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Abstract. For positive invertible operators A on a Hilbert space H and a
�xed unit vector x 2 H; de�ne the normalized determinant by �x(A) :=
exp hlnAx; xi. In this paper we prove among others that

exp
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�
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�x(A)

� exp
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�
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��
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exp

�
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�
kAxk2 � hAx; xi2
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� �x(A)

hAx; xi exp
�
hAx; xi�1 � hA�1x; xi

�
� exp

�
1

2m2

�
kAxk2 � hAx; xi2

��
for 0 < mI � A �MI and x 2 H with kxk = 1:

1. Introduction

Let B(H) be the space of all bounded linear operators on a Hilbert space H,
and I stands for the identity operator on H. An operator A in B(H) is said to
be positive (in symbol: A � 0) if hAx; xi � 0 for all x 2 H. In particular, A > 0
means that A is positive and invertible. For a pair A; B of selfadjoint operators
the order relation A � B means as usual that A�B is positive.
In 1998, Fujii et al. [5], [6], introduced the normalized determinant �x(A) for

positive invertible operators A on a Hilbert space H and a �xed unit vector x 2 H;
namely kxk = 1; de�ned by�x(A) := exp hlnAx; xi and discussed it as a continuous
geometric mean and observed some inequalities around the determinant from this
point of view.
Some of the fundamental properties of normalized determinant are as follows,

[5].
For each unit vector x 2 H; see also [8], we have:
(i) continuity : the map A! �x(A) is norm continuous;
(ii) bounds:



A�1x; x

��1 � �x(A) � hAx; xi;
(iii) continuous mean: hApx; xi1=p # �x(A) for p # 0 and hApx; xi1=p " �x(A)

for p " 0;
(iv) power equality: �x(At) = �x(A)t for all t > 0;
(v) homogeneity : �x(tA) = t�x(A) and �x(tI) = t for all t > 0;
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(vi) monotonicity : 0 < A � B implies �x(A) � �x(B);
(vii) multiplicativity : �x(AB) = �x(A)�x(B) for commuting A and B;
(viii) Ky Fan type inequality : �x((1� �)A + �B) � �x(A)1���x(B)� for 0 <

� < 1.

We de�ne the logarithmic mean of two positive numbers a; b by

L (a; b) :=

8<:
b�a

ln b�ln a if b 6= a;

a if b = a:

In [5] the authors obtained the following additive reverse inequality for the op-
erator A which satisfy the condition 0 < mI � A � MI; where m;M are positive
numbers,

(1.1) 0 � hAx; xi ��x(A) � L (m;M)
�
lnL (m;M) +

M lnm�m lnM
M �m � 1

�
for all x 2 H; kxk = 1:
We recall that Specht�s ratio is de�ned by [9]

(1.2) S (h) :=

8>><>>:
h

1
h�1

e ln

�
h

1
h�1

� if h 2 (0; 1) [ (1;1) ;

1 if h = 1:

It is well known that limh!1 S (h) = 1; S (h) = S
�
1
h

�
> 1 for h > 0; h 6= 1. The

function is decreasing on (0; 1) and increasing on (1;1) :
In [6], the authors obtained the following multiplicative reverse inequality as well

(1.3) 1 � hAx; xi
�x(A)

� S
�
M

m

�
for 0 < mI � A �MI and x 2 H; kxk = 1:
Motivated by the above results, in this paper we prove among others that
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�x(A)
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1

2m2

�
kAxk2 � hAx; xi2

��
and

exp

�
1

2M2

�
kAxk2 � hAx; xi2

��
� �x(A)

hAx; xi exp
�
hAx; xi�1 � hA�1x; xi

�
� exp

�
1

2m2

�
kAxk2 � hAx; xi2

��
for 0 < mI � A �MI and x 2 H with kxk = 1:

2. Main Results

We have the following inequalities for logarithm:
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Lemma 1. For any a; b > 0 we have

1

2

�
1� min fa; bg

max fa; bg

�2
=
1

2

(b� a)2

max2 fa; bg(2.1)

� b� a
a

� ln b+ ln a

� 1

2

(b� a)2

min2 fa; bg
=
1

2

�
max fa; bg
min fa; bg � 1

�2
:

Proof. Observe that

(2.2)
Z b

a

b� t
t2

dt = b

Z b

a

t�2dt�
Z b

a

1

t
dt =

b� a
a

� ln b+ ln a

for any a; b > 0:
If b > a; then

(2.3)
1

2

(b� a)2

a2
�
Z b

a

b� t
t2

dt � 1

2

(b� a)2

b2
:

If a > b then Z b

a

b� t
t2

dt = �
Z a

b

b� t
t2

dt =

Z a

b

t� b
t2

dt

and

(2.4)
1

2

(b� a)2

b2
�
Z a

b

t� b
t2

dt � 1

2

(b� a)2

a2
:

Therefore, by (2.3) and (2.4) we have for any a; b > 0 thatZ b

a

b� t
t2

dt � 1

2

(b� a)2

max2 fa; bg =
1

2

�
min fa; bg
max fa; bg � 1

�2
and Z b

a

b� t
t2

dt � 1

2

(b� a)2

min2 fa; bg
=
1

2

�
max fa; bg
min fa; bg � 1

�2
:

By the representation (2.2) we then get the desired result (2.1). �

When some bounds for a; b are provided, then we have:

Corollary 1. Assume that a; b 2 [m;M ] � (0;1), then we have the local bounds

(2.5)
1

2

(b� a)2

M2
� b� a

a
� ln b+ ln a � 1

2

(b� a)2

m2

and

(2.6)
1

2

(b� a)2

M2
� ln b� ln a� b� a

b
� 1

2

(b� a)2

m2
:

The �rst main result is as follows:
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Theorem 1. Assume that the operator A satis�es the condition 0 < mI � A �
MI; where m;M are positive numbers, then for a 2 [m;M ] we have

(1 �) exp
�

1

2M2
kAx� axk2

�
�
a exp

h
hAx;xi�a

a

i
�x(A)

(2.7)

� exp
�

1

2m2
kAx� axk2

�
and

(1 �) exp
�

1

2M2
kAx� axk2

�
� �x(A)

a exp (a�1 � hA�1x; xi)(2.8)

� exp
�

1

2m2
kAx� axk2

�
for all x 2 H; kxk = 1:

Proof. By utilizing the continuous functional calculus for selfadjoint operators, we
have by (2.5) that

1

2

(A� aI)2

M2
� A� aI

a
� lnA+ ln aI � 1

2

(A� aI)2

m2

for all a 2 [m;M ] :
For x 2 H; kxk = 1 we then have

1

2M2

D
(A� aI)2 x; x

E
� hAx; xi � a

a
� hlnAx; xi+ ln a

� 1

2m2

D
(A� aI)2 x; x

E
;

namely

1

2M2
kAx� axk2 � hAx; xi � a

a
� hlnAx; xi+ ln a

� 1

2m2
kAx� axk2 ;

for x 2 H; kxk = 1:
If we take the exponential, then we get

exp

�
1

2M2
kAx� axk2

�
� exp

�
hAx; xi � a

a
+ ln a� hlnAx; xi

�
(2.9)

� exp
�

1

2m2
kAx� axk2

�
;

for x 2 H; kxk = 1:
Now, observe that

(2.10) exp

�
hAx; xi � a

a
+ ln a� hlnAx; xi

�
=
a exp

h
hAx;xi�a

a

i
exp (hlnAx; xi)

and by (2.9) we derive (2.7).
From (2.23) we get

1

2

(A� a)2

M2
� lnA� ln a� (A� a)A�1 � 1

2

(A� aI)2

m2
;
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namely

1

2M2
kAx� axk2 � hlnAx; xi � ln a� 1 + a



A�1x; x

�
� 1

2m2
kAx� axk2 ;

for x 2 H; kxk = 1:
By taking the exponential, we get

exp

�
1

2M2
kAx� axk2

�
� exp

�
hlnAx; xi � ln a� 1 + a



A�1x; x

��
(2.11)

� exp
�

1

2m2
kAx� axk2

�
;

for x 2 H; kxk = 1:
Observe that

exp
�
hlnAx; xi � ln a� 1 + a



A�1x; x

��
= exp

�
hlnAx; xi � ln a� a

�
a�1 �



A�1x; x

���
=

exp hlnAx; xi
a exp (a�1 � hA�1x; xi)

and by (2.11) we get (2.8). �

The following particular case is of interest:

Corollary 2. Assume that the operator A satis�es the condition 0 < mI � A �
MI; where m;M are positive numbers, then

(1 �) exp
�

1

2M2

�
kAxk2 � hAx; xi2

��
(2.12)

� hAx; xi
�x(A)

� exp
�

1

2m2

�
kAxk2 � hAx; xi2

��
and

(1 �) exp
�

1

2M2

�
kAxk2 � hAx; xi2

��
(2.13)

� �x(A)

hAx; xi exp
�
hAx; xi�1 � hA�1x; xi

�
� exp

�
1

2m2

�
kAxk2 � hAx; xi2

��
for all x 2 H; kxk = 1:

Proof. If we take a = hAx; xi 2 [m;M ] ; x 2 H; kxk = 1 in (2.7), then we get

exp

�
1

2M2
kAx� hAx; xixk2

�
� hAx; xi
�x(A)

� exp
�

1

2m2
kAx� hAx; xixk2

�
:
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Observe that

kAx� hAx; xixk2 = kAxk2 � 2Re hAx; hAx; xixi+ khAx; xixk2

= kAxk2 � 2 jhAx; xij2 + jhAx; xij2

= kAxk2 � hAx; xi2

for x 2 H; kxk = 1 and the inequality (2.12) is obtained.
The inequality (2.13) follows by (2.8). �

Remark 1. If we use the inequality, see for instance [7, p. 27]

kAxk2 =


A2x; x

�
� (M +m)

2

4mM
hAx; xi2

for 0 < mI � A �MI; where m;M are positive numbers and x 2 H; kxk = 1; then

kAxk2 � hAx; xi2 � (M �m)2

4mM
hAx; xi2

and by Corollary 2 we derive

(2.14)
hAx; xi
�x(A)

� exp
 
(M �m)2

8m3M
hAx; xi2

!
and

(2.15)
�x(A)

hAx; xi exp
�
hAx; xi�1 � hA�1x; xi

� � exp (M �m)2

8m3M
hAx; xi2

!

for x 2 H; kxk = 1:
Also, by using the inequality

kAxk2 � hAx; xi2 � 1

4
(M �m)2

for x 2 H; kxk = 1; then by Corollary 2 we derive

(2.16)
hAx; xi
�x(A)

� exp
 
1

8

�
M

m
� 1
�2!

and

(2.17)
�x(A)

hAx; xi exp
�
hAx; xi�1 � hA�1x; xi

� � exp 1
8

�
M

m
� 1
�2!

for x 2 H; kxk = 1:

Corollary 3. With the assumptions of Theorem 1 we have

(1 �) exp
�

1

2M2

�
kAxk2 � hAx; xi2 +

�
hAx; xi �



A�1x; x

��1�2��
(2.18)

�


A�1x; x

��1
exp

�
hAx; xi



A�1x; x

�
� 1
�

�x(A)

� exp
�

1

2m2

�
kAxk2 � hAx; xi2 +

�
hAx; xi �



A�1x; x

��1�2��
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and

(1 �) exp
�

1

2M2

�
kAxk2 � hAx; xi2 +

�
hAx; xi �



A�1x; x

��1�2��
(2.19)

� �x(A)

hA�1x; xi�1

� exp
�

1

2m2

�
kAxk2 � hAx; xi2 +

�
hAx; xi �



A�1x; x

��1�2��
for x 2 H; kxk = 1:

Proof. It follows by Theorem 1 on taking a =


A�1x; x

��1Ax� 
A�1x; x��1 x2 = kAxk2 � 2ReDAx; 
A�1x; x��1 xE+ 
A�1x; x��2
= kAxk2 � 2



A�1x; x

��1 hAx; xi+ 
A�1x; x��2
= kAxk2 � hAx; xi2 +

�
hAx; xi �



A�1x; x

��1�2
:

�
Corollary 4. With the assumptions of Theorem 1 and if m � 1 �M

(2.20) exp

�
1

2M2
kAx� xk2

�
� exp [hAx; xi � 1]

�x(A)
� exp

�
1

2m2
kAx� xk2

�
and

(2.21) exp

�
1

2M2
kAx� xk2

�
� �x(A)

exp (1� hA�1x; xi) � exp
�

1

2m2
kAx� xk2

�
for all x 2 H; kxk = 1:
Proof. It follows by Theorem 1 for a = 1: �
Corollary 5. With the assumptions of Theorem 1 we have

(1 �) exp
 

1

2M2

Ax� m+M2 x

2
!

(2.22)

�
m+M
2 exp

h
hAx;xi
m+M
2

� 1
i

�x(A)

� exp
 

1

2m2

Ax� m+M2 x

2
!
� exp

 
1

8

�
M

m
� 1
�2!

and

(1 �) exp
 

1

2M2

Ax� m+M2 x

2
!

(2.23)

� �x(A)

m+M
2 exp

��
m+M
2

��1 � hA�1x; xi�
� exp

 
1

2m2

Ax� m+M2 x

2
!
� exp

 
1

8

�
M

m
� 1
�2!

for all x 2 H; kxk = 1:
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3. Related Results

We also have:

Lemma 2. For any a; b > 0 we have

(3.1) (0 �) b� a
a

� ln b+ ln a � (b� a)2

ab

and

(3.2) (0 �) ln b� ln a� b� a
b

� (b� a)2

ab
:

Proof. If b > a; thenZ b

a

b� t
t2

dt � (b� a)
Z b

a

1

t2
dt = (b� a) b� a

ab
=
(b� a)2

ab
:

If a > b; thenZ b

a

b� t
t2

dt =

Z a

b

t� b
t2

dt � (a� b)
Z a

b

1

t2
dt = (a� b) a� b

ab
=
(b� a)2

ab
:

Therefore, Z b

a

b� t
t2

dt � (b� a)2

ab

for any a; b > 0 and by the representation (2.2) we get the desired result (3.1). �

Theorem 2. For A > 0 and a > 0 we have the inequalities

(3.3) (1 �)
a exp

h
hAx;xi�a

a

i
�x(A)

� exp
�
hAx; xi
a

+ a


A�1x; x

�
� 2
�

and

(3.4) (1 �) �x(A)

a exp (a�1 � hA�1x; xi) � exp
�
hAx; xi
a

+ a


A�1x; x

�
� 2
�

for all x 2 H; kxk = 1:

Proof. Using the continuous functional calculus for selfadjoint operators and the
inequality (3.1) we get

(0 �) A� aI
a

� lnA+ ln aI � A

a
+ aA�1 � 2;

which is equivalent to

hAx; xi
a

� 1� hlnAx; xi+ ln a � hAx; xi
a

+ a


A�1x; x

�
� 2

for all x 2 H; kxk = 1:
If we take the exponential, then we get

exp

�
hAx; xi
a

� 1� hlnAx; xi+ ln a
�
� exp

�
hAx; xi
a

+ a


A�1x; x

�
� 2
�
;

for all x 2 H; kxk = 1:
By utilizing the equality (2.10) we then obtain the desired result (3.3).
The inequality (3.4) follows by (3.2) in a similar way. �
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Corollary 6. For A > 0 we have

(3.5) (1 �) hAx; xi
�x(A)

� exp
�
hAx; xi



A�1x; x

�
� 1
�

and

(3.6) (1 �) �x(A)

hAx; xi exp
�
hAx; xi�1 � hA�1x; xi

� � exp �hAx; xi 
A�1x; x�� 1�
for all x 2 H; kxk = 1:

The proof follows by Theorem 2 for a = hAx; xi ; x 2 H; kxk = 1:

Corollary 7. For A > 0 we have

(3.7) (1 �) �x(A)

hA�1x; xi�1
� exp

�
hAx; xi



A�1x; x

�
� 1
�

for all x 2 H; kxk = 1:

The proof follows by Theorem 2 for a =


A�1x; x

��1
; x 2 H; kxk = 1:

Remark 2. If we use Kantorovich inequality, see for instance [7, p. 24] that holds
for an operator A that satis�es the condition 0 < mI � A � MI; where m;M are
positive numbers,

hAx; xi


A�1x; x

�
� (M +m)

2

4mM

then by Corollaries 6 and 7 we derive

(3.8) (1 �) hAx; xi
�x(A)

� exp
 
(M �m)2

4mM

!
;

(3.9) (1 �) �x(A)

hAx; xi exp
�
hAx; xi�1 � hA�1x; xi

� � exp (M �m)2

4mM

!

and

(3.10) (1 �) �x(A)

hA�1x; xi�1
� exp

 
(M �m)2

4mM

!
for x 2 H; kxk = 1:
If we use the additive inequality, see for instance [7, p. 28]



A�1x; x

�
� hAx; xi�1 �

�p
M �

p
m
�2

Mm
;

which implies by multiplying with hAx; xi > 0 that



A�1x; x

�
hAx; xi � 1 �

�p
M �

p
m
�2

Mm
hAx; xi �

 r
M

m
� 1
!2
;
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then by Corollaries 6 and 7 we obtain

(1 �) hAx; xi
�x(A)

� exp

0B@
�p
M �

p
m
�2

Mm
hAx; xi

1CA(3.11)

� exp

0@ rM
m
� 1
!21A ;

(1 �) �x(A)

hAx; xi exp
�
hAx; xi�1 � hA�1x; xi

�(3.12)

� exp

0B@
�p
M �

p
m
�2

Mm
hAx; xi

1CA � exp

0@ rM
m
� 1
!21A

and

(1 �) �x(A)

hA�1x; xi�1
� exp

0B@
�p
M �

p
m
�2

Mm
hAx; xi

1CA(3.13)

� exp

0@ rM
m
� 1
!21A

for x 2 H; kxk = 1:

Corollary 8. For A > 0 we have the inequalities

(3.14) (1 �) exp [hAx; xi � 1]
�x(A)

� exp
�
hAx; xi+



A�1x; x

�
� 2
�

and

(3.15) (1 �) �x(A)

exp (1� hA�1x; xi) � exp
�
hAx; xi+



A�1x; x

�
� 2
�

for all x 2 H; kxk = 1:

The proof follows by Theorem 2 for a = 1:
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