INEQUALITIES FOR THE NORMALIZED DETERMINANT OF
POSITIVE OPERATORS IN HILBERT SPACES VIA JENSEN
AND SLATER’S RESULTS

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. For positive invertible operators A on a Hilbert space H and a
fixed unit vector « € H, define the normalized determinant by Ag(A) :=
exp (In Az, z). In this paper we prove among others that,

(Az, )
1<
T A (4)
for A> 0 and z € H with ||z]| = 1.

< exp [(Ar, x) <A_1x,m> - 1}

1. INTRODUCTION

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [5], [6], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z| = 1, defined by A, (A) := exp (ln Az, x) and discussed it as a continuous
geometric mean and observed some inequalities around the determinant from this
point of view.

Some of the fundamental properties of normalized determinant are as follows,
[5].
For each unit vector x € H, see also [8], we have:

(i) continuity: the map A — A, (A) is norm continuous;
(ii) bounds: <A‘1x,x>_1 < AL(A) < (Az, x);
(ifi) continuous mean: (APz,x)"/P | Ay(A) for p | 0 and (APz,2)'/" 1 A,(A)
for p T 0;
) power equality: A, (AY) = A (A)! for all t > 0;
) homogeneity: A, (tA) =tA,(A) and A, (tI) =t for all t > 0;
(vi) monotonicity: 0 < A < B implies A;(A) < A, (B);
1) multiplicativity: A, (AB) = A, (A)A,(B) for commuting A and B;
) Ky Fan type inequality: A,((1 —a) A+ aB) > Ay (A)'7*A,(B)* for 0 <
a <1
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We define the logarithmic mean of two positive numbers a, b by

lnll;:ilna if b 7& a,
L(a,b) :=
aifb=a.

In [5] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI < A < M1, where m, M are positive
numbers,

M1 —minM
(1.1) 0§<Aaz,x>—Aw(A)§L(m,M)[lnL(m,M)—&— n]\”; AT
—m

for all z € H, ||z| = 1.
We recall that Specht’s ratio is defined by [9]

Bt he (0,1) U (1,00),
(12) S(h) — eln(hh—l)

lifh=1.

It is well known that limj,_; S (h) =1, S(h) = S(§) > 1 for h > 0, h # 1. The
function is decreasing on (0,1) and increasing on (1, 00).
In [6], the authors obtained the following multiplicative reverse inequality as well

(Az, x) M
1.3 1< <S|—
(13) - A4 T m
for0O<mI<A<MIandzeH,|z|=1.
Motivated by the above results, in this paper we prove among others that,

(Az,z)  As (4)
1< . 1
Ay (A)" (A-1z, )
for A >0 and z € H with ||z| = 1.

< exp [(Aa:,x) <A71x,m> — 1]

2. MAIN RESULTS
Our first main result is as follows:

Theorem 1. For all A>0 and x € H, ||z]| = 1,
(Az, )
2.1 1<
(21) <A A)
Proof. In [1] we proved the following reverse of Jensen’s inequality
0<(f(A)z,2) - f({Az,2)) < (f' (A) Az, 2) — (Az, 2) (f' (A) 2, 2) ,
where f : I — R is a convex and differentiable function on I (the interior of I)
whose derivative f’ is continuous on I, A is a selfadjoint operator with spectrum
Sp(A) C I and z € H, ||z| = 1.
If we take in this inequality f (t) = —Int, ¢ > 0, then we get [1]
0 <In{Az,z) — (In Az, x) < (Az, z) <A_1x, z)—1

for A>0and z € H, |jz| = 1.
Therefore

<exp [(Az,z) (A" z,z) — 1].

In (Az,z) < (In Az, z) + (Az,z) (A" 'z, 2) — 1
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and by taking the exponential, we get
exp (In (Az, z)) < exp [(In Az, z) + (Az,z) (A" 2, 2) — 1]
= exp (In Az, z) exp [(Az,z) (A" z,2) — 1]

namely
(Az,x) < A, (A)exp [(Az,z) (A7 2, z) — 1],
which is equivalent to (2.1). O
Corollary 1. Assume that 0 < ml < A < MI, where m, M are positive numbers,
then
<Amﬂ 'T> 1
2.2 1<——1r< A A -1
( ) _AI(A) _exp[( $7$>< SC,IE> ]
< ox (M —m)?
P\

forallz € H, ||z|| = 1.

Proof. We use Kantorovich inequality, see for instance [7, p. 30]

_ (m + M)?
(Az,z) (A 'z, 2) < o
for all x € H, ||z]| = 1.
Then
: M’ (M —m)’
1 e (m+ 1
(Az,z) (A w,2) — 1 < Y 1 Y
and the third inequality in (2.2) is obtained. O

Corollary 2. With the assumptions of Corollary 1,

Az, x _
(\/M - «ﬁm)Q (\/M - wﬁm)2
< exp (Az,z)| <exp | ———

mM m

for all z € H, ||z|| = 1.

Proof. We use the additive inequality [7, p. 30]

<A71x,x> — (Ax,@fl < W

for all z € H, ||z| = 1.
If we multiply by (Az,z) > 0 we get

(Az,z) (A 2,2y =1 < M (Az,z) < (‘/M_\/"?)7

mM m
which proves the last part of (2.3). O
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Theorem 2. For all A>0 and xz € H, ||z|| =1,

A, (A »
<A—1x(:c;1 < exp [(Ax,x) <A x,x> — 1] )

Proof. Assume that A is a selfadjoint operator with spectrum Sp (A) C I and
x € H, ||z|| = 1. In [2] we proved the following reverse of Slater’s inequality

(2.4) 1<

AF D)) o
o< (Gresy) ~ 4 W
| (AF (A) )\ (f(A) Az,z) — (Az,2) {f' (A) 2., 2)
=1 < <f'<A>a:,x>> F(A)z,) !

where f : I — R is a convex and differentiable function on I (the interior of I)
whose derivative f’ is continuous on I and
(Af (A)z, z)
(f" (A)z, )
Now, if we write this inequality for the convex function f (t) = —Int, ¢t > 0, then
we have [2]

€1l forany z e H,|z|| = 1.

0<(lnAz,z) —In (<A*1x,x>_1) < (Az,z) (A 'z,2) — 1

for A>0and z € H, ||z = 1.
Therefore

(In Az, z) < In (<A71x,3:>_1) + (Az,z) (A 'z, 2) — 1
and by taking the exponential, we get
A, (A) < exp [ln (<A_1x,x>7l) + (Az,z) (A 'z, 2) — 1]

= exp [ln (<A_1x,x>71)} exp [(Az,z) (A" 'z, 2) — 1]
= <A‘1x,x>71 exp [(Az,z) (A" 'z, 2) — 1],
which proves the second part of (2.4). O
Finally, we have:

Corollary 3. With the assumptions of Corollary 1,
A, (A
(2.5) 1< #)_1 < exp [(Az,z) (A" 'z, 2) — 1]
(A~ 1z, x)

(M m)Q]

= exp dmM

and

(2.6) 1< ﬁ(i;_l < exp [(Az,z) (A7 2, 2) — 1]

VM — m) VM — m)
(Mf)mm “ o (VT - vm)

<ex
= ©Xp mM m

forallx € H, ||z|| = 1.
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Theorem 3. Assume that 0 < ml < A < MI, where m, M are positive numbers,
then
A, (A)

M—(Ax,x) (Az,z)y—m
m~ M-m N M-m

(2.7) 1<

< oxp {<(MI_A)721}4_ m[)a:,x)}
(M — (Az, z)) ((Az, z) —m)) (M —m)’
< exp { -~y ] < exp lW]

for allz € H, ||z|| = 1.

Proof. Let f : [m, M] — R be a convex function with finite lateral derivatives
fi (m) and f. (M) and A a selfadjoint operator satisfying the condition mI < A <
M1I. We have the following generalized trapezoid inequality [3]

f(m)(MI —A) + f (M) (A—ml)

0 < s - ()
fL (M) — [} (m)
< — —
< M —m (MI—A)(A—mlI)
in the operator order.
If we write this inequality for the convex function f (¢) = —Int, ¢t > 0, then we
get
0<lnd-— Inm (MI—A)+1InM (A —mlI) < (MI—A)(A—mlI)
M—-m mM
for all x € H, ||z|| = 1.
Therefore
(In Az, ) < Inm (M — (Az,z)) + In M ((Az,x) —m)
M—m
N (MI—-A)(A—ml)z,x)

mM
and by taking the exponential, we get

Inm (M — (Az,z)) + In M ((Az,x) — m)}

exp (ln Az, z) < exp [

M—-—m
(MI—-A)(A—ml)z,x)
X exp[ -~
_ mM]—W(/_AfT;m) M<A1T/ii>7;m exp |:<(MI — A) (A — m[) LE,I>:|
mM

for all x € H, ||z|| = 1, which proves the second inequality in (2.7).
The function g (t) = (M —t) (t — m) is concave on [m, M] and by Jensen’s in-
equality
(9(A)z,z) < g((Az,z)), © € H, |zl =1

we have

(MI—A)(A—mID)z,z) < (M — (Az,z)) ((Az,z) —m))

for all x € H, ||z|| = 1, which proves the third inequality in (2.7).
The last part is obvious. O



6 S.S. DRAGOMIR

3. RELATED RESULTS

We have:

Theorem 4. For all A, B> 0 and x € H, ||z|| =1,

(3.1) Ve i T < <U01 (1 t)AthB)_ldt] H>

1
g/ A.((1—t)A+tB)dt < <Ax;Bx,x>-
0

-1

Proof. By utilizing the inequalities from (ii) we get

<((1 —t)A+1tB)"! m:c> " AL(1—t) A+ tB) < {((1—) A+ tB)x, )

forall A, B> 0,z € H, ||z|| =1and ¢t € [0,1].
By taking the integral over ¢ € [0,1], we get

1
/0 <((1 —t) A+1B) wx>

—1

dtg/lAm((l—t)A—HB)dt
0
§/1<((1—t)A+tB)x,x)dt
0

Az + Bx
pry 72 ’:L'

for all A, B> 0, x € H, ||z|| = 1. This proves the last part of (3.1).
Using Jensen’s integral inequality for the convex function g (u) = u™!, u > 0,

namely
/01 MR (/Olf(t)dt>
we obtain

/01 <((1 —t)A+tB)"! x,x>_1 dt > (/01 <((1 —t)A+1tB)”! xx> dt)

1 —1
— <U (1 —t)A—&-tB)_ldt} w$>
0
forall A, B>0,z € H, ||z|]| = 1.

The function g (u) = u~1, u > 0 is operator convex and by Hermite-Hadamard
inequality for operator convex functions, we have, see [4]

A+ B
2

-1

-1 1
_ 1
) S/ (1—t)A+tB) " dt < 5(A*1+B*1)
0
for A, B > 0.
Therefore

<[/01 ((lt)AthB)_ldt} az:p> <

<(A71 + Bil) x,x>

N |~



INEQUALITIES FOR THE NORMALIZED DETERMINANT 7

x € H, ||z|| = 1, which gives

<U01((1t),4+t3)—1dt] H>

—1

> (3t p )x,m>)1
(; [(A'a,2) + <B_1x7m>]>l

2
- (A lz,2) + (B lz, )
for x € H, ||z|| = 1. This proves the first part of (3.1). O
Theorem 5. For all A, B> 0 and x € H, ||z|| =1, then
1
(3.2) / A ((1—t)A+tB)dt > L(AL(A),A,(B)).
0
Also
A+B ! 1
(33) InA, ( i ) > / A (1= 1) A+ tB)dt 2 5 [In Ay (4) + In Ay(B)],
0
or, equivalently,
A+ B !
34) A, ( i ) > exp U AL (1= t) A+ tB)dt| > /Ds(A)A(B).
0

Proof. Let x € H, ||z|| = 1. From (viii) we have by taking the integral and assuming
that A, (A) # A, (B),
1 1
/ A(1—t)A+tB)dt > / AL (A)EAL(B) dt =
0 0
=L (AL (A),A(B)).

If A, (A) # A, (B), then the inequality (3.2) also holds.
If we take the log in (viii), then we get

Ar(4) = As(B)
InA,(A) —InA,(B)

(3.5) InAL((1—-t)A+tB)>(1—1t)InA,(A) +tIn A, (B)
forall A, B>0and t € [0,1].
By taking the integral over ¢ € | in (3.5), we get

InA,(A) +InA,(B)],

/1lnAm((1t A+tB)d / [(1-t)InAL(A)+tln Ay (B)]dt
" 1

T2

(3.3)-

which proves the second inequality in
From (3.5) we get

(3.6) A, (C ! D ) % A, (C) +n A, (D)]

for all C, D > 0 and x € H, ||z|| = 1.
Now, if we take C' = (1 —t) A+tB and D =tA+ (1 —t) B in (3.6), then we get

37 A, (A + B

forall Ay B>0andte€]0,1].

) %[mA (1—t) A+ tB) + In Ay (tA+ (1 — 1) B)]
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If we take the integral over ¢t € [0,1] in (3.7), we deduce
mAI<A+B>
2
1
> §/ A, ((1—t) A+ tB) +In Ay (tA + (1 — ) B)] dt
0

= % [/OllnAx((l —t)A+tB)dt+/011nAx(tA+ (1—t)B)dt

1
= / InA,((1—t) A+tB)dt,
0
which proves the first part of (3.3). O

We also have:

Proposition 1. Assume that 0 < mI < A, B < MI, where m, M are positive
numbers, then

1
(3.8) 0< <Am;Bm7m> —/ Au((1— ) A+ tB)dt
0
MInM —mInM
< _
< L(m,M) {lnL(m,M)+ = 1}
and
Ax+Bzx
(3.9) 1< — (57 2) gS(M)
Jo Ax((1—1t) A+ tB)dt m

forxz e H, ||z|| = 1.

Proof. Since 0 < mI < A, B< MI, hence 0 < mI < (1—t)A+tB < MI for all
t € [0,1]. By using (1.1) we get

0<{((1-t)A+tB)z,x) — A, ((1—t) A+ tB)
MInM —mln M 1}

<L M) (InL M
< L(m, M) [In L (m, M) + =

and by taking the integral over ¢ € [0, 1], we get (3.8).
The inequality (3.9) follows in a similar way from (3.9). O

Proposition 2. With the assumptions of Proposition 1 we have

(3.10) 1< (57 ) < exp lM]

T A1 —t) A+ tB)dt ~ AmM
and
(3.11) 1< <%,z> < exp M
- J;)l A (1 —t)A+tB)dt m

forxz e H, ||z| = 1.
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Proof. If we use the inequality (2.2), then we can state for x € H, ||z|| = 1 that

2
(A=) A+tB)z,x) < Ay (1 =) A+ tB)) exp [W]

for all t € [0,1].
If we take the integral over ¢ € [0,1], then we get (3.10).
Inequality (3.11) follows by (2.3). O

Proposition 3. With the assumptions of Proposition 1 we have

(3.12) 1< fol Ay (L—t)A+tB)dt exp lw_mf]
@ —t)A+tB)—1x,x>’1dt - AmM

and

(3.13) Lo Ao AtByd - (VAT - vm)
) fol<((1—t)A+tB)_1z,x>ildt B m

forxz e H, ||z| = 1.
Proof. By (2.5) we have

A (1—-t)A+tB) < <(((1 —t)A+tB))"" x7x>71 exp l(

for all for all ¢ € [0,1].
If we take the integral over ¢t € [0,1], then we get

1
A, (1—t)A+tB)dt
0

< /01 <((1 —t)A+tB)"! ax,x>71 dt exp [W]

for x € H, ||z|| = 1, which proves (3.12).
The inequality (3.13) follows by (2.6). O

Proposition 4. With the assumptions of Proposition 1 we have forxz € H, ||z|| =1
that

MlnmfmlnM_Flanlnm
M—m M—-—m

(3.14) exp [ } L(A,B,z,m,M)

< /0 A, (1—1) A+ tB))dt

M—m + M—m + dmM
x L(A,B,z,m, M),

[Mlnm—mlnM InM —Inm (M—m)2]
< exp
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where

L(A,B,z,m,M)
M—m
(In M—Inm){((B—A)z,z)
X {exp [m%& ((B—A) xw)} - 1}

m

Zf <(B—A)J},$> 7&07

1i4f (B—A)z,z) =0.

Proof. From (2.7) we get

exp[ M—m

<AL ((1—t) A+1B))
b {lnm(M— (1=t)A+tB)x,z)) +In M ((((1 —t) A+ tB) z,x) —m)}

M—m
X exp l(M — m)zl

Inm(M-{(1-t)A+tB)z,z)) +InM (((1 —t) A+ tB)z,z) — m)}

dmM

namely

MInm—mlnM InM —Inm
exp [ T —m } exp (]\4—771 (L—=t)A+1tB) amm))

<A (1 -1)A+1B))

MInm —mlnM InM —Inm
< s —
exp[ = }exp( Y (((1 t)A—i—tB)x,x))
o |1 —m)”
R R,

forx € H, ||z|| = 1.
This is equivalent to

o MlnmfmlnMJrlanlnm

*P M—-—m M—m
InM —1

xaptnM_;m«B—M@@)

<A, ((L-1) A+1B))

< MInm—mlnM +lnM—lnm
X
= &P M—-—m M—-—m
InM -1

XeXp (tW <(B—A) .'L',.’L'>)
o (M —m)?

X

P M

forx € H, ||z|| = 1.
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If we take the integral over ¢t € [0, 1], then we get

Mlnm—mlnM+lnM—lnm
X
XP M—-—m M—-—m

! InM —1Inm
mWM=Im g4
x/oexp<t e )x,x))dt

< /0 A (1=t) A+tB))dt

<e Mlnm—mlnMJrlnM—lnm
= OXPp M—-—m M—m
1
InM —Inm
t— (B—A dt
< [ e (PR (B - A) ) )
o | M= m)”
P

forx € H, ||z|| = 1.
Now, observe that

M—-m
and the proof is completed. [

1 —
/ exp (tanWlnm ((B—A) x7m>) dt =L (A,B,z,m, M)
0
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