
INEQUALITIES FOR THE NORMALIZED DETERMINANT OF
POSITIVE OPERATORS IN HILBERT SPACES VIA JENSEN

AND SLATER�S RESULTS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. For positive invertible operators A on a Hilbert space H and a
�xed unit vector x 2 H; de�ne the normalized determinant by �x(A) :=
exp hlnAx; xi. In this paper we prove among others that,

1 � hAx; xi
�x (A)

� exp
�
hAx; xi



A�1x; x

�
� 1

�
for A > 0 and x 2 H with kxk = 1:

1. Introduction

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A � 0) if hAx; xi � 0 for all x 2 H. In particular, A > 0
means that A is positive and invertible. For a pair A; B of selfadjoint operators
the order relation A � B means as usual that A�B is positive.
In 1998, Fujii et al. [5], [6], introduced the normalized determinant �x(A) for

positive invertible operators A on a Hilbert space H and a �xed unit vector x 2 H;
namely kxk = 1; de�ned by�x(A) := exp hlnAx; xi and discussed it as a continuous
geometric mean and observed some inequalities around the determinant from this
point of view.
Some of the fundamental properties of normalized determinant are as follows,

[5].
For each unit vector x 2 H; see also [8], we have:
(i) continuity : the map A! �x(A) is norm continuous;
(ii) bounds:



A�1x; x

��1 � �x(A) � hAx; xi;
(iii) continuous mean: hApx; xi1=p # �x(A) for p # 0 and hApx; xi1=p " �x(A)

for p " 0;
(iv) power equality: �x(At) = �x(A)t for all t > 0;
(v) homogeneity : �x(tA) = t�x(A) and �x(tI) = t for all t > 0;
(vi) monotonicity : 0 < A � B implies �x(A) � �x(B);
(vii) multiplicativity : �x(AB) = �x(A)�x(B) for commuting A and B;
(viii) Ky Fan type inequality : �x((1� �)A + �B) � �x(A)1���x(B)� for 0 <

� < 1.
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We de�ne the logarithmic mean of two positive numbers a; b by

L (a; b) :=

8<:
b�a

ln b�ln a if b 6= a;

a if b = a:

In [5] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI � A � MI; where m;M are positive
numbers,

(1.1) 0 � hAx; xi ��x(A) � L (m;M)
�
lnL (m;M) +

M lnm�m lnM
M �m � 1

�
for all x 2 H; kxk = 1:
We recall that Specht�s ratio is de�ned by [9]

(1.2) S (h) :=

8>><>>:
h

1
h�1

e ln

�
h

1
h�1

� if h 2 (0; 1) [ (1;1) ;

1 if h = 1:

It is well known that limh!1 S (h) = 1; S (h) = S
�
1
h

�
> 1 for h > 0; h 6= 1. The

function is decreasing on (0; 1) and increasing on (1;1) :
In [6], the authors obtained the following multiplicative reverse inequality as well

(1.3) 1 � hAx; xi
�x(A)

� S
�
M

m

�
for 0 < mI � A �MI and x 2 H; kxk = 1:
Motivated by the above results, in this paper we prove among others that,

1 � hAx; xi
�x (A)

;
�x (A)

hA�1x; xi�1
� exp

�
hAx; xi



A�1x; x

�
� 1
�

for A > 0 and x 2 H with kxk = 1:

2. Main Results

Our �rst main result is as follows:

Theorem 1. For all A > 0 and x 2 H; kxk = 1;

(2.1) 1 � hAx; xi
�x (A)

� exp
�
hAx; xi



A�1x; x

�
� 1
�
:

Proof. In [1] we proved the following reverse of Jensen�s inequality

0 � hf (A)x; xi � f (hAx; xi) � hf 0 (A)Ax; xi � hAx; xi hf 0 (A)x; xi ;
where f : I ! R is a convex and di¤erentiable function on �I (the interior of I)
whose derivative f 0 is continuous on �I, A is a selfadjoint operator with spectrum
Sp (A) � I and x 2 H; kxk = 1:
If we take in this inequality f (t) = � ln t; t > 0; then we get [1]

0 � ln hAx; xi � hlnAx; xi � hAx; xi


A�1x; x

�
� 1

for A > 0 and x 2 H; kxk = 1:
Therefore

ln hAx; xi � hlnAx; xi+ hAx; xi


A�1x; x

�
� 1
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and by taking the exponential, we get

exp (ln hAx; xi) � exp
�
hlnAx; xi+ hAx; xi



A�1x; x

�
� 1
�

= exp hlnAx; xi exp
�
hAx; xi



A�1x; x

�
� 1
�

namely
hAx; xi � �x (A) exp

�
hAx; xi



A�1x; x

�
� 1
�
;

which is equivalent to (2.1). �

Corollary 1. Assume that 0 < mI � A �MI; where m; M are positive numbers,
then

1 � hAx; xi
�x (A)

� exp
�
hAx; xi



A�1x; x

�
� 1
�

(2.2)

� exp
"
(M �m)2

4mM

#
for all x 2 H; kxk = 1:

Proof. We use Kantorovich inequality, see for instance [7, p. 30]

hAx; xi


A�1x; x

�
� (m+M)

2

4mM

for all x 2 H; kxk = 1:
Then

hAx; xi


A�1x; x

�
� 1 � (m+M)

2

4mM
� 1 = (M �m)2

4mM

and the third inequality in (2.2) is obtained. �

Corollary 2. With the assumptions of Corollary 1,

1 � hAx; xi
�x (A)

� exp
�
hAx; xi



A�1x; x

�
� 1
�

(2.3)

� exp

264
�p
M �

p
m
�2

mM
hAx; xi

375 � exp
264
�p
M �

p
m
�2

m

375
for all x 2 H; kxk = 1:

Proof. We use the additive inequality [7, p. 30]



A�1x; x

�
� hAx; xi�1 �

�p
M �

p
m
�2

mM

for all x 2 H; kxk = 1:
If we multiply by hAx; xi > 0 we get

hAx; xi


A�1x; x

�
� 1 �

�p
M �

p
m
�2

mM
hAx; xi �

�p
M �

p
m
�2

m
;

which proves the last part of (2.3). �
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Theorem 2. For all A > 0 and x 2 H; kxk = 1;

(2.4) 1 � �x (A)

hA�1x; xi�1
� exp

�
hAx; xi



A�1x; x

�
� 1
�
:

Proof. Assume that A is a selfadjoint operator with spectrum Sp (A) � I and
x 2 H; kxk = 1: In [2] we proved the following reverse of Slater�s inequality

0 � f
�
hAf 0 (A)x; xi
hf 0 (A)x; xi

�
� hf (A)x; xi

� f 0
�
hAf 0 (A)x; xi
hf 0 (A)x; xi

�
hf 0 (A)Ax; xi � hAx; xi hf 0 (A)x; xi

hf 0 (A)x; xi ;

where f : I ! R is a convex and di¤erentiable function on �I (the interior of I)
whose derivative f 0 is continuous on �I and

hAf 0 (A)x; xi
hf 0 (A)x; xi 2 �I for any x 2 H; kxk = 1:

Now, if we write this inequality for the convex function f (t) = � ln t; t > 0; then
we have [2]

0 � hlnAx; xi � ln
�

A�1x; x

��1� � hAx; xi 
A�1x; x�� 1
for A > 0 and x 2 H; kxk = 1:
Therefore

hlnAx; xi � ln
�

A�1x; x

��1�
+ hAx; xi



A�1x; x

�
� 1

and by taking the exponential, we get

�x (A) � exp
h
ln
�

A�1x; x

��1�
+ hAx; xi



A�1x; x

�
� 1
i

= exp
h
ln
�

A�1x; x

��1�i
exp

�
hAx; xi



A�1x; x

�
� 1
�

=


A�1x; x

��1
exp

�
hAx; xi



A�1x; x

�
� 1
�
;

which proves the second part of (2.4). �
Finally, we have:

Corollary 3. With the assumptions of Corollary 1,

1 � �x (A)

hA�1x; xi�1
� exp

�
hAx; xi



A�1x; x

�
� 1
�

(2.5)

� exp
"
(M �m)2

4mM

#
and

1 � �x (A)

hA�1x; xi�1
� exp

�
hAx; xi



A�1x; x

�
� 1
�

(2.6)

� exp

264
�p
M �

p
m
�2

mM
hAx; xi

375 � exp
264
�p
M �

p
m
�2

m

375
for all x 2 H; kxk = 1:
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Theorem 3. Assume that 0 < mI � A �MI; where m; M are positive numbers,
then

1 � �x (A)

m
M�hAx;xi

M�m M
hAx;xi�m
M�m

(2.7)

� exp
�
h(MI �A) (A�mI)x; xi

mM

�
� exp

�
((M � hAx; xi) (hAx; xi �m))

mM

�
� exp

"
(M �m)2

4mM

#
for all x 2 H; kxk = 1:

Proof. Let f : [m;M ] ! R be a convex function with �nite lateral derivatives
f 0+ (m) and f

0
� (M) and A a selfadjoint operator satisfying the condition mI � A �

MI: We have the following generalized trapezoid inequality [3]

0 � f (m) (MI �A) + f (M) (A�mI)
M �m � f (A)

�
f 0� (M)� f 0+ (m)

M �m (MI �A) (A�mI)

in the operator order.
If we write this inequality for the convex function f (t) = � ln t; t > 0; then we

get

0 � lnA� lnm (MI �A) + lnM (A�mI)
M �m � (MI �A) (A�mI)

mM
for all x 2 H; kxk = 1:
Therefore

hlnAx; xi � lnm (M � hAx; xi) + lnM (hAx; xi �m)
M �m

+
h(MI �A) (A�mI)x; xi

mM

and by taking the exponential, we get

exp hlnAx; xi � exp
�
lnm (M � hAx; xi) + lnM (hAx; xi �m)

M �m

�
� exp

�
h(MI �A) (A�mI)x; xi

mM

�
= m

M�hAx;xi
M�m M

hAx;xi�m
M�m exp

�
h(MI �A) (A�mI)x; xi

mM

�
for all x 2 H; kxk = 1; which proves the second inequality in (2.7).
The function g (t) = (M � t) (t�m) is concave on [m;M ] and by Jensen�s in-

equality
hg (A)x; xi � g (hAx; xi) ; x 2 H; kxk = 1

we have

h(MI �A) (A�mI)x; xi � ((M � hAx; xi) (hAx; xi �m))
for all x 2 H; kxk = 1; which proves the third inequality in (2.7).
The last part is obvious. �
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3. Related results

We have:

Theorem 4. For all A; B > 0 and x 2 H; kxk = 1;

2

hA�1x; xi+ hB�1x; xi �
��Z 1

0

((1� t)A+ tB)�1 dt
�
x; x

��1
(3.1)

�
Z 1

0

�x((1� t)A+ tB)dt �
�
Ax+Bx

2
; x

�
:

Proof. By utilizing the inequalities from (ii) we getD
((1� t)A+ tB)�1 x; x

E�1
� �x((1� t)A+ tB) � h((1� t)A+ tB)x; xi

for all A; B > 0; x 2 H; kxk = 1 and t 2 [0; 1] :
By taking the integral over t 2 [0; 1] ; we getZ 1

0

D
((1� t)A+ tB)�1 x; x

E�1
dt �

Z 1

0

�x((1� t)A+ tB)dt

�
Z 1

0

h((1� t)A+ tB)x; xi dt

=

�
Ax+Bx

2
; x

�
for all A; B > 0; x 2 H; kxk = 1: This proves the last part of (3.1).
Using Jensen�s integral inequality for the convex function g (u) = u�1; u > 0;

namely Z 1

0

[f (t)]
�1 �

�Z 1

0

f (t) dt

��1
we obtainZ 1

0

D
((1� t)A+ tB)�1 x; x

E�1
dt �

�Z 1

0

D
((1� t)A+ tB)�1 x; x

E
dt

��1
=

��Z 1

0

((1� t)A+ tB)�1 dt
�
x; x

��1
for all A; B > 0; x 2 H; kxk = 1:
The function g (u) = u�1; u > 0 is operator convex and by Hermite-Hadamard

inequality for operator convex functions, we have, see [4]�
A+B

2

��1
�
Z 1

0

((1� t)A+ tB)�1 dt � 1

2

�
A�1 +B�1

�
for A; B > 0:
Therefore��Z 1

0

((1� t)A+ tB)�1 dt
�
x; x

�
� 1

2


�
A�1 +B�1

�
x; x

�
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x 2 H; kxk = 1; which gives��Z 1

0

((1� t)A+ tB)�1 dt
�
x; x

��1
�
�
1

2


�
A�1 +B�1

�
x; x

���1
=

�
1

2

�

A�1x; x

�
+


B�1x; x

����1
=

2

hA�1x; xi+ hB�1x; xi
for x 2 H; kxk = 1: This proves the �rst part of (3.1). �

Theorem 5. For all A; B > 0 and x 2 H; kxk = 1; then

(3.2)
Z 1

0

�x((1� t)A+ tB)dt � L (�x(A);�x(B)) :

Also

(3.3) ln�x

�
A+B

2

�
�
Z 1

0

ln�x((1� t)A+ tB)dt �
1

2
[ln�x(A) + ln�x(B)] ;

or, equivalently,

(3.4) �x

�
A+B

2

�
� exp

�Z 1

0

ln�x((1� t)A+ tB)dt
�
�
p
�x(A)�x(B):

Proof. Let x 2 H; kxk = 1: From (viii) we have by taking the integral and assuming
that �x(A) 6= �x(B),Z 1

0

�x((1� t)A+ tB)dt �
Z 1

0

�x(A)
1�t�x(B)

tdt =
�x(A)��x(B)

ln�x(A)� ln�x(B)
= L (�x(A);�x(B)) :

If �x(A) 6= �x(B); then the inequality (3.2) also holds.
If we take the log in (viii), then we get

(3.5) ln�x((1� t)A+ tB) � (1� t) ln�x(A) + t ln�x(B)
for all A; B > 0 and t 2 [0; 1] :
By taking the integral over t 2 [0; 1] in (3.5), we getZ 1

0

ln�x((1� t)A+ tB)dt �
Z 1

0

[(1� t) ln�x(A) + t ln�x(B)] dt

=
1

2
[ln�x(A) + ln�x(B)] ;

which proves the second inequality in (3.3).
From (3.5) we get

(3.6) ln�x

�
C +D

2

�
� 1

2
[ln�x(C) + ln�x(D)]

for all C; D > 0 and x 2 H; kxk = 1:
Now, if we take C = (1� t)A+ tB and D = tA+(1� t)B in (3.6), then we get

(3.7) ln�x

�
A+B

2

�
� 1

2
[ln�x((1� t)A+ tB) + ln�x(tA+ (1� t)B)]

for all A; B > 0 and t 2 [0; 1] :
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If we take the integral over t 2 [0; 1] in (3.7), we deduce

ln�x

�
A+B

2

�
� 1

2

Z 1

0

[ln�x((1� t)A+ tB) + ln�x(tA+ (1� t)B)] dt

=
1

2

�Z 1

0

ln�x((1� t)A+ tB)dt+
Z 1

0

ln�x(tA+ (1� t)B)dt
�

=

Z 1

0

ln�x((1� t)A+ tB)dt;

which proves the �rst part of (3.3). �

We also have:

Proposition 1. Assume that 0 < mI � A; B � MI; where m; M are positive
numbers, then

0 �
�
Ax+Bx

2
; x

�
�
Z 1

0

�x((1� t)A+ tB)dt(3.8)

� L (m;M)
�
lnL (m;M) +

M lnM �m lnM
M �m � 1

�
and

(3.9) 1 �


Ax+Bx

2 ; x
�R 1

0
�x((1� t)A+ tB)dt

� S
�
M

m

�
for x 2 H; kxk = 1:

Proof. Since 0 < mI � A; B � MI; hence 0 < mI � (1� t)A + tB � MI for all
t 2 [0; 1] : By using (1.1) we get

0 � h((1� t)A+ tB)x; xi ��x((1� t)A+ tB)

� L (m;M)
�
lnL (m;M) +

M lnM �m lnM
M �m � 1

�
and by taking the integral over t 2 [0; 1], we get (3.8).
The inequality (3.9) follows in a similar way from (3.9). �

Proposition 2. With the assumptions of Proposition 1 we have

(3.10) 1 �


Ax+Bx

2 ; x
�R 1

0
�x((1� t)A+ tB)dt

� exp
"
(M �m)2

4mM

#
and

(3.11) 1 �


Ax+Bx

2 ; x
�R 1

0
�x((1� t)A+ tB)dt

� exp

264
�p
M �

p
m
�2

m

375
for x 2 H; kxk = 1:
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Proof. If we use the inequality (2.2), then we can state for x 2 H; kxk = 1 that

h((1� t)A+ tB)x; xi � �x (((1� t)A+ tB)) exp
"
(M �m)2

4mM

#
for all t 2 [0; 1] :
If we take the integral over t 2 [0; 1] ; then we get (3.10).
Inequality (3.11) follows by (2.3). �

Proposition 3. With the assumptions of Proposition 1 we have

(3.12) 1 �
R 1
0
�x ((1� t)A+ tB) dtR 1

0

D
((1� t)A+ tB)�1 x; x

E�1
dt
� exp

"
(M �m)2

4mM

#

and

(3.13) 1 �
R 1
0
�x ((1� t)A+ tB) dtR 1

0

D
((1� t)A+ tB)�1 x; x

E�1
dt
� exp

264
�p
M �

p
m
�2

m

375
for x 2 H; kxk = 1:

Proof. By (2.5) we have

�x ((1� t)A+ tB) �
D
(((1� t)A+ tB))�1 x; x

E�1
exp

"
(M �m)2

4mM

#
for all for all t 2 [0; 1] :
If we take the integral over t 2 [0; 1] ; then we getZ 1

0

�x ((1� t)A+ tB) dt

�
Z 1

0

D
((1� t)A+ tB)�1 x; x

E�1
dt exp

"
(M �m)2

4mM

#
for x 2 H; kxk = 1; which proves (3.12).
The inequality (3.13) follows by (2.6). �

Proposition 4. With the assumptions of Proposition 1 we have for x 2 H; kxk = 1
that

exp

�
M lnm�m lnM

M �m +
lnM � lnm
M �m

�
L (A;B; x;m;M)(3.14)

�
Z 1

0

�x (((1� t)A+ tB)) dt

� exp
"
M lnm�m lnM

M �m +
lnM � lnm
M �m +

(M �m)2

4mM

#
� L (A;B; x;m;M) ;
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where

L (A;B; x;m;M)

:=

8>>>>><>>>>>:

M�m
(lnM�lnm)h(B�A)x;xi

�
h
exp

h
lnM�lnm
M�m h(B �A)x; xi

i
� 1
i

if h(B �A)x; xi 6= 0;

1 if h(B �A)x; xi = 0:

Proof. From (2.7) we get

exp

�
lnm (M � h((1� t)A+ tB)x; xi) + lnM (h((1� t)A+ tB)x; xi �m)

M �m

�
� �x (((1� t)A+ tB))

� exp
�
lnm (M � h((1� t)A+ tB)x; xi) + lnM (h((1� t)A+ tB)x; xi �m)

M �m

�
� exp

"
(M �m)2

4mM

#
namely

exp

�
M lnm�m lnM

M �m

�
exp

�
lnM � lnm
M �m h((1� t)A+ tB)x; xi

�
� �x (((1� t)A+ tB))

� exp
�
M lnm�m lnM

M �m

�
exp

�
lnM � lnm
M �m h((1� t)A+ tB)x; xi

�
� exp

"
(M �m)2

4mM

#

for x 2 H; kxk = 1:
This is equivalent to

exp

�
M lnm�m lnM

M �m +
lnM � lnm
M �m

�
� exp

�
t
lnM � lnm
M �m h(B �A)x; xi

�
� �x (((1� t)A+ tB))

� exp
�
M lnm�m lnM

M �m +
lnM � lnm
M �m

�
� exp

�
t
lnM � lnm
M �m h(B �A)x; xi

�
� exp

"
(M �m)2

4mM

#

for x 2 H; kxk = 1:
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If we take the integral over t 2 [0; 1] ; then we get

exp

�
M lnm�m lnM

M �m +
lnM � lnm
M �m

�
�
Z 1

0

exp

�
t
lnM � lnm
M �m h(B �A)x; xi

�
dt

�
Z 1

0

�x (((1� t)A+ tB)) dt

� exp
�
M lnm�m lnM

M �m +
lnM � lnm
M �m

�
�
Z 1

0

exp

�
t
lnM � lnm
M �m h(B �A)x; xi

�
dt

� exp
"
(M �m)2

4mM

#
for x 2 H; kxk = 1:
Now, observe thatZ 1

0

exp

�
t
lnM � lnm
M �m h(B �A)x; xi

�
dt = L (A;B; x;m;M)

and the proof is completed. �
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[7] T. Furuta, J. Miµcíc-Hot, J. Peµcaríc and Y. Seo, Mond-Peµcaríc Method in Operator Inequalities,

Element, Croatia.
[8] S. Hiramatsu and Y. Seo, Determinant for positive operators and Oppenheim�s inequality, J.

Math. Inequal., Volume 15 (2021), Number 4, 1637�1645.
[9] W. Specht, Zer Theorie der elementaren Mittel, Math. Z. 74 (1960), pp. 91-98.

1Mathematics, College of Engineering & Science, Victoria University, PO Box 14428,
Melbourne City, MC 8001, Australia.

E-mail address : sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

2DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences,
School of Computer Science, & Applied Mathematics, University of the Witwater-
srand,, Private Bag 3, Johannesburg 2050, South Africa




