NEW INEQUALITIES FOR THE NORMALIZED DETERMINANT
OF POSITIVE OPERATORS IN HILBERT SPACES VIA JENSEN
AND SLATER’S RESULTS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. For positive invertible operators A on a Hilbert space H and a
fixed unit vector « € H, define the normalized determinant by Ag(A) :=
exp (In Az, z). In this paper we prove among others that, if 0 <mlI < A< MI
and z € H, ||z|| =1, then
0 < (Az,z) — As(A)
< (AlnAz,z) — (In Az, z) (Az, x)
1/2
1 () 142 — (A, 2)?]

m

IN

1/2
1(M—m) [||lnAxH2 - (lnAx,x>2] /

gi(Mfm)ln(%>,

1. INTRODUCTION

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [6], [7], introduced the normalized determinant A,(A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z| = 1, defined by A, (A) := exp (ln Az, x) and discussed it as a continuous
geometric mean and observed some inequalities around the determinant from this
point of view.

Some of the fundamental properties of normalized determinant are as follows,
[6].
For each unit vector x € H, see also [9], we have:

(i) continuity: the map A — A,(A) is norm continuous;

(ii) bounds: <A71x,:c>71 < AL(A) < (Az,z);

(iii) continuous mean: (A”x,x)l/p 1 Az(A) for p | 0 and (Apx,a:>1/p 1T Az(A)
for p T 0;

(iv) power equality: A, (AY) = A, (A)! for all t > 0;

(v) homogeneity: Ay(tA) =tAL(A) and Ay (tI) =t for all t > 0;

(vi) monotonicity: 0 < A < B implies A, (4) < A, (B);
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(vil) multiplicativity: A, (AB) = A, (A)A,(B) for commuting A and B;
(viii) Ky Fan type inequality: A, ((1 —a) A+ aB) > A, (A)' A, (B)* for 0 <
a <1

We define the logarithmic mean of two positive numbers a, b by

lnz:ilna if b 7& a,
L(a,b) :=
aif b = a.

In [6] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI < A < M I, where m, M are positive
numbers,

MInm —mlnM 7

1
M—m

(1.1) 0< (Az,z) — Ay(A) < L(m,M) {lnL(m,M) +

for all x € H, ||z|| = 1.
We recall that Specht’s ratio is defined by [10]

— it h e (0,1)U(1,00),
eln( hh—T1

(1.2) S (h) := ( )
1if h=1.

It is well known that lim,—, S (h) =1, S(h) = S(3) > 1 for h > 0, h # 1. The
function is decreasing on (0, 1) and increasing on (1, 00) .
In [7], the authors obtained the following multiplicative reverse inequality as well

(1.3) 1<Xﬁj§<s(%>

for0<mlI <A< MIandzx€H, |z| =1.
Motivated by the above results, in this paper we prove among others that, if
0<mI<A<MIand x € H, ||z|| =1, then

0 < (Az,z) — Ay (A)

<
< (AlnAz,z) — (In Az, z) (Az, x)

S (30) e - (4z,29?]

(M —m) [||1n Az|)? - <1nAx,x>2] i

IN
|
=
|
2
=)
—
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~—

2. MAIN RESULT

The first result is as follows:
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Theorem 1. Assume that 0 < mI < A< MI and xz € H, ||z| = 1, then

(2.1) 0 < (Az,z) — A,(A)
< (Aln Az, z) — (In Az, z) (Az, x)

m

S () [)Aaf® — (dz. 2]

L(M —m) [||1nAa:||2 - <1nAx,x>2] i
i(]\/[fm)ln <J\ﬂ/;[) .

Proof. In [1] we obtained the following result.

Let I be an interval and f : I — R be a convex and differentiable function on
I (the interior of I) whose derivative f’ is continuous on I. If B is a selfadjoint
operator on the Hilbert space H with Sp (B) C [k, K] C I, then

IN

(2.2) (0 <) (F(B)z,z) — f ((Bx,x))
< (f'(B) Bz,z) — (Bx,z) (f' (B) x,)

{ -1 I Byl (¢ (Braa?]
1

IN
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=
—~
=
=
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for any « € H with ||z]| = 1.
If we take f(t) = expt, t € R and B is a selfadjoint operator with Sp (B) C
[k, K], then by (2.2) we get

(2.3) 0 < (exp (B) z,z) — exp ({Bx,x))
(Bexp (B)x,z) — (Bx,x) (exp (B) z, )

IN

L B) [Jesp (B) 2 — (exp (B 2?]

IN

2 911/2
L (exp (K) — exp (k) || Bz||* - (Bz,)’]

i([(— k) (exp (K) —exp (k)),

IN

for any x € H with ||z| = 1.
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Ifo<m< A<M, then Inm <InA <InM and by taking B=1nA, k = Inm,
K =1nM in (2.3) we get

0 < ({exp(InA)z, z) —exp ((In Az, x))
(InAexp(lnA)z,z) — (In Az, z) (exp (In A) z, x)

IN

1/2

i (InM —1nm) [||exp (In A) z||* — (exp (In A) x,x)z}

2 2] 1/2
1 (exp (In M) — exp (Inm)) {HlnAacH — (In Az, x) }

IN

IN
= ——

(InM —lnm) (exp (In M) — exp (Inm)),

namely
0 < (Az,z) — exp ({In Az, z))
< (AlnAz,z) — (In Az, z) (Azx, x)

1
2

(In M — Inm) [||A:c||2 - (Ax,x>2]1/2

1/2
L(M —m) [||1n Az|)? - <lnAx,:c>2]

1

< —

— 4

which is the desired result (2.1). O

(InM —Ilnm) (M —m),

Remark 1. We note that the first two inequalities hold for any positive definite
operator A > 0.

Theorem 2. Assume that I <ml <A< MI and x € H, ||z|| =1, then
(24)  0< (A7)~ Al(A)

In M —In M—
i( Mml;nlz/ﬁlnmm) <IHA{L‘,;C> <A£C7.'17> )

IN

[N

(VIR = Vinm) (VM = vim) [(1n Az, 2) (Az, 2)]?

or, equivalently

A (A)
(2.5) 0<1-— Tina)

1 (In M—Inm)(M—m)
1 vVMmInMInm <111A.T,£Z,‘>7

IN

1

(v ) (1) ]

Proof. Let I be an interval and f : I — R be a convex and differentiable function
on I (the interior of I) whose derivative f’ is continuous on I. If B is a selfadjoint
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operator on the Hilbert space H with Sp (B) C [k, K] C I, then [1]

(0 <) (F(B)z,z) — f (B, x))
< (f'(B) Bz,z) — (Bx,z) (f' (B) z,)

1 (K=k)(£'(K)=f'(k)) ,
4 \/ka’(K)f’(k) <B$,x> <f (B) x7m>7

IN

Nl

(VE = V&) (VI () = VT ) (B, o) (' (B) )]
if k>0and f' (k) >0, for any z € H with ||z| = 1.

If we take f(t) = expt, t € R and B is a selfadjoint operator with Sp (B) C
[k, K], then

(2.6) 0 < (exp (B) z,z) — exp ({Bx,x))

1 (K k) (exp(J) —exp(k)
1 JRhexp(K) exp(k) (Bz, ) (exp (B) z, x)

(VE = VE) (Vexp (K) - v/exp (k)
x [(Bx,x) (exp (B) x,x>]% .

IfIl <mlI <A< MI,then 0 <Inm <InA < InM and by taking B = In A,
kE=Inm, K =In M in (2.6) we get

0 < (exp(InA)z, z) —exp ((In Az, x))

1 (In M —1Inm)(exp(In M)—exp(Ilnm))
4 \/In M Inm exp(In M) exp(Inm) <ln ASL’, $> <6Xp (hl A) T $> ’

(\/InM — \/lnm) (\/exp (In M) — /exp (lnm))
X [(In Az, z) {(exp (In A) z, x)]

Nl=

k)
namely

0 < (Az,z) — exp ({In Az, z))

In M—Inm)(M—m
i( \/Mmln]?/;ln'm ) <1nA.’E,{E> <A(E,£L'>7

IA

(\/W— \/M) (\/M - MFn) [(In Az, z) (Az, z))

Nl=

which proves (2.4).
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Theorem 3. Assume that 0 < mI < A< MI and xz € H, ||z| = 1, then

(2.7) 0<InA,(A)—1In (<A_1x,a:>71) < (Az,z) (A 'z, z) — 1

or, equivalently

(2.8) 1< <AA1‘;<§)>1 < exp [(Az,z) (A" 'z, ) — 1]
/
oxp (4 [14s? - (a0.07] ™).
<
exp (401 =) 4=~ (470,") )
- 1(M —m)*
P 4 mM
Proof. Assume that A is a selfadjoint operator with spectrum Sp(A) C I and
x € H, ||z|| = 1. In [2] we proved the following reverse of Slater’s inequality
CLIES Ny
o7 (LT i ()ae)
< <<Af' (A)%@) (/" (A) Az, ) — (Az, z) (' (A) z, )
B (f"(A)z,z) (f"(A)z,z)
L <<Af' (A)L@)
Az (A, x)

L1 0n) — 7 (m)] [l Aa? — (Ax. ]

L1 —m) [ (el = (7 ()]
<M m) [ (M) — 1 (m)] ., ((Af (4)z,2)
G @y ! < U (A) z.2) >

X

where f : I — R is a convex and differentiable function on I (the interior of I)
whose derivative f’ is continuous on I and

(Af'(A)z, x)
(f" (A)z, )

eI for any z € H, ||z| = 1.
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Now, if we write this inequality for the convex function f (t) = —Int, ¢t > 0, then
we have for 0 <mI < A< MI and z € H, ||z| =1, that

0<(lnAz,z) —In (<A*1x,m>_1) < (Az,z) (A 'z, 2) — 1

1/2
Lo [ Az - (Az,2)’]

IN

L —m) 4] — (4 t02)?]

which is equivalent to (2.7). O
Remark 2. The first two inequalities hold for any A > 0.

3. RELATED RESULTS
‘We also have:

Theorem 4. With the assumptions of Theorem 3 we have
m (In M — (In Az, z)) + M ({In Az, z) — Inm)
InM —1lnm

M —

m
< — — _
<M o ((In Az,z) —Inm) (In M — (In Az, x))

<L ()

forxz e H, ||z| = 1.

(1)  0< — A, (4)

Proof. In [4] we obtained the following inequality for convex functions f : [a,b] — R

0< (1 =v)f(a)+vf) - f(A-v)atvd) <A-v)r(b—a)[f (b) - [ (a)]
for v € [0, 1], provided the lateral derivatives f’ (b), f) (a) are finite.
If we take v = Z:—Z, t € [a,b], then we get

(b—1) f(a)+ (t—a) f(b)

O f (0

0< — - () T(t—a)(b—t)
for t € [a,b].
If we take f (t) = expt, t € [a,b], then we get
(3.2) 0< (b—t)expa+ (t —a)expb et < expb—expa (t—a)(b—1t)
b—a b—a
for ¢t € [a,b].

Since 0 < mI < A< M, hence Inm <InA <InM and lnm < (In Az, z) <
In M for z € H, ||z|| = 1. By taking a =Inm, t = (In Az,z) and b =In M in (3.2)
we get
In M — (In Az, z)) explnm + ({In Az, z) — Inm) expIln M

InM —Inm

OS(

—exp (In Az, )
expln M —explnm

InM —1nm ({InAz,z) —Inm) (In M — (In Az, z)),
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namely
m(InM — (ln Az, z)) + M ((In Az, ) — lnm)
0<
- InM —Inm
—exp (In Az, x)
< MZ™m 0 w2y - lnm) (n M — (In Az, z))
S~ Az, nm) (In nAzx, z)),
which gives the first inequality in (3.1). The second inequality is obvious. [

Theorem 5. With the assumptions of Theorem 8 we have

1
(3.3) 1 <exp {2M2 ((A—mI) (MI—A):C,:U)]
) A (4)
> exp |:1n m(M—(Aw,w]}\/}tl;;M((Aa:,w}—m)i|
[ 1
< exp py—" ((A=—mI)(MI — A)x,xﬁ
i 1
< oxp | oy (Ao,a) = m) (01 = {4z, )]

1 /M 2
Sexp g E—l

forz e H, ||z| = 1.

Proof. In [5] we proved the following double inequality. Let f : I C R — R be a
twice differentiable function on the interval I, the interior of I. If there exists the
constants d, D such that

(3.4) d<f'(t)<Dforanytel,

then

(35) v —n)db—a)* < (=) f (@) 4] (B) (1~ v)a+wb)
§%1/(1—1/)D(b—a)2

for any a, b€ [ and v € [0,1].
If we take v = Z:—Z, t € [a,b], then we get

(3.6) %(t—a)(b—t)d < (b_t)f(“;fg_a)f(b)—f(t)
< %(t—a)(b—t)D
for t € [a,].

If we use the continuous functional calculus, we have

f(a)(bI —B) + f (b) (B —al)
b—a

(B—al)(bI — B) D

(3.7) % (B —al) (b — B)d < —r(A)

<

| —

for al < B < bl.
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If we consider the convex function f (t) = —Int, ¢t € [m, M] C (0,00), then
1 ) 11
sl W=m <o

and by (3.7) we get

1 Inm (MI—A)+1InM(A—mlI)
— —A) < —
e (A—mlI)(MI— A) <In(A) M
b
2m?

IN

(A —mI) (MI — A),

which is equivalent to

38)  — (A —mI) (M — Az, 2)

202
< (In (A) 3, ) — o (MT = <A$7$J>\/)[—51:1M(<Agg7x> — )

< o (A= ml) (MT - 4)z,)

forx € H, ||z|| = 1.
By taking the exponential in (3.8), then we get the second and the third inequal-
ities in (3.3).
The function g (t) = (M —t) (¢t — m) is concave on [m, M] and by Jensen’s in-
equality
(9(A)z,z) < g((Az,2)), x € H,[jz]| =1
we have

(MI—A)(A=ml)z,z) < (M = (Az,z)) ((Az, 2) —m))

for all € H, ||z|| = 1, which proves the fourth inequality in (3.3).
The last part is obvious. ([l

Theorem 6. With the assumptions of Theorem 3 we have

(3.9) 0< %m ((In Az,z) —Inm) (In M — (In Az, z)),
< (InM — (In Az, z)) m + ({In Az, z) —Inm) M
- InM —Inm
- Am(A)
< %M ((In Az,z) —Inm) (In M — (In Az, x)),

1
< éM(lnM —Inm)
forallz e H,||z|| =1

Proof. If we take f (t) = expt, t € [a,b], in (3.6) then we get

(3.10) }(tfa) (b—t)expa < (b=t)expat(t—a)expb —expt
2 b—a
1
< i(t—a) (b—t)expb.
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Since 0 < mI < A< MI, hence lnm <InA <IlnM and Inm < {ln Az,z) <In M
for z € H, ||z|| = 1. By taking a = Inm, t = (In Az, z) and b = In M in (3.10) we
get

0< %m(ﬂnAx,x) —Inm) (In M — (In Az, 7)),

< (InM — (In Az, z)) explnm + ((In Az, z) —Inm)expln M
- InM —1lnm

< %M ((In Az, z) —Inm) (In M — (In Az, x)),

—exp (In Az, )

which proves (3.9). O

Finally, we can state the following

Proposition 1. Assume that 0 < mlI < A, B< MI and x € H, ||z|| = 1, then

311) 0< <A+Baj,x> —/OlAgC((l—t)A—i—tB)dtg i(M—m)ln (?ﬁ)

Proof. We observe that mI < (1 —t)A+tB < MI,t¢c[0,1] and by (2.1) we get

0<([(1—) A+ tB]a,a) — Au((1—t) A+ B) < %(M—m)ln <J‘ﬂf)

for all ¢ € [0,1]. By taking the integral over ¢t € [0, 1] we derive the desired result
(3.11). O
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