INEQUALITIES FOR THE NORMALIZED DETERMINANT OF
POSITIVE OPERATORS IN HILBERT SPACES VIA ONE
VARIABLE LOG INEQUALITIES

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. For positive invertible operators A on a Hilbert space H and a
fixed unit vector « € H, define the normalized determinant by Ag(A) :=
exp (In Az, z). In this paper we prove among others that,

1 exp [(Az, z) — 1]
eXp(Qmax2{1,M} HA:C_”:HZ) S TAA)
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P (Qmin2 {1,m} I I )

Ag(A)
exp [(A~lz,z) — 1]

1 2
< . |Az-
= xp (2min2 {1,m} Az — 2| )

for 0 <mlI <A< MI and x € H with |[z|| = 1.

and

1
— Az —z|?) <
exp(QmaXQ{LM} Az xu)_

1. INTRODUCTION

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [5], [6], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z|| = 1, defined by A, (A) := exp (In Az, z) and discussed it as a continuous
geometric mean and observed some inequalities around the determinant from this
point of view.

Some of the fundamental properties of normalized determinant are as follows,
[5].
For each unit vector x € H, see also [8], we have:

(i) continuity: the map A — A,(A) is norm continuous;

(i) bounds: <A*1x,x>71 <AL (A) < (Az, x);

(iii) continuous mean: <Apax,x>1/p 1 Az(A) for p | 0 and (Apm,a:>1/p 1T AL(A)
for p T 0;

(iv) power equality: A, (A*) = A(A)" for all ¢ > 0;

(v) homogeneity: Ay(tA) =tAz(A) and A, (tI) = ¢ for all t > 0;
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(vi) monotonicity: 0 < A < B implies A;(A) < A, (B);
(vil) multiplicativity: A, (AB) = A, (A)A,(B) for commuting A and B;
(viii) Ky Fan type inequality: A((1 —a) A+ aB) > AL (A)1"*A,(B)® for 0 <
a <1

We define the logarithmic mean of two positive numbers a, b by

lnll::ilna if b 7& a,
L(a,b) :=
aif b = a.

In [5] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI < A < M I, where m, M are positive
numbers,

MInm—mlnM

1
M—m

(1.1) 0< (Az,z) — AL(A) < L(m,M) {lnL(m,M) +

for all z € H, ||z| = 1.
We recall that Specht’s ratio is defined by [9]

1

— b ifh e (0,1) U (1,00),
eln( hh—-1
(1.2) S (h) == (»77)

lifh=1.

It is well known that lim,_, S (h) = 1, S(h) = S(3) > 1 for h > 0, h # 1. The
function is decreasing on (0,1) and increasing on (1, 00) .
In [6], the authors obtained the following multiplicative reverse inequality as well

(1.3) 1< Xli’j; <S (%)

for0O<mI<A<MIandzeH,|z|=1.
Motivated by the above results, in this paper we prove among others that,

1 9 exp [(Az,x) — 1]
o (g 14— 1") < A

1 2
<e —_— Ax_x
= Xp<2min2{1,m} | | )

and

1 2 Az (4)
P <2max2 {1, M} |4z = ] > = exp [(A~ 1z, x) — 1]

1 2
<exp| ——— |4z —
- p<2m1n2 {1,m} | | )

for 0 <mlI <A< MI and x € H with ||z]| = 1.

2. MAIN RESULTS

We have the following inequalities for logarithm:
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Lemma 1. For any a, b > 0 we have

21) 1 (1 _ miﬂ{a’b}f 1 (b-a)

2 max{a,b} ) ~ 2max?{a,b}
<P pta
a
<} (b—a)? _1<max{a,b}_1>2
~ 2min?{a,b} 2 \ min{a,b} '
Proof. Observe that
b b b
b—t 9 1 b—a
(2.2) /a e dt:b/at dtf/a ;dt: o —Inb+1Ina
for any a, b > 0.
If b > a, then
1(b—a)’ bh—t 1(b—a)’
2.3 - > dt > - .
(23) 2a2_/at2_2b2
If a > b then ,
b—t “h—t “t—0
[t [t [
a t bt bt
and
1(b—a) “t—b 1(b—a)
: = > [ —dt> = ,
24 2 b2 —/b 2z "2y

Therefore, by (2.3) and (2.4) we have for any a, b > 0 that
by 2 . 2
/ b tdt > 1 (b—a) 1 (mln {a,b} 1)

t2 2 max? {a, b} ~ 2 \max {a,b}
and , ) )
/ b_tdtgl (.bg—a) 1 mz.mx{a,b}_l .
o 12 2min® {a,b} 2 \ min{a,b}
By the representation (2.2) we then get the desired result (2.1). O

When some bounds for a, b are provided, then we have:

Corollary 1. Assume that a, b € [m, M] C (0,00), then we have the local bounds

1(b—a)’® b—a 1(b—a)’
. - < — < Z
(2.5) 5 M S, lnb—&-lnai2 —
and
1(b—a)’ b—a _1(b—a)’
. — < — — < — .
(2.6) 5 S Inb—1Ina b S35 2

Remark 1. If we take in (2.1) a =1 and b=1 € (0,00), then we get
@7 L(,_ min{lt} 21—’

' 2 max {1,t} ) 2max2{1,t}
<t—1-—Int

1 (t—1)° ;<max{1,t} 1>2

2min® {1,£} 2 \min{l,t}
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and if we take a =t and b =1, then we also get
1 in{1,e}\* 1 (¢—1)°
(2.8) Z 1,% zfg
2 max {1,¢} 2 max? {1, t}
t—1
<Ilnt— ——
t

t—1)7° 1 <max{1,t} B 1>2_

2 \ min {1,¢}

D
2min“ {1,t} 2

If t € [k,K] C (0,00), then by analyzing all possible locations of the interval
[k, K] and 1 we have
min {1,k} <min{1,¢} < min{l, K}

and
max {1,k} <max{1,t} <max{l, K}.
By (2.7) and (2.8) we get the local bounds

1 (t—1) 1 (t—1)°
2.9 S <t—1-Int< i —
(2.9) 2max?{1,K} — . = 2min? {1,k}
and
(2.10) 1 (=1)° <me-=tol (t—1°
’ 2max2 {1,K} ~ t  ~ 2min®{1,k}

for any t € [k, K] .

Theorem 1. Assume that the operator A satisfies the condition 0 < mlI < A <
M1, where m, M are positive numbers, then

1 2
(2.11) 0 Do (5t I4e =l
_ expl{Az,z) 1
Y

1 2
<e — Az — 2
= CxXP <2min2 {1,m} I I >

and

(2.12) (1 <)exp (Wl{lM} Aw—x||2)

Az (A)
= exp [(A~ 1z, x) — 1]

1 2
<e —_— Al‘—.%‘
= OxXP <2min2{1,m} ” | )

forallz € H, ||z|| = 1.

Proof. Using the continuous functional calculus for A and the inequality (2.9) we
have

1

1
(A-D*<A-T-ImA< — — _(A-1)7?
2max2{1,M}( ) < . ( )

~ 2min? {1,m}
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which is equivalent to
1
2max? {1, M}
for all x € H, ||z|| = 1.
This is equivalent to

| 2\ _ eplidza) - 1
- - _ < ZE N
P <2max2 {1, M} 1Az = ] > exp (In Az, x)

1
< exp ( | Az — x||2)

2min? {1, m}

<(A—I)2 x,x> < (Az,z)—1—(ln Az, z) < . <(A—I)2 x,a:>

~ 2min? {1,m}

which proves (2.11).
From (2.10) we also get

1

1

—  (A-D)P<ImA-T+A'<— (A1)

2max2{1,M}( )" <ln + - 2min2{1,m}( "
namely

1 2 1 1 2
—— || Az — <{lnA —-1+(A < ——||Az —
2max? {1, M} 14z = 2][" < (In Az, 2) +< x’m>_2min2{1,m} Az ==,
which gives in (2.12). O

Corollary 2. With the assumptions of Theorem 1,

min? 1,m _ 2 Ag(A
(2.13) 1 <exp <§} 1472 — | ) = apl- <(A—)1x,w>]

< exp (max2 (L) 41 - x||2>

and

(214) 1 <exp (W HA_l.’E . -'L'H2> < EW

2
< exp (ma" (LA g x||2)

forallx € H, ||z|| = 1.

Proof. If 0 < mI < A < MI, where m, M are positive numbers, then 0 < M T <
A=t <m~'I. If we write the inequality (2.11) for A~1, then we can state that

1 1 2 exp [(A~'w,z) — 1]
(2.15) 1 < exp (WMHA | ) A AL (AT

1 _ 2

< exp (an{lM_l} [A™ e — 2 )
for all z € H, ||z = L.
Since
—-1 1 1 1
max{l,m }:mm{l m}’ mm{l,M }7max{1,M}
and
exp [(A7 1z, z) — 1] Az (A)
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hence by (2.15) we get (2.13). O
Let a, b > 0 and such that 2 € [k, K] C (0, 00), then by (2.9) and (2.10):

1 (b—a)? —a 1 (b—a)

. - - G e
(2.16) 2a?2max?{1,K} — a Inb+lna < 2 a2min? {1,k}
and
(2.17) 1ﬂ<lnb—lna—b_a<l (b—a)”

’ 2a?max?{1,K} — b~ 2a2min? {1,]{:}'

If we assume that a, b € [m, M] C (0,00), then by taking k= > <1< M = K
in (2.16) and (2.17) we get

1m2 /b 2 b—a 1M2? (b 2
2.1 S (2-1) <% —mb+lha< (-1
(2.18) 2M2<a )_ a nb+na_2m2 (a )
and
2.19) 1m2 (b 12<1b | b—a _1M? (b 12
' 2 M2 \a = na b —2m?2 \a ’

Observe also that for ¢ € [k, K] we have
min {1,¢} 1 min {1, K}

T max{Li} = max{Lk) ="

and
max {1,t} < max {1, K} L

~ min{1,t} ~ min{l,k}

Now, by (2.7) and (2.8) we get the global bounds
1 min {1, K} 1 (max{l,K 2

(2.20) 2<1—W) gt—l—lnt§2(W—l>
and

. 2 9
(2.21) L omin{L KNS to 1 L (max{l K}
2 max {1, k} 2 \ min{1,k}

By the use of (2.20), (2.21) and a similar argument to the one in the proof of
Theorem 1 we can also state:

Theorem 2. With the assumptions of Theorem 1 we have

(2.22) 1 < exp (; (1 - m> ) < W
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for all z € H, ||z|| = 1.

Corollary 3. With the assumptions of Theorem 1 we have

1 min {1, M} AL (A)
(224) 1 < exp 5 (1 — rnax{l,m}) > < exp [1 — <A_11'7;r,>]
1 (max {1, M} 2
< exp 2<mm{1 m 1) )
and
(2.25) 1 < exp % (1 2;1{{11 Aﬂﬁ) ) exp 1—(<AA)x )]

IN

exp 1 (max {1, M} 1
2 \ min{1,m}
for all z € H, ||z|| = 1.
Remark 2. If we multiply (2.23) and (2.24) we get

which is equivalent to

220 Us e J (- I <o

2
< exp % <m&.lx{1’M} - 1> > :

for all z € H, ||z|| = 1.

3. RELATED RESULTS
We also have:

Lemma 2. For any a, b > 0 we have

(3.1) 0<% lnptn L =)
' ~ a “=w
and

2
(3.2) (0<)Inb—Ing— 22 (b;b“)

Proof. If b > a, then

b—t b1 b—a (b—a)’
/a < (b~ )/a = (p—a) = LD

If a > b, then
by _
t2

“t— “ a— —a)’
t2b 7(a—b)/b t%dt:(a—b) b:(b )

p ab ab

a
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Therefore,

by N 2
/b t, . (b-a

t2 - ab

for any a, b > 0 and by the representation (2.2) we get the desired result (3.1).

If we take in (3.1) and (3.2) a=1and b=t € (0,00), then we get

(3.3) (Ogﬁ—l—hwg(t;DQ
and

(3.4) (0<)Int— % <t ;1)2
for any t > 0.

Corollary 4. Let a, b> 0 and such that © € [k, K] C (0,00). Then we have

h—
(3.5) 279 lb+lna<U Kk K)
a
and
b—a
(3.6) Inb—1Ina— <U(k K),
where
C-D® K <1,
Uk K) i= { max { S8 UG Gp g <1 < K,
(k-1
Proof. Consider the function f (t) = @, t > 0. We observe that
, t2—1 ” 2
@)= 2 and f (t):tT"

O

which shows that f is strictly decreasing on (0, 1), strictly increasing on [1, 00) and

strictly convex for t > 0. We also have f (%) = f(¢) for t > 0.
By (3.3) and by the properties of f we then have that for any ¢ € [k, K]

t—1)>
(3.7) t—1—Int < max ( )
telk, K| t

-V 5 g <1,

= max @,%} if k<1<K,
B i1 < k.

= U(kK).

Now, put ¢t = & € [k, K] in (3.7) to get the desired inequality (3.5).
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Let y = 1 with t = 2 € [k, K]. Then y € [+, ]| and we have like in (3.7) that

—1)?
y—1—Iny < max M
ye[K k1] Y

Z1 )2
) et <,

Z1 42 1 1\2
= max{(KK_ll) (’“_kl_ll) } ifk<1< K1

)

1 _q)?
E) 4 < g1,

-1

=U(k,K),
which implies (3.6). O
Remark 3. If we take a =1 and b =t in Corollary 4, then we get
(3.8) t—1—Int <U(k,K)
and

t—1

(3.9) lnthgU(k,K),

fort e [k, K] C (0,00).

Theorem 3. Assume that the operator A satisfies the condition 0 < mI < A <
MI, where m, M are positive numbers, then

exp [(Az, z) — 1]

(3.10) (1<) AL A) <U(m,M)
and
(3.11) (1<) Ax(4) <U(m,M)

ol — (412, 3)]
for all z € H, ||z|| = 1.
Proof. From (2.11) we have
0<A-T-ImA<U(m,M),
namely
(Az,z) — 1 — (In Az, x) < U (m, M),
for all z € H, ||z|| = 1 and by taking the exponential, we derive (3.10).
The inequality (3.11) follows by (3.9). O

REFERENCES

[1] S. S. Dragomir, Some Reverses of the Jensen inequality for functions of selfadjoint operators
in Hilbert spaces, Journal of Inequalities and Applications, Volume 2010, Article ID 496821,
15 pages doi:10.1155/2010/496821.

[2] S. S. Dragomir, Some Slater’s type inequalities for convex functions of selfadjoint operators in
Hilbert spaces, Rev. Un. Mat. Argentina, 52 (2011), no. 1, 109-120;

[3] S. S. Dragomir, Vector and operator trapezoid type inequalities for continuous functions of
selfadjoint operators, Elec. Lin. Alg., Volume 22, pp. 161-178, March 2011.

[4] S. S. Dragomir, Hermite-Hadamard’s type inequalities for operator convex functions, Applied
Mathematics and Computation, 218 (2011), Issue 3, pp. 766-772.

[5] J. L. Fujii and Y. Seo, Determinant for positive operators, Sci. Math., 1 (1998), 153-156.

6] J. I. Fujii, S. Izumino and Y. Seo, Determinant for positive operators and Specht’s Theorem,
Sci. Math., 1 (1998), 307-310. ¢



10 S.S. DRAGOMIR

[7] T. Furuta, J. Mic¢i¢-Hot, J. Pecari¢ and Y. Seo, Mond-Pecarié Method in Operator Inequalities,
Element, Croatia.

[8] S. Hiramatsu and Y. Seo, Determinant for positive operators and Oppenheim’s inequality, J.
Math. Inequal., Volume 15 (2021), Number 4, 1637-1645.

[9] W. Specht, Zer Theorie der elementaren Mittel, Math. Z. 74 (1960), pp. 91-98.

IMATHEMATICS, COLLEGE OF ENGINEERING & SCIENCE, VICTORIA UNIVERSITY, PO Box 14428,
MELBOURNE CITY, MC 8001, AUSTRALIA.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

2DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL, AND STATISTICAL SCIENCES,
ScHOOL OF COMPUTER SCIENCE, & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATER-
SRAND,, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA





