INEQUALITIES FOR THE NORMALIZED DETERMINANT OF
POSITIVE OPERATORS IN HILBERT SPACES VIA TWO
VARIABLES LOG INEQUALITIES

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. For positive invertible operators A on a Hilbert space H and a
fixed unit vector « € H, define the normalized determinant by Ag(A) :=
exp (In Az, z). In this paper we prove among others that

oxp (g (14l - <A:c,x>2)) <=
(% | Az|? - (Az, z) ))

1 Ag(A)
exp (2M2 (1l - <Az,m)2)) S (e )

< oxp (ﬁ (I1Az|> - (Aa:7x>2>)

for 0 <mlI <A< MI and z € H with |[z|| = 1.

1. INTRODUCTION

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A > 0) if (Az,z) > 0 for all x € H. In particular, A > 0
means that A is positive and invertible. For a pair A, B of selfadjoint operators
the order relation A > B means as usual that A — B is positive.

In 1998, Fujii et al. [5], [6], introduced the normalized determinant A, (A) for
positive invertible operators A on a Hilbert space H and a fixed unit vector x € H,
namely ||z| = 1, defined by A, (A) := exp (ln Az, z) and discussed it as a continuous
geometric mean and observed some inequalities around the determinant from this
point of view.

Some of the fundamental properties of normalized determinant are as follows,
[5].

For each unit vector x € H, see also [8], we have:

(i) continuity: the map A — A,(A) is norm continuous;
(ii) bounds: <A_1m,x>_1 < AL(A) < Az, z);
(ifi) continuous mean: (APz,x)"P | Ay(A) for p | 0 and (APz,2)'/" 1 A,(A)
for p T 0;
(iv) power equality: A, (AY) = A (A)! for all t > 0;
(v) homogeneity: A, (tA) =tA(A) and A, (tT) =t for all t > 0;
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(vi) monotonicity: 0 < A < B implies A,(A) < A, (B);
(vil) multiplicativity: A, (AB) = A, (A)A,(B) for commuting A and B;
(viil) Ky Fan type inequality: A((1 —a) A+ aB) > AL (A)17*A,(B)® for 0 <
a <1

We define the logarithmic mean of two positive numbers a, b by

lnll;:?na if b 7& a,
L(a,b):=
aif b= a.

In [5] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI < A < M I, where m, M are positive
numbers,

MInm—mlnM

1
M—-—m

(1.1) 0< (Az,z) — AL(A) < L(m,M) {lnL(m,M) +

for all x € H, ||z|| = 1.
We recall that Specht’s ratio is defined by [9]

1
— ke _ifh e (0,1)U(1,00),
eln(hﬁ>

lifh=1.

(1.2) S (h):=

It is well known that lim,; S (h) =1, S(h) = S(3) > 1 for h > 0, h # 1. The
function is decreasing on (0, 1) and increasing on (1, 00).
In [6], the authors obtained the following multiplicative reverse inequality as well

(Az, x) M
1. 1< < —
(13) — AL(4) <5 m
for0O<mI<A<MIandzeH,|z|=1.

Motivated by the above results, in this paper we prove among others that

exp (2]\142 (= (A:c,x>2)> < m

< oxp (2;2 (114z)> - <Ax,x>2>)

and

1 2 2 A, (A)
P <2M2 (||Aac|| ~ o) >) = (Ax, ) exp ((Ax,x>_1 — (A—lx,x))

1 2 2
< R —
< exp <2m2 (||Aa:\| (Azx, x) ))
for 0 <ml <A< MI and x € H with ||z]| = 1.

2. MAIN RESULTS

We have the following inequalities for logarithm:
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Lemma 1. For any a, b > 0 we have

2.1) 1 17min{a,b} 2:} (b—a)*
2 max {a, b} 2 max? {a, b}
§b_aflnb+lna
a
-1 (b—a)’ _1<max{a,b}_1>2
~ 2min®{a,b} 2 \ min{a,b} '
Proof. Observe that
b b b
b—t 9 1 b—a
(2.2) /a e dt:b/at dt—/a fdt: o —Inb+1Ina
for any a, b > 0.
If b > a, then
1(b—a) bh—t 1(b—a)’
. — > > — .
(2:3) 2 a2 —/a 2z M2y
If a > b then
b a a
b—t b—t t—b
A A
and
(2.4) L(b—a) >/at_bdt>1(b_a)2
' 27 ), &2 T2 ez

Therefore, by (2.3) and (2.4) we have for any a, b > 0 that

/bb—tdt> 1 (b—a® _1(min{ab} )’
o 12 ~ 2max? {a,b} 2 \max{a,b}
and
/bbtdtg 1 (.b;a)2 _1 mz'mx{a,b} 1 2.
o t 2min® {a,b} 2 \ min{a,b}
By the representation (2.2) we then get the desired result (2.1). O

When some bounds for a, b are provided, then we have:

Corollary 1. Assume that a, b € [m, M] C (0,00), then we have the local bounds

1(b—a)? b-a 1(b—a)
. = < — < =
(2.5) 5 S, lnb+lna_2 3
and
(2.6) LN Ut P PO Ui
‘ 2" Mz = Ty S w2

The first main result is as follows:
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Theorem 1. Assume that the operator A satisfies the condition 0 < mI < A <
MI, where m, M are positive numbers, then for a € [m, M] we have

aexp [(Aw,m)—a:|
2.7) (1 <)exp [ —— Az - az|?) < —— L= 1
(2. = e STTAG

1
< exp <2m2 |Az — ax||2)

and
(2.8) (1 <)exp (2]\142 |Az — am||2> < A:(4)

aexp(a™t — (A~1z, x))

1 2
S exp (277’),2 ||Ax — am” )
for all z € H, ||z|| = 1.

Proof. By utilizing the continuous functional calculus for selfadjoint operators, we
have by (2.5) that

1(A—al)?®  A—al
SRV < . —InA+Inal <
for all a € [m, M].
For z € H, ||z|| = 1 we then have

1(A—al)’
2 m?

1 2 (Az,z) — a
m<(A—aI) x,x>§Tf(1nAx,x>+lna
1
< P <(AfaI)2 :/:,x>,
namely
1 2 _ (Az,z)—a
— ||Az — <—< — —(nA 1
e |Az — az||” < . (InAz,z) +1na
1
< 5 1Az —az|,

forx € H, ||z|| = 1.
If we take the exponential, then we get

1 2 (Az,z) —a
. - < MHE 2 -
(2.9) exp (2M2 |Az — az|| ) < exp [ , +1Ina— (In Az, z)
1
< exp (2m ||Az — ax||2> ,
forx € H, ||z|| = 1.
Now, observe that
(Az,z)—a
(Az,z) —a aexp [T}
2.10 —— +lna—(InA =
(2.10) P [ a +ina—(InAz,z) exp ((In Az, z))

and by (2.9) we derive (2.7).
From (2.23) we get
1(A—a)?

2

< - — (A - -1<
531 <InmA-Ina—(A—a)A™ <
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namely
1
SVel |Az —az|®* < (nAz,z)—Ina—1+ a (A 3, )
1 2
- ﬁ ||A$ - G/J,'H )

for x € H, ||z|]| = 1.
By taking the exponential, we get

1
(2.11) exp (2M2 | Az — ax||2) <exp [(InAz,z) —Ina—1+a(A 'z, z)]

1 2
< exp (27712 |Az — az|] ) ,

for x € H, ||z|]| = 1.
Observe that

exp [(InAz,z) —Ina— 1+ a (A 'z, z)]

= exp Rln Az,z) —lna —a (a_l — <A_1x,x>)]
exp (ln Az, z)

" aexp (a1t = (A~ 1z, z))
and by (2.11) we get (2.8). O
The following particular case is of interest:

Corollary 2. Assume that the operator A satisfies the condition 0 < ml < A <
M1, where m, M are positive numbers, then

(2.12) (1<) exp (2]\142 (HAx||2 - <Ax,ac>2>)
_ (Aaa)
— AL(A4)
< exp (2;2 (e <Ax,x>2)>
and
(2.13) (1 exp (373 (14l - (A0, )

Ay (4)
(Az, ) exp ((Ax,x>_1 — (A 1z, x))

1 2 2
< = _
< exp (2m2 (||Aa:|| (Azx, x) ))
forallx € H, ||z|| = 1.

<

Proof. If we take a = (Az,z) € [m,M], z € H, |z|| =1 in (2.7), then we get

1 Az, x 1
exp (W Az - <Az,z>z||2> < <A(A>> < exp (2m |4z - <Ax,z>x||2) .
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Observe that
|Az — (A, z) z|®

|Az|[* — 2Re (Az, (Az,z) @) + || (Az, z) 2|
|Az|* — 2 |(Az, 2)|* + |( Az, 2) |”
= | Az|® - (Az,2)’

for x € H, ||z|| = 1 and the inequality (2.12) is obtained.
The inequality (2.13) follows by (2.8). O

Remark 1. If we use the inequality, see for instance [7, p. 27)
(M +m)*

Az|* = (A%, 2) < Az, z)”
Jdz|? = (A%,2) < LEID (4, o
for0<mI < A< MI, where m, M are positive numbers and x € H, ||z|| = 1, then
2
2 2_ (M—m) 2
_ < M7 T
|Az||” — (Az,x)" < Y (Az, x)

and by Corollary 2 we derive

(Az, x) (M —m)® 2
(2.14) mf < SmS M <A],‘,33>>
and
(2.15) Az (4)

(M — m)2 2)
<exp | ~——=—— (4z,x)
(Az, ) exp (<Ax,x>_1 _ (A_lx,x>) p < Sm3M

forxz e H, ||z| = 1.
Also, by using the inequality

| Az]® — (A, 2)* < (M —m)?
for x € H, ||z|| = 1, then by Corollary 2 we derive
(Az, x) 1 (M 2
. < Z (= -
(2.16) AL(A) S exp | o 1

and

Az (4) 1 (M ?
(247 (Az, z) exp ((Am,x)fl - (A*%,x)) =P (8 (m - 1) )

forz e H, ||z| = 1.

Corollary 3. With the assumptions of Theorem 1 we have

(2.18)  (1<)exp (21\142 <|Ax||2 — (Az,2)* + ((Az,2) <A_1m,x>1)2>)

- <A71z,x>71 exp [(Az,z> <A71x,x> - 1]
- Az (A)

<o gz (Isl = (4,2 + ((40.2) — (a7%0.2) ")) )
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and
(2.19) (1 <)exp (21\142 <|Ax||2 — (Az,z)? + (<Az,a:> - <A1x,x>—1>2>)
_Ba(4)
- <A—13:,J:>_1

1 2 2 1 1\ 2
< exp (W (||Ax|| — (Az,2)* + ((Az,2) - (A7 'w,2) )
forx e H, ||z|| = 1.
Proof. Tt follows by Theorem 1 on taking a = <A*1m, x>71

HAJZ - <A71$,:p>_1 IH2 = ||Az|]* — 2Re <Aa:, <A71z,z>_1 1:> + <A71z,x>_2
— || Az|® = 2(A e, 2) " (Az, @) + (A, 2)

= ||Az|?® — (Az,z)* + ((Ax,x> - <A’1m7:c>_1>2 :

Corollary 4. With the assumptions of Theorem 1 and if m <1< M

1 2 exp [(Az, x) — 1] 1 2
and

1 2 AL (A) 1 2

2.21 — || Az — < < — || Az —
e21) e (g Mo o1”) < o 2y <o (4
forallxz € H, ||z|| = 1.
Proof. 1t follows by Theorem 1 for a = 1.

Corollary 5. With the assumptions of Theorem 1 we have

1 m+M |
(2.22) (1 <)exp <2M2 Az — 5 % >
M oxp | L) 1]
< 2
: A.(4)
1 m+ 2 1 (M 2
< — - < (=
< exp <2m2 Ax 5% ) exp (8 (m 1) )
and
1 m+M |
(2.23) (1 <)exp <2M2 Az 5 % >
Ay (A)

2
1
SeXp (W A

for allz € H, ||z|| = 1.
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3. RELATED RESULTS
We also have:

Lemma 2. For any a, b > 0 we have

2
(3.1) 092 bt ma< =9
and

2
(3.2) (0<)nb—Ina— =% < 09"

b ab
Proof. If b > a, then

b b 2
b—t 1 b—a (b—a)
< (b— —dt=(b— - .
/a 5—dt < (b—a) /a 2 dt =(b—a) s

t ab
If @ > b, then

b a a 2
b—t t—b 1 a—b (b—a)
dt = dt <(a—0 —dt=(a—b = .
/a 2 /b g dt=(a=?) /b pdt=la=b =0 ab

Therefore,
b 2
b—t (b—a)
dt <
/a 12 - ab
for any a, b > 0 and by the representation (2.2) we get the desired result (3.1). O

Theorem 2. For A > 0 and a > 0 we have the inequalities

aex (Az,z)—a .
(3.3) (1<) pA{x(A[;} < exp (W +a(A 'z, 2) - 2)
and
AL (A) (Az, ) .
(3.4) (1<) aoxp (-t — (ATz.2)) < exp (a +a{A z,z) — 2>

forallz € H, ||z|| = 1.

Proof. Using the continuous functional calculus for selfadjoint operators and the
inequality (3.1) we get

A—al A
(0<) a4 —InA+Inal < =+4aA"! -2,
a
which is equivalent to
A A
Y23 ) o awa) +ma < B0 4o (4t 2 o

for all x € H, ||z|| = 1.
If we take the exponential, then we get

exp <<Am,x> —1—(lnAz,z) + 1na> < exp <<Ax,x> + a<A’1x,x> - 2) )
a a

for all x € H, ||z|| = 1.
By utilizing the equality (2.10) we then obtain the desired result (3.3).
The inequality (3.4) follows by (3.2) in a similar way. O
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Corollary 6. For A > 0 we have
(Az, )

(3.5) (1<) AL (A) <exp ((Az,z) (A7 'z, 2) — 1)
and
(3.6) (1<) A (4) <exp ((Az,z) (A" 'z, z) — 1)

(Az, z) exp <<Aw,x)71 - <A*1x,x>)
for all x € H, ||z|| = 1.
The proof follows by Theorem 2 for a = (Az,z), x € H, ||z| = 1.

Corollary 7. For A > 0 we have

Az (A)
(A=1g, z)"

(3.7) (1<) <exp ((Az,z) (A7 'z, z) — 1)

forallx € H, ||z|| = 1.

The proof follows by Theorem 2 for a = <A’1x,x>71 ,x € H, |z| =1.

Remark 2. If we use Kantorovich inequality, see for instance [T, p. 24] that holds
for an operator A that satisfies the condition 0 < mI < A < M1, where m, M are
positive numbers,

_ (M +m)*
(Az,z) (A 'z, 2) < TS
then by Corollaries 6 and 7 we derive
(A, z) (M —m)?
(3.8) (1 S) m < exp <4WL]\4> )
AL (A) ((M - m)2>
(3.9) (1<) <exp | ——~
(Az, z) exp ((Ax,a:>_1 — (A~ la, a:)) AmM
and
As(A) (M —m)*
(3.10) (1<) W < exp <4m]\4>

forz e H, ||z| = 1.
If we use the additive inequality, see for instance [7, p. 28]

<A71x,x> — (Ax,x>71 < W

2
which implies by multiplying with (Az,z) > 0 that

<A_1$7$><A$,$>—1<(\/M]w_\/’,71)<A"L‘7w><< M_1> ,

m
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then by Corollaries 6 and 7 we obtain

(Az,z M (Az, z)

(3.11) (1<) AA) < exp e
2
S €xp \/Z -1 ’
(3.12) (1<) Ba(4)

(Az, ) exp ((Aw,x)fl — (A2, z)

)
(\/M_\/ﬁ)ulx?@ <exp( %_1 2

<
= %P Mm m
and
2
(3.13) (1<)—2aA) (7 — vim) (Az, z)
. ——— <ex T, T
(AT T P Mm
2
M
< exp — -1
m

forz e H, ||z| = 1.

Corollary 8. For A > 0 we have the inequalities
exp [(Az, z) — 1]

(3.14) 0950

< exp ((Ax,x) + <A_1x,a:> - 2)

and

Ay (A)
exp (1 — (A~ 1x, x))
for all z € H, ||z|| = 1.

(3.15) (1<) <exp ((Az,z) + (A 'z, 2) — 2)

The proof follows by Theorem 2 for a = 1.
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