—M—1
M ] m—1-M-1 m=—T—pm—1

<exp |y (m 1 - A7) (471~ M) x,x>}
[ 1

< exp p— VS (mfl — <A*1x7m>) (<A*1x,x> — Ml)]
[ 1 _ 12

< exp W(m P-MTh

for all x € H, ||z|| = 1, which is equivalent to (2.3). O
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In [3] we obtained the following refinement and reverse of Young’s inequality:

. 2
(2.4) exp l;u (1-v) (1 — 11;11:15({{2711))}}) 1
(I-v)a+vwvb
al-vpv

1 max {a,b} 2

< - _ _

= exp [21/(1 v) <min{a,b} 1> ] ’
for any a, b> 0 and v € [0,1].
Theorem 2. Assume that 0 <mlI < A< MI and x € H, ||z|| = 1, then

[ 1

2012
Au(A)

M—(Az,z) (Az,z)—m
m~ M-m N M-m

1
oz (MI—A) (A—m[)x,x)}

1

| 2m?

1 /M 2
Sexp g R—l

(2.5) 1 <exp (MI—A)(A—mlI) x,x)]

<

< exp

< exp (M — (Az,z)) ((Az,x) — m)}

Proof. From (2.4) we have
1 m\ 2]
exp {21/ (1-v) (1 - M) |

LA-ymtvM [;u(l—y) (Z—lﬂ ,

mi-v MV
for v € [0,1].
By taking the logarithm, we obtain
1 m\2
(2.6) sv(1=v) (1 - M)
<In(l-v)ym+vM)—(1—-v)lnm—vInM
1 M ?
§1/(11/)<1) ,
2 m
for v € [0,1].

If we take a =m, b= M, t € [m, M] and v = {72 € [0,1], then we get
(M —1t)(t—m) M-t t—m
2 <ZInt— 1 — In M

202 A 7 e v
< (M —1t)(t—m)
- 2m?

t e [m,M].
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As above, we get the vector inequality

1
e (MI—A)(A—mI)x,x)
M — (Ax,x) (Az,z) —m
< _ -\ _ M Tt
< (ln Az, z) T —m Inm U —m In M

< o (MI— A) (A= mD)a,2)

forx € H, ||z|| = 1.
If we take the exponential, then we derive

exp [2]\142 (MI—A)(A—mlI)x, x)]
exp (In Az, z)

exp [7M;/I<ffrzw> Inm + 7<A1f/[’f>;m In M}

< exp [2;2 (MT — A) (A —mI)z, x)] ,

for all z € H, ||z|| = 1, which proves the first part of (2.5).
The second part is obvious.

Corollary 2. With the assumptions of Theorem 1,

(2.7) 1 <exp Bmz <(m71[ —AH (AT =M :c,x>}

m~ (A= 1z o

m—1_pm—1

<A711,z>7]VI’1

m—1_pM—1

M m
= AL (A)
< exp _%MQ <(m_1I — A_l) (A_1 — M_II) z, x>}
< exp %MQ (m_l — <A_1x7m>) (<A_1x,ac> — M_l)}
< exp ;(%—Q ]

forz e H, ||z| = 1.

3. RELATED RESULTS

We also have:

Theorem 3. Assume that I < mI < A< MI and x € H, ||z| = 1, then

(3.1) 0<InAL(A) = (Inm) =omm (In M) =i
< (In M — (In Az, z)) ((In Az, x) —Inm) In In M
- InM —Inm Inm

<

forxz e H, ||z| = 1.

Inm

1 In M
I (InM —Ilnm)In (n)
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Proof. In the recent paper [2] we obtained the following reverses of Young’s in-
equality as well:

(3.2) 0<(1—-v)a+vb—a b <v(l—v)(a—>b)(Ina—Inb)
where a, b > 0, v € [0, 1].
If we take the exponential in (3.2), then we get
exp[(1 —v)a+ vi]
exp (al=7b¥)

<b>v(1—u)(b—a)] <b>y(1—u)(b—a)
In| - =|- .
a a

If we put (1 —v)a+vb=s>0, then v = $=%, 1 —v = 2= and by (3.3) we obtain

a’ b—a

(3.3) 1<

<explv(1—v)(a—"0)(lna—Ind)]

= exp

(=a)b=s) 1(b—a)
o Lo exps (b> < <b)
' N exp (aEbZZZ) - \a o\ |

Now, we take a =Inm, s = (ln Az,z) and b=1In M, x € H, ||z|| =1 in (3.4) to get

| < exp (ln Az, x)

In M—(In Ax,z) (lnAa:,a:>71n7n)

exp ((ln m)” mM-mm (Ip M) mM-m

(In M—(In Az,2))({In Az,z)—lnm)
In

In M e Tne In M L(In M—Inm)
< < | — .
- <1nm> - (lnm)

By taking the logarithm we then obtain (3.1). O

We also have:

Theorem 4. Assume that I <mI < A< MI and x € H, ||z|| = 1, then

1 1 Inm+1InM
. <|lz-— =
(3.5) 0< <2 LM —Tom (In Az, z) 5 D
2
X (\/lnM—vlnm>
In M—(In Az,z) (In Az,z)—Inm
<InAL(A) — (Inm) mM-Tom™ (In M) ™M-Tm
1 1 Inm +InM
<z - _ e
- (2 + InM —1Inm {In Az, 2) 2 D

X

(VInd — Virm)’

(VInd — Viim)

Proof. If we take the exponential in (1.6) we get

(3.6) 1< exp [min{1 —v,v} (vVa-vb) 1

< &P [(1-v)a+ vb]
—  exp(al7vd¥)

< exp [max{1 — v} (f— \/5)2}

IN
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for a, b >0, v € ]0,1].
If we put (1 —v)a+vb=s>0, then v = =2

b—a’
1 1 a+b
(1 _ 1 _
min {1 — v, v} 5 5 a 5 |
1 1 a+b
]_— = — _
max {1 — v, v} 2+bfa 5|

and by (3.6) we get

0 st gt ) 59

— b—s s—a
exp ab—a,bb—a,

<o 1Jr 1
- -
= oxXp 2 b—a

]

2

for s € [a,b].
Now, we take a =Inm, s = (InAz,z) and b=1In M, z € H, ||z|| =1 in (3.7) to
get

1 1 Inm+InM 2
< I — | - —
1 <exp [(2 o T (In Az, ) 5 D (\/lnm vlnM) ]

exp (In Az, z)

<

In M—(In Az,x) (In Az,z)—Ilnm
exp ((ln m) InM—Inm (ln M) InM—Inm )

1 1 Inm+1InM 2
< S e A — .
< exp {<2+ln gy (In Az, x) ) D ( lnm lnM) }
Taking the logarithm, we obtain

2
0< (1 _ (In Az, z) — Inm + In M > (\/lnM—\/lnm)

2 InM—1Inm 2
In M—(In Az,z) (In Az,z)—Inm
<InA, (A) _ (ln m) In M —In m (ln M) In M—Inm
1 1 Inm+1InM 2
< (=24 —" |nAgq) — 200 (\/1M—\/1 )
_<2+1annm<n %) 2 ) . nm
2
< (vlnM— \/lnm)
for x € H, ||z|| = 1, which proves the desired result. O

‘We also have:

Theorem 5. With the assumptions of Theorem /,

1 ((InAz,2) —Ilnm) (In M — (In Az, x))
(3:8) 0= 2 In M

In M—(In Az,z) (In Az,z)—Inm

<InA,(A) — (lnm) mM-Tm— (In M) =M-=m—
1((InAz,z) —Inm) (In M — (In Az, z))

2 Inm

(In M — Inm)?

<

IN

8Inm
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forz e H, ||z| = 1.

Proof. If we take the exponential in (1.7), then we get

(3.9) 1 <exp %1/ (1-v) rrfsx{z)b}]

exp [(1 —v)a+ v
e}-{p (al—ybu)

< exp 1u(l —v) n(li)n{z)b}]

<

for a, b> 0, v € [0,1].
If we put (1-v)a+vb=2s5>0,thenv=7=21-v= 2:; and by (3.9) we
derive

(3.10) exp Bm}

<P <ewp [1(5 —a)(b— 5)} :
exp (abfgb;_a) 2  min{a,b}

Now, weput a =Ilnm, s = (ln Az,z) and b=1In M, z € H, ||z|| = 1 in (3.10) to get

1 ({(InAx,x) —Inm) (In M — (In Az, x
| < np LU0 A) ) 30— )
exp (In Az, z)
< In M—(In Az,x) (In Az.,z)—Inm
exp ((lnm) In M—Inm (lnM) In M—Inm )
1((InAz,z) —Inm) (In M — (In Az,
< exp {2« ) h)lgn { >)}

and by taking the logarithm we obtain the first part of (3.8).
The second part is obvious. (I

In [3] we also obtained the following result

(3.11) %I/ (1-v)(Ina—Inb)*min{a,b} < (1 —v)a+vb—a' Vb

IN

%V (1 —v)(Ina — Inb)® max {a, b}

for any a, b >0 and v € [0,1].
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Theorem 6. With the assumptions of Theorem 4,

(3.12) OS%MMM@—mmMmM—mm%@)

X

e

In M—(ln Az,x) {(In Az,z)—Ilnm

<InAL(A) — (Inm)  mM-Tom— (I[n M) ™M-Tam

IN
N =

((In Az,z) —Inm) (In M — (In Az, z))

In(In M) —1In (Inm)
InM —Inm

] : In (In M)

IA X
| =1

[In (In M) — In (Inm)]* In (In M)

forxz e H, ||z| = 1.

Proof. If we take the exponential in (3.11), then we get

1 <exp %1/ (1 —v)(Ina — Inb)® min {a,b}]

exp[(1 —v)a+ vb]

<
~—  exp(alvbY)

1
< exp v (1 —v)(Ina — Inb)* max {a, b}]

for any a, b> 0 and v € [0,1].

By utilizing a similar argument to the one from Theorem ??7 we deduce the
desired result (3.12).

The details are omitted. (]

(1]
2]

REFERENCES

D. I. Cartwright, M. J. Field, A refinement of the arithmetic mean-geometric mean inequality,
Proc. Amer. Math. Soc., 71 (1978), 36-38.

S. S. Dragomir, A Note on Young’s Inequality, Revista de la Real Academia de Ciencias Exac-
tas, Fisicas y Naturales. Serie A. Matemdticas volume 111 (2017), pages 349-354. Preprint,
RGMIA Res. Rep. Coll. 18 (2015), Art. 126. [http://rgmia.org/papers/v18/v18al126.pdf] .
S. S. Dragomir, A note on new refinements and reverses of Young’s inequality, Transylvanian
J. Math. Mech. 8 (2016), No. 1, 45-49. Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 131.
[http://rgmia.org/papers/v18/v18a131.pdf] .

J. I. Fujii and Y. Seo, Determinant for positive operators, Sci. Math., 1 (1998), 153-156.

J. I. Fujii, S. Izumino and Y. Seo, Determinant for positive operators and Specht’s theorem,
Sci. Math., 1 (1998), 307-310.

S. Furuichi, Refined Young inequalities with Specht’s ratio, J. Egyptian Math. Soc. 20 (2012),
46-49.

T. Furuta, J. Mi¢ié-Hot, J. Pecari¢ and Y. Seo, Mond-Pecari¢c Method in Operator Inequali-
ties, Element, Croatia.

S. Hiramatsu and Y. Seo, Determinant for positive operators and Oppenheim’s inequality, J.
Math. Inequal., Volume 15 (2021), Number 4, 1637-1645.

W. Liao, J. Wu and J. Zhao, New versions of reverse Young and Heinz mean inequalities with
the Kantorovich constant, Taiwanese J. Math. 19 (2015), No. 2, pp. 467-479.

W. Specht, Zer Theorie der elementaren Mittel, Math. Z. 74 (1960), pp. 91-98.

F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math.
Anal. Appl. 361 (2010), 262-269.



INEQUALITIES FOR THE NORMALIZED DETERMINANT 11

[12] F. Kittaneh and Y. Manasrah, Reverse Young and Heinz inequalities for matrices, Linear
Multilinear Algebra, 59 (2011), 1031-1037.

IMATHEMATICS, COLLEGE OF ENGINEERING & SCIENCE, VICTORIA UNIVERSITY, PO Box 14428,
MELBOURNE CiTy, MC 8001, AUSTRALIA.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

2DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES,
ScHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-
SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA





