INEQUALITIES FOR THE NORMALIZED DETERMINANT OF
POSITIVE OPERATORS IN HILBERT SPACES VIA OSTROWSKI
TYPE RESULTS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. For positive invertible operators A on a Hilbert space H and a
fixed unit vector « € H, define the normalized determinant by Ag;(A) :=
exp (In Az, z). In this paper we prove among others that, if 0 < mlI < A< MI
and z € H, ||z|| =1, then

m () [$+ 3t ¢

A—WIP,IH

M — M
A (A)
= Iz (m, M)
B

where I is the identric mean.

1. INTRODUCTION

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [4], [5], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector z € H,
namely ||z| = 1, defined by A, (A) := exp (In Az, ) and discussed it as a continuous
geometric mean and observed some inequalities around the determinant from this
point of view.

Some of the fundamental properties of normalized determinant are as follows,
[4].

For each unit vector x € H, see also [7], we have:

(i) continuity: the map A — A, (A) is norm continuous;
(ii) bounds: <A_1x7x>_1 < AL(A) < (Az,x);
(ifi) continuous mean: (APz,x)"P | Ay(A) for p | 0 and (APz,2)'/" 1 A,(A)
for p T 0;
(iv) power equality: A, (AY) = A (A)! for all t > 0;
v) homogeneity: A, (tA) =tA,(A) and A, (tI) =t for all t > 0;
(vi) monotonicity: 0 < A < B implies A;(A) < A, (B);
(vil) multiplicativity: A, (AB) = A, (A)A,(B) for commuting A and B;
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(viii) Ky Fan type inequality: A,((1 —a) A+ aB) > Ay (A)} A, (B)* for 0 <

a <1
We define the logarithmic mean of two positive numbers a, b by
In bilna if b ?é a,
L(a,b) :=
a if b= a.

In [4] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI < A < M1, where m, M are positive
numbers,

(1.1)  0< (Az,2) — A (A) < L (m, M) [mL(m,MH Minm—mhM

M—m

for all z € H, ||z| = 1.
We recall that Specht’s ratio is defined by [9]

_1
—r < if h € (0,1) U (L, 00),
eln (hﬁ>
(1.2) S (h):=
lifh=1.
It is well known that lim,—, S (h) =1, S(h) = S(3) > 1 for h > 0, h # 1. The
function is decreasing on (0, 1) and increasing on (1, 00) .
In [5], the authors obtained the following multiplicative reverse inequality as well
(Az, x) M
1.3 1< <S|—
- = a0 =
for0<mI<A<MIandz€H, |z| =1.

Motivated by the above results, in this paper we prove among others that, if
0<mlI<A<MIand z € H, ||z|| =1, then

mo_ (m ) [5+ 75 (|A- 25 I|z.2)]

M~ \M
- A4
d ( VM)
M [%+M m |A 7”+1WI|‘T m>] M
(%)
m m
2. MAIN RESULTS
Recall the identric mean
1 bb b—a
- (a) lf b 7é a
I;(a,b) := e \a ;a,b>0

a if b=a

It is easy to observe that connection between the integral mean of the logarithmic
function and the logarithm of the identric mean,

1 b
m/{l lntdtzln_[d (a7b)
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for a # b positive numbers.

Theorem 1. Assume that the operator A satisfies the condition 0 < mlI < A <
MI, where m, M are positive numbers, then

ot e 5(2 )

b ()

=

oo (%)
o3 (30

for all z € H, ||z|| = 1.
Also, we have

oo e L(2 )]

forallx € H, ||z|| = 1.

Proof. We use Ostrowski’s inequality [8]:
Let f : [a,b] — R be continuous on [a,b] and differentiable on (a,b) such that
[’ (a,b) — R is bounded on (a,b), i.e., || f'|l = sup [f'(s)| < oo, then
a,b)

se(

2
1 t — atb
< 4+< i ) £l b a),

for all ¢ € [a,b] and the constant 1 is the best possible.

b
(23) ‘f(t) i RACL
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If we take f (t) =1Int, t € [a,b] C (0,00) in (2.3) and observe that

_ 1
[f'lloo = sup t7! ==,
te(a,b] a

1 [t— o 1 7o
Int —In/, b < | = -—1
-yl < |+ (522 ) | (2-1),
for all ¢ € [a,b].

This inequality is equivalent to

2
1 t — atb b
2.4 —|= 2 - -1
24) 4+<b—a> (a >’
2
1 t— atb b
<Int—1In/, < | = 2 - —1
<Ilnt—1Inl;(a,b) < 4+(b—a> (a ),
for all ¢t € [a,b].

By utilizing the continuous functional calculus for selfadjoint operators, we get

from (2.4) that
2
(9 i 2]

<InA-1Inly(m,M)I

() [ G <A_m;MI>T’

which is equivalent to
1 1 M \?
—— (A—er I) z,x )|,
4 (M —m) 2

(2.5) - (]\nf - 1)

<{(lnAz,z) —Inl;(m, M)

< <JTZ1> i+(1\41m)2<<AmJ;MI>2:E,x>]

for all x € H, ||z|| = 1.
By taking the exponential in (2.5) we obtain

()bt (252 )

exp (In Az, z)
Id (m7 M)

()
<exp|——1
m

for all x € H, ||z|| = 1.

then we get
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2

<<A—m+MI> x,x>:HAa:—m+Ma:

2 2

1 1 m+M \? 1

[ I _ < Z
4+(M—m)2<(A 2 I) x7x>2

2
e (b (e m)

2 4 (M —m) 2

for all x € H, ||z|| = 1.
These prove the desired result (2.1).
If0<mlI <A< MI,then 0 < M~'] < A=' < m~'T and if we write the

Since

hence

and

inequality (2.1) for A=, we derive (2.2). |
Theorem 2. With the assumptions of Theorem 1, we have the inequalities
(2.6) m (m)[%+ﬁ<|‘4—szf|mvx>}
M M
A, (A)
Id (m, M)
A (a2 pines)]
- <
<m - m
and

\
>
8
=

M [%+m*1iM*1<’A_ Arl;nfll‘m’z>]
< <) <
m

forallx € H, ||z|| = 1.

Proof. In 1997, Dragomir and Wang proved the following Ostrowski type inequality

[1]:

Let f: [a,b] — R be an absolutely continuous function on [a, b], then

bia/abf(s)ds

for all ¢t € [a,b], where ||-||; is the Lebesgue norm on L, [a,b], i.e., we recall it

b
T / 19 ()] dt.
1

The constant 5 is best possible.
If we take f (¢t) =1Int, t € [a,b] C (0,00) in (2.8) and observe that

1 |t— ekt
By + ’1)2] ||f'||[a,b],1 )

(2.8) [ -

<
—a

||f/H[a,b],1 =Inb—Ina,
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then by (2.8) we get

1 1 a+b
_ < |= _ _
lnt —1InlIy(a,b)| < [2 +bfa t 5 H (Inb—1na),
for all t € [a,b].
This inequality is equivalent to
1 1 a+b
(2.9) - {2+ba t— 5 H (Inb—1na)
<Int—1Inl;(a,b)
1 1 a+b
< |= — —
[2+bat H(lnb Ina),

for all ¢t € [a,b].

By utilizing the continuous functional calculus for selfadjoint operators, we get
from (2.4) that

1 1 m+ M
—(lnM—lnm)[QI—i—M_m‘A— 5 IH
<InA-1Inly(m,M)I

1 1 m+ M
< — — —
<(lnM lnm){2I+M_m‘A 3 IH,

which is equivalent to
1 1 m+ M
—(lnM—lnm)[2+M_m<‘A— 5 I
<{lnAz,z) —Inl;(m, M)

)
)

«))
“))

1 1 M
< (InM —Inm) {2+M_m<‘,4—m; I

for all x € H, ||z|| = 1.
By taking the exponential, we derive
1 1 <‘A - m+M

exp((lannm) {2+M—m 5

1

exp (In Az, z)
Id (m, M)

§exp<(1nM—1nm) [1-1- ! <‘A—m—;MI

Also

M
<‘A—m_; 1 x,a:> <

for all x € H, ||z|| = 1.
These prove the desired result (2.6).
The inequality (2.7) follows by (2.6) applied for A~1. O
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Theorem 3. With the assumptions of Theorem 1, we have the inequalities

_m)Ve p—1 _ pyp—1 1/p
(2.10) exp (— (M ) (M ) )

(g+1)"" (p—1)"/" mV/abrt/a
A—mI\™ /M- AT e
() (i) o
< —exp
A—mIN™ 1 — aye]Ye
() (i) | e
(m
(M ml/q (MP=t — mpfl)l/p
><<
A—mI\ M- A\ Ha
(=) (i) |
< exp

(M — m)l/q (MP=1 — mp_l)l/p
< —exp
CM—mW%MVLwW*WP
>< <
A(4)
(g+1) 1/q )l/pml/qu/q
p <(M — )" (Mt — 1) T
((M —m)7 (M=t - mpl)l/p>

(q+ 1)V (p— 1) P mt/anat/e
><<
(q+ )Y (p—1)"P m/aM/a
Id , M)
A—mI q+1+ MI— A\ i
M —-m M —m n
+ DYy = DNYYP 1/ap1/a
(¢+1) " (p
><<
+ DY (p = DNYYP 1/ap1/a
(@+1)" (p—1)

Proof. In 1998, Dragomir and Wang proved the following Ostrowski type inequality
[2]:

Let f : [a,b] — R be an absolutely continuous function on [a, b]. If f' € L, [a,b],
then we have the inequality

b
(211) Pw—bim/f®ﬁ
1/q

1 t—a\"" b\ 1
< b— ay £
< |78 G T] oo
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for all ¢t € [a,b], where p > 1,% + % =1 and [|||(, 4, is the p-Lebesgue norm on
L, [a,b], i.e., we recall it

b 1/1”
nmmﬂm::</|wadQ .

If we take f (t) =Int, t € [a,b] C (0,00) in (2.11) and observe that

b 1/p _ _ 1/p
p—ptl _ g—pt+1
! = t~Pdt = ()
||f ||[a,b],p (/a ) 1 —p

_ bp171 - ap{1 l/p . bpil — apil p
Bl 1—p - 1) artort

(bpfl _ apfl)l/p (bpfl _ apfl)l/p

(p— V)P al=1rpl=t/p  (p—1)"/P ql/apt/a’
then we get

(2.12) Int —1nl,(a,bd)|

< (q+ 1)1/<11(p— 1)L/P [(Z—Z)ﬁl ’ <Z_Z>q+1]

(- a)l/q (b1 — ap_l)l/p

1/q

x al/1pi/a
< 1 (b—a)/1 (bp1 —ap’l)l/p
- (q+1)1/q (p— 1)1/p allapl/q

for t € [a,b], since

t—a q+1 b_t q+1
<1
(=a) (=)
for ¢t € [a,b].

This implies as above

1 A—mI\T - Ay
(g+ )Y (p—1)'/P (M—m> +(M—m>
(M — m)M® (Mp=1t — 1)/

mt/ap1l/a
<lnA-1Inl;(a,b)I

X

1/q
1

_ A—mI q+1+ MI — A\
T @Y -t [\ M =m M=m
(M —m)"/1 (MP—1 — m”’l)l/p

ml/ap1/a ’

X
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namely

(M —m)"? (M=t — pp=1)*/?
a+ 1" (p— )P mlans/e

(
A—mI\ mr— A\
(G=) ()
< (lnAz,z) —Inl;(a,b)

)
(M —m)"/® (M=t — p=1) /7
DY (p— 1)/ ml/apg1/a

A—mI\™ M- A\ v
M—-m M—-m ne
for all x € H, ||z|| = 1.

By Jensen’s inequality for concave functions, we also have that
A—mI\™ ar - ayT]
Grw) +Gr=e) | =
A—mI\™ rur—ayt o\
< PR
() +(Gin) -
for all x € H, ||z|| = 1 and also
A—mI\™ - ayt o\
() +Grn) =) =

for all x € H, ||z|| = 1.
Now, by taking the exponential and making use of a similar argument as above,
we derive the desired result (2.10). O

1/q
x,x>

=
+

Corollary 1. With the assumption of Theorem 1 we have

(2.13) exp (— M37;]\”;>

3 3 1/2
< M—-—m A—mli n MI—- A
o | —
=P 3mM M—m M—m) | ™"
1/3
_ M—m A—mI 3+ - aN*Y
< exp T - - T, T
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CAL(4)
<
_Id(va
1/2
e M—m A—mlI 3+ M1 — AN
- \/W M —m M—m e
1
o [M=m A—ml 3+ MI— A\® Ja
= o 3mM M-m M—-m o
(M m
<e
3ImM

forallx € H, ||z|| = 1.
Remark 1. If we apply the inequality (2.10) for A=1, then we get
(mfl o M*l)l/q (mlfp o lep)l/p
(2.14) exp | —
(a+1)"" (p = DY M=V am=/a
(mfl _ M*l)l/q (mlfp _ lep) 1/p
o (q+ )Y (p— 1)/ M=1/am=1/a
>< <

A-1 -1\ 9tt m-17 — A-1\ 9! 1/q
() (i) |
(m—l _ M—l)l/q (ml—p _ Ml—p) 1/p
- (a+ 1) (p = )P M- a
>< <

AT N ety gy ]
mfl 7M71 + m*l 7M71 €T,
(mfl _ M*l)l/q (mlfp _ lep)l/p
< exp
(q+ 1)1/q (p— 1)1/p M-1am—1/q
A M\ et — A
(|Geim) Gesm) | e

B e T e G Vi
< exp

(a+1)"" (p = DY M= am=1/a
X <

AT M\ i - Am T i
(i) () e
(m—l _ M—l)l/q (ml—p _ Ml—p)l/p
< exp 1/q 1/p ar—1 —1
(¢+1)7 " (p—1)"P M-Yam=1/4
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for all xz € H, ||z|| = 1.
3. RELATED RESULTS
The following results of Ostrowski type holds, see [3]:

Lemma 1. Let f : [a,b] C R — R be a convex function on [a,b]. Then for any
t € [a,b] one has the inequality

1) L[t 10 - (- 1 )
b
<[ feds-0-a10
<gle-0?r0)-- 0 £ @)].

The constant % is sharp in both inequalities. The second inequality also holds for
t=aort=0.

If the function is differentiable in ¢ € (a,b) then the first inequality in (3.1)
becomes

(32) (C“;b—t)f'u)sbla/:ﬂs)ds—f(t).

We also have:

Theorem 4. Assume that the operator A satisfies the condition 0 < mI < A <
MI, where m, M are positive numbers, then

(3.3) exp (1 _miM <A1x,x>)

1 1
< exp <m | Az — mal|* — i |Mz— Ax||2>

and
m~t 4+ M1
(3.4) exp (1 T — (Az, x))
_ a0
- Az (A)

forallx € H, ||z|]| = 1.

Proof. Writing (3.1) and (3.2) for the convex function f (t) = —Int, then we get

_a+b (t—a)’® (b—t)°

120
a b

t7' <Int—1Inly(a,b) <

for all t € [a,b] C (0,00).
If we use the functional calculus, we get
(A—mI)> (MI—A)?

ATV <InA—1Inly(m, M) < - - 7 ,

1

m+ M
2
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which is equivalent to

m+M ,

< (InAz,z) —Inl; (m, M)

1 2 1 2
< %<(Afmf) w,x> - M<(M17A) a:,x>
e el — M — Al
= |[Az — max|| 7 |[Mz — Az||

for all x € H, ||z|| = 1.
If we take the exponential, then we get

exp (1 _m+ M <A_1x,x>>

1 1
< exp (m | Az — ma|* — o7 1Mz~ Ax||2)

for all x € H, ||z|| = 1.
The inequality (3.4) follows by (3.1) applied for A~1. O
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