

INEQUALITIES FOR THE NORMALIZED DETERMINANT OF POSITIVE OPERATORS IN HILBERT SPACES VIA ONE VARIABLE LOG INEQUALITIES

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. For positive invertible operators A on a Hilbert space H and a fixed unit vector $x \in H$, define the normalized determinant by $\Delta_x(A) :=$ $\exp \langle \ln Ax, x \rangle$. In this paper we prove among others that,

$$\exp\left(\frac{1}{2\max^{2}\{1, M\}} \|Ax - x\|^{2}\right) \le \frac{\exp\left[\langle Ax, x \rangle - 1\right]}{\Delta_{x}(A)}$$
$$\le \exp\left(\frac{1}{2\min^{2}\{1, m\}} \|Ax - x\|^{2}\right)$$

$$\exp\left(\frac{1}{2\max^{2}\{1, M\}} \|Ax - x\|^{2}\right) \leq \frac{\Delta_{x}(A)}{\exp\left[\langle A^{-1}x, x \rangle - 1\right]} \\ \leq \exp\left(\frac{1}{2\min^{2}\{1, m\}} \|Ax - x\|^{2}\right)$$

for $0 < mI \le A \le MI$ and $x \in H$ with ||x|| = 1.

1. Introduction

Let B(H) be the space of all bounded linear operators on a Hilbert space H, and I stands for the identity operator on H. An operator A in B(H) is said to be positive (in symbol: $A \ge 0$) if $\langle Ax, x \rangle \ge 0$ for all $x \in H$. In particular, A > 0means that A is positive and invertible. For a pair A, B of selfadjoint operators the order relation $A \geq B$ means as usual that A - B is positive.

In 1998, Fujii et al. [5], [6], introduced the normalized determinant $\Delta_x(A)$ for positive invertible operators A on a Hilbert space H and a fixed unit vector $x \in H$, namely ||x|| = 1, defined by $\Delta_x(A) := \exp \langle \ln Ax, x \rangle$ and discussed it as a continuous geometric mean and observed some inequalities around the determinant from this point of view.

Some of the fundamental properties of normalized determinant are as follows, [5]

For each unit vector $x \in H$, see also [8], we have:

- (i) continuity: the map $A \to \Delta_x(A)$ is norm continuous; (ii) bounds: $\langle A^{-1}x, x \rangle^{-1} \le \Delta_x(A) \le \langle Ax, x \rangle$; (iii) continuous mean: $\langle A^px, x \rangle^{1/p} \downarrow \Delta_x(A)$ for $p \downarrow 0$ and $\langle A^px, x \rangle^{1/p} \uparrow \Delta_x(A)$ for $p \uparrow 0$;
- (iv) power equality: $\Delta_x(A^t) = \Delta_x(A)^t$ for all t > 0; (v) homogeneity: $\Delta_x(tA) = t\Delta_x(A)$ and $\Delta_x(tI) = t$ for all t > 0;

1991 Mathematics Subject Classification. 47A63, 26D15, 46C05.

Key words and phrases. Positive operators, Normalized determinants, Inequalities.

- (vi) monotonicity: $0 < A \le B$ implies $\Delta_x(A) \le \Delta_x(B)$;
- (vii) multiplicativity: $\Delta_x(AB) = \Delta_x(A)\Delta_x(B)$ for commuting A and B;
- (viii) Ky Fan type inequality: $\Delta_x((1-\alpha)A + \alpha B) \geq \Delta_x(A)^{1-\alpha}\Delta_x(B)^{\alpha}$ for $0 < \infty$

We define the logarithmic mean of two positive numbers a, b by

$$L(a,b) := \begin{cases} \frac{b-a}{\ln b - \ln a} & \text{if } b \neq a, \\ a & \text{if } b = a. \end{cases}$$

In [5] the authors obtained the following additive reverse inequality for the operator A which satisfy the condition $0 < mI \le A \le MI$, where m, M are positive numbers,

$$(1.1) \quad 0 \le \langle Ax, x \rangle - \Delta_x(A) \le L(m, M) \left[\ln L(m, M) + \frac{M \ln m - m \ln M}{M - m} - 1 \right]$$

for all $x \in H$, ||x|| = 1.

2

We recall that Specht's ratio is defined by [9]

(1.2)
$$S(h) := \begin{cases} \frac{h^{\frac{1}{h-1}}}{e \ln \left(h^{\frac{1}{h-1}}\right)} & \text{if } h \in (0,1) \cup (1,\infty), \\ 1 & \text{if } h = 1. \end{cases}$$

It is well known that $\lim_{h\to 1} S(h) = 1$, $S(h) = S(\frac{1}{h}) > 1$ for h > 0, $h \neq 1$. The function is decreasing on (0,1) and increasing on $(1,\infty)$.

In [6], the authors obtained the following multiplicative reverse inequality as well

(1.3)
$$1 \le \frac{\langle Ax, x \rangle}{\Delta_x(A)} \le S\left(\frac{M}{m}\right)$$

for $0 < mI \le A \le MI$ and $x \in H$, ||x|| = 1.

Motivated by the above results, in this paper we prove among others that,

$$\exp\left(\frac{1}{2\max^{2}\{1, M\}} \|Ax - x\|^{2}\right) \leq \frac{\exp\left[\langle Ax, x \rangle - 1\right]}{\Delta_{x}(A)}$$

$$\leq \exp\left(\frac{1}{2\min^{2}\{1, m\}} \|Ax - x\|^{2}\right)$$

and

$$\exp\left(\frac{1}{2\max^{2}\{1, M\}} \|Ax - x\|^{2}\right) \leq \frac{\Delta_{x}(A)}{\exp\left[\langle A^{-1}x, x \rangle - 1\right]} \leq \exp\left(\frac{1}{2\min^{2}\{1, m\}} \|Ax - x\|^{2}\right)$$

for $0 < mI \le A \le MI$ and $x \in H$ with ||x|| = 1.

2. Main Results

We have the following inequalities for logarithm:

Lemma 1. For any a, b > 0 we have

(2.1)
$$\frac{1}{2} \left(1 - \frac{\min\{a, b\}}{\max\{a, b\}} \right)^2 = \frac{1}{2} \frac{(b - a)^2}{\max^2\{a, b\}}$$
$$\leq \frac{b - a}{a} - \ln b + \ln a$$
$$\leq \frac{1}{2} \frac{(b - a)^2}{\min^2\{a, b\}} = \frac{1}{2} \left(\frac{\max\{a, b\}}{\min\{a, b\}} - 1 \right)^2.$$

Proof. Observe that

(2.2)
$$\int_{a}^{b} \frac{b-t}{t^{2}} dt = b \int_{a}^{b} t^{-2} dt - \int_{a}^{b} \frac{1}{t} dt = \frac{b-a}{a} - \ln b + \ln a$$

for any a, b > 0.

If b > a, then

(2.3)
$$\frac{1}{2} \frac{(b-a)^2}{a^2} \ge \int_a^b \frac{b-t}{t^2} dt \ge \frac{1}{2} \frac{(b-a)^2}{b^2}.$$

If a > b then

$$\int_{a}^{b} \frac{b-t}{t^{2}} dt = -\int_{b}^{a} \frac{b-t}{t^{2}} dt = \int_{b}^{a} \frac{t-b}{t^{2}} dt$$

and

(2.4)
$$\frac{1}{2} \frac{(b-a)^2}{b^2} \ge \int_b^a \frac{t-b}{t^2} dt \ge \frac{1}{2} \frac{(b-a)^2}{a^2}.$$

Therefore, by (2.3) and (2.4) we have for any a, b > 0 that

$$\int_{a}^{b} \frac{b-t}{t^{2}} dt \ge \frac{1}{2} \frac{(b-a)^{2}}{\max^{2} \{a,b\}} = \frac{1}{2} \left(\frac{\min \{a,b\}}{\max \{a,b\}} - 1 \right)^{2}$$

and

$$\int_{a}^{b} \frac{b-t}{t^{2}} dt \le \frac{1}{2} \frac{(b-a)^{2}}{\min^{2} \{a,b\}} = \frac{1}{2} \left(\frac{\max\{a,b\}}{\min\{a,b\}} - 1 \right)^{2}.$$

By the representation (2.2) we then get the desired result (2.1).

When some bounds for a, b are provided, then we have:

Corollary 1. Assume that $a, b \in [m, M] \subset (0, \infty)$, then we have the local bounds

(2.5)
$$\frac{1}{2} \frac{(b-a)^2}{M^2} \le \frac{b-a}{a} - \ln b + \ln a \le \frac{1}{2} \frac{(b-a)^2}{m^2}$$

and

(2.6)
$$\frac{1}{2} \frac{(b-a)^2}{M^2} \le \ln b - \ln a - \frac{b-a}{b} \le \frac{1}{2} \frac{(b-a)^2}{m^2}.$$

Remark 1. If we take in (2.1) a = 1 and $b = t \in (0, \infty)$, then we get

(2.7)
$$\frac{1}{2} \left(1 - \frac{\min\{1, t\}}{\max\{1, t\}} \right)^2 = \frac{1}{2} \frac{(t - 1)^2}{\max^2\{1, t\}}$$

$$\leq t - 1 - \ln t$$

$$\leq \frac{1}{2} \frac{(t - 1)^2}{\min^2\{1, t\}} = \frac{1}{2} \left(\frac{\max\{1, t\}}{\min\{1, t\}} - 1 \right)^2$$

and if we take a = t and b = 1, then we also get

$$(2.8) \qquad \frac{1}{2} \left(1 - \frac{\min\{1, t\}}{\max\{1, t\}} \right)^2 = \frac{1}{2} \frac{(t - 1)^2}{\max^2\{1, t\}}$$

$$\leq \ln t - \frac{t - 1}{t}$$

$$\leq \frac{1}{2} \frac{(t - 1)^2}{\min^2\{1, t\}} = \frac{1}{2} \left(\frac{\max\{1, t\}}{\min\{1, t\}} - 1 \right)^2.$$

If $t \in [k, K] \subset (0, \infty)$, then by analyzing all possible locations of the interval [k, K] and 1 we have

$$\min\{1, k\} \le \min\{1, t\} \le \min\{1, K\}$$

and

4

$$\max\{1, k\} \le \max\{1, t\} \le \max\{1, K\}$$
.

By (2.7) and (2.8) we get the local bounds

(2.9)
$$\frac{1}{2} \frac{(t-1)^2}{\max^2 \{1, K\}} \le t - 1 - \ln t \le \frac{1}{2} \frac{(t-1)^2}{\min^2 \{1, k\}}$$

and

(2.10)
$$\frac{1}{2} \frac{(t-1)^2}{\max^2 \{1, K\}} \le \ln t - \frac{t-1}{t} \le \frac{1}{2} \frac{(t-1)^2}{\min^2 \{1, k\}}$$

for any $t \in [k, K]$.

Theorem 1. Assume that the operator A satisfies the condition $0 < mI \le A \le MI$, where m, M are positive numbers, then

$$(2.11) \qquad (1 \leq) \exp\left(\frac{1}{2\max^{2}\left\{1, M\right\}} \|Ax - x\|^{2}\right)$$

$$\leq \frac{\exp\left[\langle Ax, x \rangle - 1\right]}{\Delta_{x}(A)}$$

$$\leq \exp\left(\frac{1}{2\min^{2}\left\{1, m\right\}} \|Ax - x\|^{2}\right)$$

and

(2.12)
$$(1 \le) \exp\left(\frac{1}{2\max^{2}\{1, M\}} \|Ax - x\|^{2}\right)$$

$$\le \frac{\Delta_{x}(A)}{\exp\left[\langle A^{-1}x, x \rangle - 1\right]}$$

$$\le \exp\left(\frac{1}{2\min^{2}\{1, m\}} \|Ax - x\|^{2}\right)$$

for all $x \in H$, ||x|| = 1.

Proof. Using the continuous functional calculus for A and the inequality (2.9) we have

$$\frac{1}{2\max^2\left\{1,M\right\}}\left(A-I\right)^2 \leq A-I-\ln A \leq \frac{1}{2\min^2\left\{1,m\right\}}\left(A-I\right)^2,$$

which is equivalent to

$$\frac{1}{2\max^{2}\left\{1,M\right\}}\left\langle \left(A-I\right)^{2}x,x\right\rangle \leq\left\langle Ax,x\right\rangle -1-\left\langle \ln Ax,x\right\rangle \leq\frac{1}{2\min^{2}\left\{1,m\right\}}\left\langle \left(A-I\right)^{2}x,x\right\rangle +2\left\langle Ax,x\right\rangle -1-\left\langle Ax,x\right\rangle +2\left\langle Ax,x\right\rangle -1-\left\langle Ax,x\right\rangle +2\left\langle Ax,x\right\rangle -1-\left\langle Ax,x\right\rangle +2\left\langle Ax,x\right\rangle$$

for all $x \in H$, ||x|| = 1.

This is equivalent to

$$\exp\left(\frac{1}{2\max^{2}\left\{1,M\right\}}\left\|Ax - x\right\|^{2}\right) \leq \frac{\exp\left[\left\langle Ax, x\right\rangle - 1\right]}{\exp\left\langle\ln Ax, x\right\rangle}$$
$$\leq \exp\left(\frac{1}{2\min^{2}\left\{1, m\right\}}\left\|Ax - x\right\|^{2}\right)$$

which proves (2.11).

From (2.10) we also get

$$\frac{1}{2 \max^2 \left\{1, M\right\}} \left(A - I\right)^2 \le \ln A - I + A^{-1} \le \frac{1}{2 \min^2 \left\{1, m\right\}} \left(A - I\right)^2,$$

namely

$$\frac{1}{2\max^{2}\left\{1,M\right\}}\left\|Ax-x\right\|^{2} \leq \left\langle \ln Ax,x\right\rangle - 1 + \left\langle A^{-1}x,x\right\rangle \leq \frac{1}{2\min^{2}\left\{1,m\right\}}\left\|Ax-x\right\|^{2},$$
 which gives in (2.12).

Corollary 2. With the assumptions of Theorem 1,

(2.13)
$$1 \le \exp\left(\frac{\min^{2}\{1, m\}}{2} \|A^{-1}x - x\|^{2}\right) \le \frac{\Delta_{x}(A)}{\exp\left[1 - \langle A^{-1}x, x \rangle\right]}$$
$$\le \exp\left(\frac{\max^{2}\{1, M\}}{2} \|A^{-1}x - x\|^{2}\right)$$

and

(2.14)
$$1 \le \exp\left(\frac{\min^{2}\{1, m\}}{2} \|A^{-1}x - x\|^{2}\right) \le \frac{\exp\left[1 - \langle Ax, x \rangle\right]}{\Delta_{x}(A)}$$
$$\le \exp\left(\frac{\max^{2}\{1, M\}}{2} \|A^{-1}x - x\|^{2}\right)$$

for all $x \in H$, ||x|| = 1.

Proof. If $0 < mI \le A \le MI$, where m, M are positive numbers, then $0 < M^{-1}I \le A^{-1} \le m^{-1}I$. If we write the inequality (2.11) for A^{-1} , then we can state that

$$(2.15) 1 \le \exp\left(\frac{1}{2\max^{2}\{1, m^{-1}\}} \|A^{-1}x - x\|^{2}\right) \le \frac{\exp\left[\langle A^{-1}x, x \rangle - 1\right]}{\Delta_{x}(A^{-1})}$$

$$\le \exp\left(\frac{1}{2\min^{2}\{1, M^{-1}\}} \|A^{-1}x - x\|^{2}\right)$$

for all $x \in H$, ||x|| = 1.

Since

$$\max\left\{1, m^{-1}\right\} = \frac{1}{\min\left\{1, m\right\}}, \ \min\left\{1, M^{-1}\right\} = \frac{1}{\max\left\{1, M\right\}}$$

and

$$\frac{\exp\left[\left\langle A^{-1}x, x \right\rangle - 1\right]}{\Delta_x(A^{-1})} = \frac{\Delta_x(A)}{\exp\left[1 - \left\langle A^{-1}x, x \right\rangle\right]},$$

hence by (2.15) we get (2.13).

Let a, b > 0 and such that $\frac{b}{a} \in [k, K] \subset (0, \infty)$, then by (2.9) and (2.10):

$$(2.16) \frac{1}{2} \frac{(b-a)^2}{a^2 \max^2\{1, K\}} \le \frac{b-a}{a} - \ln b + \ln a \le \frac{1}{2} \frac{(b-a)^2}{a^2 \min^2\{1, k\}}$$

and

6

$$(2.17) \qquad \frac{1}{2} \frac{(b-a)^2}{a^2 \max^2 \{1, K\}} \le \ln b - \ln a - \frac{b-a}{b} \le \frac{1}{2} \frac{(b-a)^2}{a^2 \min^2 \{1, k\}}.$$

If we assume that $a, b \in [m, M] \subset (0, \infty)$, then by taking $k = \frac{m}{M} < 1 < \frac{M}{m} = K$ in (2.16) and (2.17) we get

$$(2.18) \qquad \frac{1}{2} \frac{m^2}{M^2} \left(\frac{b}{a} - 1 \right)^2 \le \frac{b - a}{a} - \ln b + \ln a \le \frac{1}{2} \frac{M^2}{m^2} \left(\frac{b}{a} - 1 \right)^2$$

and

$$(2.19) \qquad \frac{1}{2} \frac{m^2}{M^2} \left(\frac{b}{a} - 1 \right)^2 \le \ln b - \ln a - \frac{b - a}{b} \le \frac{1}{2} \frac{M^2}{m^2} \left(\frac{b}{a} - 1 \right)^2.$$

Observe also that for $t \in [k, K]$ we have

$$1 - \frac{\min{\{1,t\}}}{\max{\{1,t\}}} \ge 1 - \frac{\min{\{1,K\}}}{\max{\{1,k\}}} \ge 0$$

and

$$0 \le \frac{\max\{1,t\}}{\min\{1,t\}} - 1 \le \frac{\max\{1,K\}}{\min\{1,k\}} - 1.$$

Now, by (2.7) and (2.8) we get the global bounds

$$(2.20) \qquad \frac{1}{2} \left(1 - \frac{\min\{1, K\}}{\max\{1, k\}} \right)^2 \le t - 1 - \ln t \le \frac{1}{2} \left(\frac{\max\{1, K\}}{\min\{1, k\}} - 1 \right)^2$$

and

$$(2.21) \qquad \frac{1}{2} \left(1 - \frac{\min\{1, K\}}{\max\{1, k\}} \right)^2 \le \ln t - \frac{t - 1}{t} \le \frac{1}{2} \left(\frac{\max\{1, K\}}{\min\{1, k\}} - 1 \right)^2$$

By the use of (2.20), (2.21) and a similar argument to the one in the proof of Theorem 1 we can also state:

Theorem 2. With the assumptions of Theorem 1 we have

$$(2.22) 1 \le \exp\left(\frac{1}{2}\left(1 - \frac{\min\{1, M\}}{\max\{1, m\}}\right)^2\right) \le \frac{\exp\left[\langle Ax, x \rangle - 1\right]}{\Delta_x(A)}$$
$$\le \exp\left(\frac{1}{2}\left(\frac{\max\{1, M\}}{\min\{1, m\}} - 1\right)^2\right)$$

and

$$(2.23) 1 \leq \exp\left(\frac{1}{2}\left(1 - \frac{\min\{1, M\}}{\max\{1, m\}}\right)^2\right) \leq \frac{\Delta_x(A)}{\exp\left[\langle A^{-1}x, x \rangle - 1\right]}$$
$$\leq \exp\left(\frac{1}{2}\left(\frac{\max\{1, M\}}{\min\{1, m\}} - 1\right)^2\right)$$

for all $x \in H$, ||x|| = 1.

Corollary 3. With the assumptions of Theorem 1 we have

(2.24)
$$1 \le \exp \frac{1}{2} \left(1 - \frac{\min\{1, M\}}{\max\{1, m\}} \right)^2 \right) \le \frac{\Delta_x(A)}{\exp\left[1 - \langle A^{-1}x, x \rangle\right]}$$
$$\le \exp \frac{1}{2} \left(\frac{\max\{1, M\}}{\min\{1, m\}} - 1 \right)^2 \right)$$

and

(2.25)
$$1 \le \exp \frac{1}{2} \left(1 - \frac{\min\{1, M\}}{\max\{1, m\}} \right)^2 \right) \le \frac{\exp[1 - \langle Ax, x \rangle]}{\Delta_x(A)}$$
$$\le \exp \frac{1}{2} \left(\frac{\max\{1, M\}}{\min\{1, m\}} - 1 \right)^2 \right)$$

for all $x \in H$, ||x|| = 1.

Remark 2. If we multiply (2.23) and (2.24) we get

$$1 \leq \exp\left(\left(1 - \frac{\min\left\{1, M\right\}}{\max\left\{1, m\right\}}\right)^2\right) \leq \Delta_x^2(A) \leq \exp\left(\left(\frac{\max\left\{1, M\right\}}{\min\left\{1, m\right\}} - 1\right)^2\right),$$

which is equivalent to

(2.26)
$$1 \leq \exp \left[\frac{1}{2} \left(1 - \frac{\min\{1, M\}}{\max\{1, m\}}\right)^{2}\right) \leq \Delta_{x}(A)$$
$$\leq \exp \left[\frac{1}{2} \left(\frac{\max\{1, M\}}{\min\{1, m\}} - 1\right)^{2}\right),$$

for all $x \in H$, ||x|| = 1.

3. Related Results

We also have:

Lemma 2. For any a, b > 0 we have

(3.1)
$$(0 \le) \frac{b-a}{a} - \ln b + \ln a \le \frac{(b-a)^2}{ab}$$

and

$$(3.2) (0 \le) \ln b - \ln a - \frac{b-a}{b} \le \frac{(b-a)^2}{ab}.$$

Proof. If b > a, then

$$\int_{a}^{b} \frac{b-t}{t^{2}} dt \le (b-a) \int_{a}^{b} \frac{1}{t^{2}} dt = (b-a) \frac{b-a}{ab} = \frac{(b-a)^{2}}{ab}.$$

If a > b, then

$$\int_{a}^{b} \frac{b-t}{t^{2}} dt = \int_{b}^{a} \frac{t-b}{t^{2}} dt \le (a-b) \int_{b}^{a} \frac{1}{t^{2}} dt = (a-b) \frac{a-b}{ab} = \frac{(b-a)^{2}}{ab}.$$

Therefore,

8

$$\int_{a}^{b} \frac{b-t}{t^2} dt \le \frac{\left(b-a\right)^2}{ab}$$

for any a, b > 0 and by the representation (2.2) we get the desired result (3.1). \square

If we take in (3.1) and (3.2) a = 1 and $b = t \in (0, \infty)$, then we get

(3.3)
$$(0 \le) t - 1 - \ln t \le \frac{(t-1)^2}{t}$$

and

$$(3.4) (0 \le) \ln t - \frac{t-1}{t} \le \frac{(t-1)^2}{t}$$

for any t > 0.

Corollary 4. Let a, b > 0 and such that $\frac{b}{a} \in [k, K] \subset (0, \infty)$. Then we have

$$(3.5) \qquad \frac{b-a}{a} - \ln b + \ln a \le U(k, K)$$

and

(3.6)
$$\ln b - \ln a - \frac{b-a}{b} \le U(k,K),$$

where

$$U\left(k,K\right) := \left\{ \begin{array}{l} \frac{(k-1)^2}{k} \ \ if \ K < 1, \\ \max\left\{\frac{(k-1)^2}{k}, \frac{(K-1)^2}{K}\right\} \ \ if \ k \leq 1 \leq K, \\ \frac{(K-1)^2}{K} \ \ if \ 1 < k. \end{array} \right.$$

Proof. Consider the function $f(t) = \frac{(t-1)^2}{t}$, t > 0. We observe that

$$f'(t) = \frac{t^2 - 1}{t^2}$$
 and $f''(t) = \frac{2}{t^3}$,

which shows that f is strictly decreasing on (0,1), strictly increasing on $[1,\infty)$ and strictly convex for t>0. We also have $f\left(\frac{1}{t}\right)=f(t)$ for t>0.

By (3.3) and by the properties of f we then have that for any $t \in [k, K]$

$$(3.7) t-1-\ln t \leq \max_{t\in[k,K]} \frac{(t-1)^2}{t}$$

$$= \begin{cases} \frac{(k-1)^2}{k} & \text{if } K < 1, \\ \max\left\{\frac{(k-1)^2}{k}, \frac{(K-1)^2}{K}\right\} & \text{if } k \leq 1 \leq K, \\ \frac{(K-1)^2}{K} & \text{if } 1 < k. \end{cases}$$

$$= U(k,K).$$

Now, put $t = \frac{b}{a} \in [k, K]$ in (3.7) to get the desired inequality (3.5).

Let $y = \frac{1}{t}$ with $t = \frac{b}{a} \in [k, K]$. Then $y \in \left[\frac{1}{K}, \frac{1}{k}\right]$ and we have like in (3.7) that

$$\begin{split} y - 1 - \ln y &\leq \max_{y \in [K^{-1}, k^{-1}]} \frac{\left(y - 1\right)^2}{y} \\ &= \left\{ \begin{array}{l} \frac{\left(K^{-1} - 1\right)^2}{K^{-1}} \text{ if } k^{-1} < 1, \\ \max \left\{ \frac{\left(K^{-1} - 1\right)^2}{K^{-1}}, \frac{\left(\frac{1}{k^{-1}} - 1\right)^2}{k^{-1}} \right\} \text{ if } k \leq 1 \leq K^{-1}, \\ \frac{\left(\frac{1}{k^{-1}} - 1\right)^2}{k^{-1}} \text{ if } 1 < K^{-1}, \\ &= U\left(k, K\right), \end{split}$$

which implies (3.6).

Remark 3. If we take a = 1 and b = t in Corollary 4, then we get

$$(3.8) t - 1 - \ln t \le U(k, K)$$

and

(3.9)
$$\ln t - \frac{t-1}{t} \le U(k, K),$$

for $t \in [k, K] \subset (0, \infty)$.

Theorem 3. Assume that the operator A satisfies the condition $0 < mI \le A \le MI$, where m, M are positive numbers, then

(3.10)
$$(1 \le) \frac{\exp\left[\langle Ax, x \rangle - 1\right]}{\Delta_x(A)} \le U(m, M)$$

and

$$(3.11) (1 \le) \frac{\Delta_x(A)}{\exp\left[1 - \langle A^{-1}x, x \rangle\right]} \le U(m, M)$$

for all $x \in H$, ||x|| = 1.

Proof. From (2.11) we have

$$0 \le A - I - \ln A \le U(m, M)$$
,

namely

$$\langle Ax, x \rangle - 1 - \langle \ln Ax, x \rangle < U(m, M),$$

for all $x \in H$, ||x|| = 1 and by taking the exponential, we derive (3.10). The inequality (3.11) follows by (3.9).

References

- S. S. Dragomir, Some Reverses of the Jensen inequality for functions of selfadjoint operators in Hilbert spaces, *Journal of Inequalities and Applications*, Volume 2010, Article ID 496821, 15 pages doi:10.1155/2010/496821.
- [2] S. S. Dragomir, Some Slater's type inequalities for convex functions of selfadjoint operators in Hilbert spaces, Rev. Un. Mat. Argentina, 52 (2011), no. 1, 109–120;
- [3] S. S. Dragomir, Vector and operator trapezoid type inequalities for continuous functions of selfadjoint operators, *Elec. Lin. Alg.*, Volume 22, pp. 161-178, March 2011.
- [4] S. S. Dragomir, Hermite-Hadamard's type inequalities for operator convex functions, Applied Mathematics and Computation, 218 (2011), Issue 3, pp. 766-772.
- J. I. Fujii and Y. Seo, Determinant for positive operators, Sci. Math., 1 (1998), 153–156.
- [6] J. I. Fujii, S. Izumino and Y. Seo, Determinant for positive operators and Specht's Theorem, Sci. Math., 1 (1998), 307–310. ć

- [7] T. Furuta, J. Mičić-Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Element, Croatia.
- [8] S. Hiramatsu and Y. Seo, Determinant for positive operators and Oppenheim's inequality, J. Math. Inequal., Volume 15 (2021), Number 4, 1637–1645.
- [9] W. Specht, Zer Theorie der elementaren Mittel, Math. Z. 74 (1960), pp. 91-98.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E\text{-}mail\ address{:}\ \mathtt{sever.dragomir@vu.edu.au}$

 URL : http://rgmia.org/dragomir

10

 2 DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa