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Abstract

Here we present �rst a complete fractional calculus between a pair of
Banach spaces. That is regular and sequential fractionality. Based on
these we give a collection of left and right related fractional inequalities
relied on a line segment of a Banach space. We include also the case
of connected line segments. We treat as well the case of sequential in-
equalities. Our results include Ostrowski type inequalities, Poincaré and
Sobolev type inequalities, Opial type inequalities and Hilbert-Pachpatte
type inequalities.
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1 Introduction

We are motivated greatly by the following basic result:

Theorem 1 (1938. Ostrowski [3]) Let f : [a; b] ! R be continuous on [a; b]
and di¤erentiable on (a; b) whose derivative f 0 : (a; b)! R is bounded on (a; b),
i.e., kf 0ksup1 := sup

t2(a;b)
jf 0 (t)j < +1. Then

����� 1

b� a

Z b

a

f (t) dt� f (x)
����� �

"
1

4
+

�
x� a+b

2

�2
(b� a)2

#
(b� a) kf 0ksup1 ; (1)

for any x 2 [a; b]. The constant 14 is the best possible.
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The problem of estimating the di¤erence of a value of a function from its
average is a top one. The answer to it are the Ostrowski type inequalities,
see (1). Ostrowski type inequalities are very useful among others in Numerical
Analysis for approximating integrals.
In this article we present a full array of abstract left and right fractional

inequalities, of regular and sequential types.
Our studied functions here are between Banach spaces, and we develop �rst

the related abstract regular and sequential fractional calculi which are based on
a Banach space segment. Great sources to support our goal are the books [1],
[4].

2 Complete Fractionality between a pair of Ba-
nach spaces

2.1 Regular Fractionality

We make

Remark 2 Throughout this article let (X; k�k1) and (Y; k�k2) be Banach spaces.
Here Xj denotes the j-fold product space X �X � :::�X| {z }

j

endowed with the

max-norm kxkXj := max
1���j

kx�k1, where x := (x1; :::; xj) 2 Xj.

Let the space of Lj := Lj
�
Xj ; Y

�
of all j-multilinear continuous maps h :

Xj ! Y , j = 1; :::;m, which is a Banach space with norm

khk = khkLj := sup
(kxkXj=1)

kh (x)k2 = sup
kh (x)k2

kx1k1 ::: kxjk1
: (2)

Let M be a non-empty convex and compact set of X and x0 2M is �xed.
Let O be an open subset of X :M � O:

Let f : O ! Y be a continuous function, whose Fréchet derivatives ([4], pp.
87-127) f (j) : O ! Lj = Lj

�
Xj ; Y

�
exist and are continuous for 1 � j � m,

m 2 N.
Call (x� x0)j := (x� x0; :::; x� x0) 2 Xj, x 2M .
We will work with f jM :
Here we set f (0) (x0) (x� x0)0 = f (x0) :

We obtain�f (m) (x0 + u (x� x0))� (x� x0)m
2
�
f (m) (x0 + u (x� x0)) kx� x0km1 :

(3)
Above (f jM )(j), j = 0; 1; :::;m; are norm bounded by continuity, and thus they
are integrable.
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Here
L (x0; x1) := fxjx = �x1 + (1� �)x0; 0 � � � 1g (4)

is the line segment joining the points x0 and x1 (notice that the last x = x0 +

� (x1 � x0)).
Denote also L (x0; x1) = x0x1:

Here (� � x0)j maps M into Xj and it is continuous, also f (j) (x0) maps
Xj into Y and it is continuous. Hence their composition f (j) (x0) (� � x0)j is
continuous from M into Y .
Let us restrict f on the line segment x0x1. Then for

x (u) = ux1 + (1� u)x0 = x0 + u (x1 � x0) , 0 � u � 1;

the abstract function

f (u) = f (x (u)) = f (x0 + u (x1 � x0))

will map [0; 1] into an abstract arc in Y , which starts at y0 = f (x0) and ends
at y1 = f (x1).
By [4], p. 124, we have that

f (k) (u) = f (k) (x0 + u (x1 � x0)) (x1 � x0)k ; (5)

for k = 1; 2; :::;m; u 2 [0; 1] :

We need

De�nition 3 All as in Remark 2. We de�ne the vector left Caputo-Fréchet
fractional derivative of order � > 0, m = d�e (d�e ceiling of the number), by

D�
�0 (f (x0 + u (x1 � x0))) := Jm��0

��
f (m) (x0 + u (x1 � x0))

�
(x1 � x0)m

�
:=

1

� (m� �)

Z u

0

(u� t)m���1
�
f (m) (x0 + t (x1 � x0))

�
(x1 � x0)m dt; (6)

all 0 � u � 1;
de�ned via the vector left Riemann-Liouville fractional integral J0 ([1], p.

2).

Then, we observe that

J�0 D
�
�0 (f (x0 + u (x1 � x0))) = J�0 J

m��
0

�
f (m) (x0 + u (x1 � x0))

�
(x1 � x0)m =

(by [1], p. 6)

Jm0

�
f (m) (x0 + u (x1 � x0))

�
(x1 � x0)m = (7)
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1

(m� 1)!

Z u

0

(u� t)m�1
�
f (m) (x0 + t (x1 � x0))

�
(x1 � x0)m dt;

true for 0 � u � 1:
So, we have proved that

1

� (�)

Z u

0

(u� t)��1D�
�0 (f (x0 + t (x1 � x0))) dt =

1

(m� 1)!

Z u

0

(u� t)m�1
�
f (m) (x0 + t (x1 � x0))

�
(x1 � x0)m dt; (8)

for all 0 � u � 1:
Consequently (by [1], p. 12) it holds the new left fractional-Fréchet Taylor

formula on x0x1:

Theorem 4 All as above. Then

f (x0 + u (x1 � x0)) =
m�1X
k=0

f (k) (x0) (x1 � x0)k

k!
uk+

1

� (�)

Z u

0

(u� t)��1D�
�0f (x0 + t (x1 � x0)) dt; (9)

for all 0 � u � 1:

So, we have the particular vector left hand side Caputo-Fréchet fractional
Taylor�s formula (u = 1).

Corollary 5 All as above. Then

f (x1) =

m�1X
j=0

f (j) (x0) (x1 � x0)j

j!
+ (10)

1

� (�)

Z 1

0

(1� w)��1D�
�0 (f (x0 + w (x1 � x0))) dw;

for all x0; x1 2M:

We make

Remark 6 We are again working on the segment x0x1, where x0; x1 2 M ;

0 � u � 1, with x = x (u) := x0 + u (x1 � x0), and f (u) = f (x (u)) =

f (x0 + u (x1 � x0)), i.e. f : [0; 1]! Y .
When u = 0, f (0) = f (x0), and when u = 1, f (1) = f (x1).
We have (by [1], pp. 121-122) the abstract Riemann integral:Z x1

x0

f (x) dx =

Z 1

0

f (u) du: (11)
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We also have that ([1], p. 122, and p. 124)

f 0 (u) = f 0 (x0 + u (x1 � x0)) (x1 � x0) ;

and
f (k) (u) = f (k) (x0 + u (x1 � x0)) (x1 � x0)k ; (12)

k = 1; 2; :::;m:

Let � > 0, such that d�e = m:

We consider the vector valued right hand side Riemann-Liouville fractional
integral ([1], p. 34),

J�1�f (u) =
1

� (�)

Z 1

u

(J � u)��1 f (J) dJ; (13)

and the vector valued right hand side Caputo fractional derivative of order � > 0
([1], p. 42), by

D�
1�f (u) := (�1)

m
Jm��1� f (m) (x) =

(�1)m

� (m� �)

Z 1

u

(J � u)m���1 f (m) (J) dJ:

(14)
(we have that J�1�J

�
�1f = J�+��1 f = J��1J

�
�1f , when f 2 C ([0; 1] ; Y ) or �+� �

1, see [1], p. 39).
We will use the right hand side Taylor�s fractional formula.

Theorem 7 ([1], p. 44, by Theorem 2.16) Let f 2 Cm ([0; 1] ; Y ), u 2 [0; 1],
� > 0, m = d�e. Then

f (u) =
m�1X
k=0

f (k) (1)

k!
(u� 1)k + 1

� (�)

Z 1

u

(J � u)��1D�
1�f (J) dJ: (15)

Equation (15) implies the vector right hand side corresponding fractional
Taylor�s formula:

Theorem 8 All as in Remarks 2, 6. Then

f (x0 + u (x1 � x0)) =
m�1X
k=0

f (k) (x1) (x1 � x0)k

k!
(u� 1)k + (16)

1

� (�)

Z 1

u

(J � u)��1D�
1�f (J) dJ;

all 0 � u � 1,
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where the vector right Caputo-Fréchet fractional derivative of order � > 0 is
given by,

D�
1�f (J) = D�

1�f (x0 + J (x1 � x0)) =
(�1)m

� (m� �)

Z 1

J

(t� J)m���1 f (m) (t) dt

(17)

=
(�1)m

� (m� �)

Z 1

J

(t� J)m���1 f (m) (x0 + t (x1 � x0)) (x1 � x0)m dt:

When u = 0 we obtain

Corollary 9 All as in Remarks 2, 6. Then

f (x0) =

m�1X
k=0

f (k) (x1) (x1 � x0)k

k!
(�1)k +

1

� (�)

Z 1

0

J��1D�
1�f (x0 + J (x1 � x0)) dJ; (18)

for all x0; x1 2M:

2.2 Sequential Fractionality

We need

De�nition 10 In particular when 0 < � < 1 we have

D�
�0 (f (x0 + u (x1 � x0))) =

1

� (1� �)

Z u

0

(u� t)�� (f 0 (x0 + t (x1 � x0))) (x1 � x0) dt; (19)

all 0 � u � 1:
If � 2 N, we set D�

�0f := f (�) the ordinary Y -valued derivative, and also set
D0
�0f := f:

De�nition 11 In particular when 0 < � < 1 we have

D�
1� (f (x0 + u (x1 � x0))) =

�1
� (1� �)

Z 1

u

(t� u)�� f 0 (x0 + t (x1 � x0)) (x1 � x0) dt; (20)

all 0 � u � 1:
We set Dm

1�f = (�1)
m
f (m), for m 2 N, and D0

1�f = f:
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Denote the sequential Caputo-Bochner left and right fractional derivatives
(� > 0)

Dn�
�a := D�

�aD
�
�a:::D

�
�a (n-times), n 2 N (21)

and
Dn�
b� := D�

b�D
�
b�:::D

�
b (n-times): (22)

For the detailed de�nitions of D�
�a, D

�
b� see [1], pp. 128-129. In this article

we consider [a; b] = [0; 1] :
We mention the following left alternative fractional Taylor�s formula

Theorem 12 ([1], p. 129, Theorem 4.43) Let Y a Banach space and 0 < � � 1,
n 2 N, f 2 C1 ([a; b] ; Y ) :
For k = 1; :::; n, we assume that Dk�

�a f 2 C1 ([a; b] ; Y ) and D(n+1)�
�a f 2

C ([a; b] ; Y ). Then

f (x) =
nX
i=0

(x� a)i�

� (i�+ 1)

�
Di�
�af
�
(a)+ (23)

1

� ((n+ 1)�)

Z x

a

(x� t)(n+1)��1
�
D
(n+1)�
�a f

�
(t) dt;

8 x 2 [a; b] :

We also mention the following right alternative fractional Taylor�s formula.

Theorem 13 ([1], p. 129, Theorem 4.44) Let Y a Banach space and 0 < � � 1,
n 2 N, f 2 C1 ([a; b] ; Y ) : For k = 1; :::; n, we assume that Dk�

b�f 2 C1 ([a; b] ; Y )
and D(n+1)�

b� f 2 C ([a; b] ; Y ). Then

f (x) =

nX
i=0

(b� x)i�

� (i�+ 1)

�
Di�
b�f

�
(b)+ (24)

1

� ((n+ 1)�)

Z b

x

(t� x)(n+1)��1
�
D
(n+1)�
b� f

�
(t) dt;

8 x 2 [a; b] :

We give the corresponding left and right fractional alternative Taylor�s for-
mulae on the segment x0x1.

Theorem 14 Let Y a Banach space and 0 < � � 1, n 2 N, f (x0 + u (x1 � x0)) 2
C1 ([0; 1] ; Y ) :

For k = 1; :::; n, we assume that Dk�
�0 f (x0 + u (x1 � x0)) 2 C1 ([0; 1] ; Y ) and

D
(n+1)�
�0 f (x0 + u (x1 � x0)) 2 C ([0; 1] ; Y ). Then

f (x0 + u (x1 � x0)) =
nX
i=0

ui�

� (i�+ 1)

�
Di�
�0 (f (x0 + u (x1 � x0)))

�
(0)+ (25)
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1

� ((n+ 1)�)

Z u

0

(u� t)(n+1)��1
�
D
(n+1)�
�0 (f (x0 + u (x1 � x0)))

�
(t) dt;

8 u 2 [0; 1] :

Proof. By Theorem 12.

Theorem 15 Let Y a Banach space and 0 < � � 1, n 2 N, f (x0 + u (x1 � x0)) 2
C1 ([0; 1] ; Y ) :

For k = 1; :::; n, we assume that Dk�
1�f (x0 + u (x1 � x0)) 2 C1 ([0; 1] ; Y )

and D(n+1)�
1� f (x0 + u (x1 � x0)) 2 C ([0; 1] ; Y ). Then

f (x0 + u (x1 � x0)) =
nX
i=0

(1� u)i�

� (i�+ 1)

�
Di�
1�f (x0 + u (x1 � x0))

�
(1)+ (26)

1

� ((n+ 1)�)

Z 1

u

(t� u)(n+1)��1
�
D
(n+1)�
1� f (x0 + u (x1 � x0))

�
(t) dt;

8 u 2 [0; 1] :

Proof. By Theorem 13.

3 Main Results

We present

Theorem 16 All as in Remarks 2, 6. Assume f (k) (x0) = f (k) (x1) = 0,
k = 1; :::;m� 1.
Then

E (f; x0; x1) :=

Z x1

x0

f (x) dx�
�
f (x0) + f (x1)

2

�
= (27)

1

2� (�)

�Z 1

0

�Z u

0

(u� t)��1D�
�0 (f (x0 + t (x1 � x0))) dt

�
du+Z 1

0

�Z 1

u

(J � u)��1D�
1� (f (x0 + J (x1 � x0))) dJ

�
du

�
:

Proof. By (11) and Theorem 4 we haveZ x1

x0

f (x) dx =

Z 1

0

f (x0 + u (x1 � x0)) du =
m�1X
k=0

f (k) (x0) (x1 � x0)k

k!

Z 1

0

ukdu+

1

� (�)

Z 1

0

�Z u

0

(u� t)��1D�
�0f (x0 + t (x1 � x0)) dt

�
du =
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m�1X
k=0

f (k) (x0) (x1 � x0)k

(k + 1)!
+

1

� (�)

Z 1

0

�Z u

0

(u� t)��1D�
�0f (x0 + t (x1 � x0)) dt

�
du:

(28)
Also by Theorem 8 we haveZ x1

x0

f (x) dx =

Z 1

0

f (x0 + u (x1 � x0)) du =

m�1X
k=0

f (k) (x1) (x1 � x0)k

k!

Z 1

0

(u� 1)k du+

1

� (�)

Z 1

0

�Z 1

u

(J � u)��1D�
1�f (J) dJ

�
du =

m�1X
k=0

f (k) (x1) (x1 � x0)k

(k + 1)!
(�1)k + 1

� (�)

Z 1

0

�Z 1

u

(J � u)��1D�
1�f (J) dJ

�
du:

(29)
Assume f (k) (x0) = 0, f (k) (x1) = 0, k = 1; :::;m� 1. ThenZ x1

x0

f (x) dx�f (x0) =
1

� (�)

Z 1

0

�Z u

0

(u� t)��1D�
�0f (x0 + t (x1 � x0)) dt

�
du;

(30)
andZ x1

x0

f (x) dx� f (x1) =
1

� (�)

Z 1

0

�Z 1

u

(J � u)��1D�
1�f (J) dJ

�
du: (31)

Adding (30) and (31) and divide by 2 we deriveZ x1

x0

f (x) dx�
�
f (x0) + f (x1)

2

�
= (32)

1

2� (�)

�Z 1

0

�Z u

0

(u� t)��1D�
�0f (x0 + t (x1 � x0)) dt

�
du+Z 1

0

�Z 1

u

(J � u)��1D�
1�f (x0 + J (x1 � x0)) dJ

�
du

�
:

We also give:

Theorem 17 All as in Theorems 14, 15. Additionally assume that
Di�
�0 (f (x0 + u (x1 � x0))) (0) = Di�

1� (f (x0 + u (x1 � x0))) (1) = 0, i = 1; :::; n.
Then

E (f; x0; x1) :=

Z x1

x0

f (x) dx�
�
f (x0) + f (x1)

2

�
= (33)
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1

2� ((n+ 1)�)

�Z 1

0

�Z u

0

(u� t)(n+1)��1D(n+1)�
�0 (f (x0 + t (x1 � x0))) (t) dt

�
du+Z 1

0

�Z 1

u

(t� u)(n+1)��1D(n+1)�
1� (f (x0 + t (x1 � x0))) (t) dt

�
du

�
:

Proof. By Theorem 14 we haveZ x1

x0

f (x) dx =

Z 1

0

f (x0 + u (x1 � x0)) du =

nX
i=0

�R 1
0
ui�du

�
� (i�+ 1)

Di�
�0 (f (x0 + u (x1 � x0))) (0)+

1

� ((n+ 1)�)

Z 1

0

�Z u

0

(u� t)(n+1)��1D(n+1)�
�0 (f (x0 + t (x1 � x0))) (t) dt

�
du =

nX
i=0

1

� (i�+ 2)
Di�
�0 (f (x0 + u (x1 � x0))) (0)+ (34)

1

� ((n+ 1)�)

Z 1

0

�Z u

0

(u� t)(n+1)��1D(n+1)�
�0 (f (x0 + t (x1 � x0))) (t) dt

�
du;

all 0 � u � 1:
By Theorem 15, we haveZ x1

x0

f (x) dx =
nX
i=0

1

� (i�+ 2)
Di�
1� (f (x0 + u (x1 � x0))) (1)+ (35)

1

� ((n+ 1)�)

Z 1

0

�Z 1

u

(t� u)(n+1)��1D(n+1)�
1� (f (x0 + t (x1 � x0))) (t) dt

�
du:

We assume thatDi�
�0 (f (x0 + u (x1 � x0))) (0) = Di�

1� (f (x0 + u (x1 � x0))) (1) =
0, i = 1; :::; n. Then Z x1

x0

f (x) dx� f (x0) =

1

� ((n+ 1)�)

Z 1

0

�Z u

0

(u� t)(n+1)��1D(n+1)�
�0 (f (x0 + t (x1 � x0))) (t) dt

�
du;

(36)
and Z x1

x0

f (x) dx� f (x1) =

1

� ((n+ 1)�)

Z 1

0

�Z 1

u

(t� u)(n+1)��1D(n+1)�
1� (f (x0 + t (x1 � x0))) (t) dt

�
du:

(37)
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Therefore it holds Z x1

x0

f (x) dx�
�
f (x0) + f (x1)

2

�
= (38)

1

2� ((n+ 1)�)

�Z 1

0

�Z u

0

(u� t)(n+1)��1D(n+1)�
�0 (f (x0 + t (x1 � x0))) (t) dt

�
du+Z 1

0

�Z 1

u

(t� u)(n+1)��1D(n+1)�
1� (f (x0 + t (x1 � x0))) (t) dt

�
du

�
:

We present the following basic abstract fractional Ostrowski type inequali-
ties:

Theorem 18 All as in Theorem 16. Then
i)

kE (f; x0; x1)k2 �
1

2� (�+ 2)

n
kkD�

�0 (f (x0 + t (x1 � x0)))k2kt;1;[0;1]
(39)

+
D�

1� (f (x0 + J (x1 � x0)))

2


J;1;[0;1]

o
;

ii) when � � 1, we get

kE (f; x0; x1)k2 �
1

2� (�+ 1)

n
kkD�

�0 (f (x0 + t (x1 � x0)))k2kt;L1([0;1]) (40)

+
D�

1� (f (x0 + J (x1 � x0)))

2


J;L1([0;1])

o
;

iii) when p; q > 1 : 1p +
1
q = 1, with � >

1
q , we �nd that

kE (f; x0; x1)k2 �
1

2� (�) (p (�� 1) + 1)
1
p

�
�+ 1

p

� (41)

h
kkD�

�0 (f (x0 + t (x1 � x0)))k2kt;Lq([0;1]) +
D�

1� (f (x0 + J (x1 � x0)))

2


J;Lq([0;1])

i
:

Proof. We have that

kE (f; x0; x1)k2
(27)
� 1

2� (�)�Z 1

0

�Z u

0

(u� t)��1D�
�0 (f (x0 + t (x1 � x0))) dt

�
du


2

+Z 1

0

�Z 1

u

(J � u)��1D�
1�f (x0 + J (x1 � x0)) dJ

�
du


2

�
�
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1

2� (�)

�Z 1

0

�Z u

0

(u� t)��1 kD�
�0f (x0 + t (x1 � x0))k2 dt

�
du+ (42)Z 1

0

�Z 1

u

(J � u)��1
D�

1�f (x0 + J (x1 � x0))

2
dJ

�
du

�
=: ( ) :

i) We have that

( ) � 1

2� (�+ 1)

��Z 1

0

u�du

�
kkD�

�0 (f (x0 + t (x1 � x0)))k2kt;1;[0;1]+�Z 1

0

(1� u)� du
�D�

1� (f (x0 + J (x1 � x0)))

2


J;1;[0;1]

�
=

1

2� (�+ 2)

n
kkD�

�0f (x0 + t (x1 � x0))k2kt;1;[0;1]

+
D�

1� (f (x0 + J (x1 � x0)))

2


J;1;[0;1]

o
; (43)

proving (i).
ii) If � � 1, then

( ) � 1

2� (�)

��Z 1

0

u��1du

�
kkD�

�0 (f (x0 + t (x1 � x0)))k2kt;L1([0;1]) (44)

+

�Z 1

0

(1� u)��1 du
�D�

1� (f (x0 + J (x1 � x0)))

2


J;L1([0;1])

�
=

1

2� (�+ 1)

h
kkD�

�0 (f (x0 + t (x1 � x0)))k2kt;L1([0;1])

+
D�

1� (f (x0 + J (x1 � x0)))

2


J;L1([0;1])

i
;

proving (ii).
iii) Let p; q > 1 : 1

p +
1
q = 1, with � > 1

q : Then (by applying Hölder�s
inequality) we obtain:

( ) � 1

2� (�)

"Z 1

0

u��1+
1
p

(p (�� 1) + 1)
1
p

kkD�
�0 (f (x0 + t (x1 � x0)))k2kt;Lq([0;1]) du

(45)

+

Z 1

0

(1� u)��1+
1
p

(p (�� 1) + 1)
1
p

D�
1� (f (x0 + J (x1 � x0)))


2


J;Lq([0;1])

du

#
=

1

2� (�) (p (�� 1) + 1)
1
p

�
�+ 1

p

� hkkD�
�0 (f (x0 + t (x1 � x0)))k2kt;Lq([0;1])

+
D�

1� (f (x0 + J (x1 � x0)))

2


J;Lq([0;1])

i
;

proving (iii).
We continue with sequential fractional Ostrowski inequalities.

12



Theorem 19 All as in Theorem 17. Then
i)

kE (f; x0; x1)k2 �
1

2� ((n+ 1)�+ 2)

�D(n+1)�
�0 (f (x0 + t (x1 � x0)))


2


t;1;[0;1]

(46)

+
D(n+1)�

1� (f (x0 + J (x1 � x0)))

2


J;1;[0;1]

�
;

ii) when � � 1
(n+1) , we get

kE (f; x0; x1)k2 �
1

2� ((n+ 1)�+ 1)

�D(n+1)�
�0 (f (x0 + t (x1 � x0)))


2


t;L1([0;1])

(47)

+
D(n+1)�

1� (f (x0 + J (x1 � x0)))

2


J;L1([0;1])

�
;

iii) when p; q > 1 : 1p +
1
q = 1, with � >

1
q(n+1) , we derive

kE (f; x0; x1)k2 �
1

2� ((n+ 1)�) (p ((n+ 1)�� 1) + 1)
1
p

�
(n+ 1)�+ 1

p

�
(48)�D(n+1)�

�0 (f (x0 + t (x1 � x0)))

2


t;Lq([0;1])

+D(n+1)�
1� (f (x0 + J (x1 � x0)))


2


J;Lq([0;1])

�
:

Proof. As similar to Theorem 18 is omitted, use of (33).
We proceed with a Poincaré like left fractional inequality:

Theorem 20 Let p; q > 1 : 1p +
1
q = 1, and � > 1

q , m = d�e. Here all as in
Remark 2 and De�nition 3. Assume further that f (k) (x0) = 0, k = 0; 1; :::;m�1.
Then

kkf (x0 + u (x1 � x0))k2ku;Lq([0;1]) �
kkD�

�0f (x0 + t (x1 � x0))k2kt;Lq([0;1])
� (�) (p (� � 1) + 1)

1
p (p�)

1
q

:

(49)

Proof. Direct application of Theorem 1.38, p. 25, along with Theorem 1.5,
p.3 and De�nition 1.13, pp. 10-11, all from [2]. We use also Theorem 4 from
here.
It follows a Sobolev like left fractional inequality:

Theorem 21 All as in Theorem 20 and r > 0. Then

kkf (x0 + u (x1 � x0))k2ku;Lr([0;1]) �
kkD�

�0f (x0 + t (x1 � x0))k2kt;Lq([0;1])

� (�) (p (� � 1) + 1)
1
p

�
r
�
� � 1

q

�
+ 1
� 1
r

:

(50)

13



Proof. As in the proof of Theorem 1.39, p. 26 of [2].
Next comes an Opial type left fractional inequality:

Theorem 22 All as in Theorem 20. ThenZ z

0

kf (x0 + w (x1 � x0))k2 kD
�
�0f (x0 + w (x1 � x0))k2 dw �

z��1+
2
p

2
1
q � (�) ((p (� � 1) + 1) (p (� � 1) + 2))

1
p

�Z z

0

kD�
�0f (x0 + w (x1 � x0))k

q
2 dw

� 2
q

;

(51)
8 z 2 [0; 1] :

Proof. By Theorem 1.40, p. 27 of [2].
We continue with a Hilbert-Pachpatte type left fractional inequality:

Theorem 23 Let p; q > 1 : 1
p +

1
q = 1, and �1 > 1

q , �2 >
1
p ; mi := d�ie,

i = 1; 2. Let fi, i = 1; 2; as is f in Remark 2 and De�nition 3.
Assume further that f (ki)i (x0) = 0, ki = 0; 1; :::;mi � 1; i = 1; 2: ThenZ 1

0

Z 1

0

kf1 (x0 + t1 (x1 � x0))k2 kf2 (x0 + t2 (x1 � x0))k2 dt1dt2�
t
p(�1�1)+1
1

p(p(�1�1)+1) +
t
q(�2�1)+1
2

q(q(�2�1)+1)

� � (52)

kD�1
�0f1 (x0 + t1 (x1 � x0))k2


t1;Lq([0;1])

kD�2
�0f2 (x0 + t2 (x1 � x0))k2


t2;Lp([0;1])

� (�1) � (�2)
:

Proof. By Theorem 1.41, p. 29 of [2] and Theorem 4 here.
We proceed with a Poincaré like right fractional inequality:

Theorem 24 Let p; q > 1 : 1p +
1
q = 1, and � > 1

q , m = d�e. Here all as in
Theorem 8. Assume further that f (k) (x1) = 0, k = 0; 1; :::;m� 1. Then

kkf (x0 + u (x1 � x0))k2ku;Lq([0;1]) �

D�
1�f (x0 + t (x1 � x0))


2


t;Lq([0;1])

� (�) (p (�� 1) + 1)
1
p (p�)

1
q

:

(53)

Proof. By Theorem 2.24, p. 49, along with Theorem 2.5, p. 37, De�nition
2.13, pp. 42-43, all from [2]. We use also Theorem 8 from here.
It follows a Sobolev like right fractional inequality:

Theorem 25 All as in Theorem 24 and r > 0. Then

kkf (x0 + u (x1 � x0))k2ku;Lr([0;1]) �

D�
1�f (x0 + t (x1 � x0))


2


t;Lq([0;1])

� (�) (p (�� 1) + 1)
1
p

�
r
�
�� 1

q

�
+ 1
� 1
r

:

(54)
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Proof. As in the proof of Theorem 2.25, p. 50 of [2].
Next comes an Opial type right fractional inequality:

Theorem 26 All as in Theorem 24. ThenZ 1

z

kf (x0 + w (x1 � x0))k2
D�

1�f (x0 + w (x1 � x0))

2
dw �

(1� z)��1+
2
p

2
1
q � (�) ((p (�� 1) + 1) (p (�� 1) + 2))

1
p

�Z 1

z

D�
1�f (x0 + w (x1 � x0))

q
2
dw

� 2
q

;

(55)
8 z 2 [0; 1] :

Proof. By Theorem 2.26, p. 51 of [2].
We continue with a Hilbert-Pachpatte type right fractional inequality:

Theorem 27 Let p; q > 1 : 1
p +

1
q = 1, and �1 > 1

q , �2 >
1
p ; mi := d�ie,

i = 1; 2. Let fi, i = 1; 2; as is f in Theorem 8.
Assume further that f (ki)i (x1) = 0, ki = 0; 1; :::;mi � 1; i = 1; 2: ThenZ 1

0

Z 1

0

kf1 (x0 + t1 (x1 � x0))k2 kf2 (x0 + t2 (x1 � x0))k2 dt1dt2�
(1�t1)p(�1�1)+1
p(p(�1�1)+1) + (1�t2)q(�2�1)+1

q(q(�2�1)+1)

� � (56)

D�1
1�f1 (x0 + t1 (x1 � x0))


2


t1;Lq([0;1])

D�2
1�f2 (x0 + t2 (x1 � x0))


2


t2;Lp([0;1])

� (�1) � (�2)
:

Proof. By Theorem 2.27, p. 53 of [2] and Theorem 8 here.
We continue with a sequential left fractional Poincaré type inequality:

Theorem 28 Let  > 0 with de = m; n; k 2 N; p; q > 1 : 1p+
1
q = 1; 0 < � < 1

be such that max
n
m+(k�1)

n+1 ; kq+1(n+1)q

o
< � < 1. Here (Y; k�k2) is a Banach

space, with f (x0 + u (x1 � x0)) 2 C1 ([0; 1] ; Y ) and Dk�
�0 f (x0 + u (x1 � x0)) 2

C1 ([0; 1] ; Y ) ; k = 1; :::; n and
�
Di�
�0f (x0 + u (x1 � x0))

�
(0) = 0, i = 0; 2; 3; :::; n.

Then Dk
�0 f (x0 + u (x1 � x0))


2


u;Lq([0;1])

� (57)D(n+1)�
�0 f (x0 + u (x1 � x0))


2


u;Lq([0;1])

� ((n+ 1)�� k) (p ((n+ 1)�� k � 1) + 1)
1
p

:

Proof. By Theorem 10.19, p. 212 of [2] for g = id map.
Next comes the sequential right fractional Poincaré type inequality:

15



Theorem 29 Let  > 0 with de = m; n; k 2 N; p; q > 1 : 1p+
1
q = 1; 0 < � < 1

be such that max
n
m+(k�1)

n+1 ; kq+1(n+1)q

o
< � < 1. Here (Y; k�k2) is a Banach

space, with f (x0 + u (x1 � x0)) 2 C1 ([0; 1] ; Y ) and Dk�
1�f (x0 + u (x1 � x0)) 2

C1 ([0; 1] ; Y ) ; k = 1; :::; n and
�
Di�
1�f (x0 + u (x1 � x0))

�
(1) = 0, i = 0; 2; 3; :::; n.

Then Dk
1�f (x0 + u (x1 � x0))


2


u;Lq([0;1])

� (58)D(n+1)�
1� f (x0 + u (x1 � x0))


2


u;Lq([0;1])

� ((n+ 1)�� k) (p ((n+ 1)�� k � 1) + 1)
1
p

:

Proof. By Theorem 10.20, p. 213 of [2] for g = id map.
It follows a sequential left fractional Opial type inequality:

Theorem 30 All as in Theorem 28. ThenZ y

0

Dk
�0 f (x0 + u (x1 � x0))


2

D(n+1)�
�0 f (x0 + u (x1 � x0))


2
du �

y((n+1)��k�1)+
2
p

2
1
q � ((n+ 1)�� k) [(p ((n+ 1)�� k � 1) + 1) (p ((n+ 1)�� k � 1) + 2)]

1
p�Z y

0

D(n+1)�
�0 f (x0 + u (x1 � x0))

q
2
du

� 2
q

; 8 y 2 [0; 1] : (59)

Proof. By Theorem 10.21, p. 214 of [2] for g = id map.
We continue with a sequential right fractional Opial type inequality:

Theorem 31 All as in Theorem 29. ThenZ 1

y

Dk
1�f (x0 + u (x1 � x0))


2

D(n+1)�
1� f (x0 + u (x1 � x0))


2
du �

(1� y)((n+1)��k�1)+
2
p

2
1
q � ((n+ 1)�� k) [(p ((n+ 1)�� k � 1) + 1) (p ((n+ 1)�� k � 1) + 2)]

1
p�Z 1

y

D(n+1)�
1� f (x0 + u (x1 � x0))

q
2
du

� 2
q

; 8 y 2 [0; 1] : (60)

Proof. By Theorem 10.22, pp. 216-217 of [2] for g = id map
Next comes a sequential Hilbert-Pachpatte type left ftactional inequality:
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Theorem 32 Let i = 1; 2; 0 < �i < 1, as in (61), (62), fi (x0 + u (x1 � x0)) 2
C1 ([0; 1] ; Y ). Assume that Dki�i

�0 fi (x0 + u (x1 � x0)) 2 C1 ([0; 1] ; Y ), ki =

1; :::; ni, and
�
D�i�i
�0 fi (x0 + u (x1 � x0))

�
(0) = 0, �i = 0; 2; 3; :::; ni, where ni 2

N. Let i > 0 and die = mi, ki 2 N, p; q > 1 : 1p +
1
q = 1: We further assume:

1 > �1 > max

�
m1 + (k1 � 1) 1

n1 + 1
;
k11q + 1

(n1 + 1) q

�
; (61)

and

1 > �2 > max

�
m2 + (k2 � 1) 2

n2 + 1
;
k22p+ 1

(n2 + 1) p

�
; (62)

ThenZ 1

0

Z 1

0

Dk11
�0 f1 (x0 + u1 (x1 � x0))


2

Dk22
�0 f2 (x0 + u2 (x1 � x0))


2
du1du2�

u
p((n+1)�1�k11�1)+1
1

p(p((n1+1)�1�k11�1)+1)
+

u
q((n2+1)�2�k22�1)+1
2

q(q((n2+1)�2�k22�1)+1)

� �

(63)
1

� ((n1 + 1)�1 � k11) � ((n2 + 1)�2 � k22)D(n1+1)�1
�0 f1 (x0 + u (x1 � x0))


2


u;Lq([0;1])D(n2+1)�2

�0 f2 (x0 + u (x1 � x0))

2


u;Lp([0;1])

:

Proof. By Theorem 10.23, p. 217 of [2] for g1 = g2 = id map.
We �nish this article with a sequential Hilbert-Pachpatte type right ftac-

tional inequality:

Theorem 33 Let i = 1; 2; 0 < �i < 1, as in (64), (65), fi (x0 + u (x1 � x0)) 2
C1 ([0; 1] ; Y ). Assume that Dki�i

1� fi (x0 + u (x1 � x0)) 2 C1 ([0; 1] ; Y ), ki =

1; :::; ni, and
�
D�i�i
1� fi (x0 + u (x1 � x0))

�
(1) = 0, �i = 0; 2; 3; :::; ni, where ni 2

N. Let i > 0 and die = mi, ki 2 N, p; q > 1 : 1p +
1
q = 1: We further assume:

1 > �1 > max

�
m1 + (k1 � 1) 1

n1 + 1
;
k11q + 1

(n1 + 1) q

�
; (64)

and

1 > �2 > max

�
m2 + (k2 � 1) 2

n2 + 1
;
k22p+ 1

(n2 + 1) p

�
; (65)

ThenZ 1

0

Z 1

0

Dk11
1� f1 (x0 + u1 (x1 � x0))


2

Dk22
1� f2 (x0 + u2 (x1 � x0))


2
du1du2�

(1�u1)p((n1+1)�1�k11�1)+1
p(p((n1+1)�1�k11�1)+1)

+ (1�u2)q((n2+1)�2�k22�1)+1
q(q((n2+1)�2�k22�1)+1)

� �

(66)
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1

� ((n1 + 1)�1 � k11) � ((n2 + 1)�2 � k22)D(n1+1)�1
1� f1 (x0 + u (x1 � x0))


2


u;Lq([0;1])D(n2+1)�2

1� f2 (x0 + u (x1 � x0))

2


u;Lp([0;1])

:

Proof. By Theorem 10.24, p. 220 of [2] for g1 = g2 = id map.
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