SOME PROPERTIES OF TENSORIAL PERSPECTIVE FOR
CONVEX FUNCTIONS OF SELFADJOINT OPERATORS IN
HILBERT SPACES

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. Let H be a Hilbert space. Assume that f : [0,00) — R is contin-
uous and A, B > 0. We define the tensorial perspective for the function f and
the pair of operators (A, B) by

Pro(A,B):=1®B)f(AeB™).
In this paper we show among others that, if f is differentiable convex, then
Pro (A, B) > [f(u) — f (w)u] 1& B)+ f' (u) (A® 1),

for A, B > 0 and u > 0. Moreover, if Sp(A) C I, Sp(B) C J and such that
0<7§§§Ffort6[ands€J,then

Pre (A, B) < [f (u) = f' (w)u] 1@ B) + f' (u) (A® 1)
+[L @=L M]A®1-u(1eB)|
for w € [y,T7].

1. INTRODUCTION

Let Iy,..., Ix be intervals from R and let f : I; X ... X I; — R be an essentially
bounded real function defined on the product of the intervals. Let A = (A4, ..., A,)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces Hi, ..., Hy such that
the spectrum of A; is contained in I; for i = 1, ..., k. We say that such a k-tuple is
in the domain of f. If

A; = / N (A)
I;

is the spectral resolution of A; for i = 1, ..., k; by following [2], we define
I Iy

as a bounded selfadjoint operator on the tensorial product H; ® ... ® Hy.

If the Hilbert spaces are of finite dimension, then the above integrals become
finite sums, and we may consider the functional calculus for arbitrary real functions.
This construction [2] extends the definition of Kordnyi [7] for functions of two
variables and have the property that

f(AL, o Ak) = fi(A1) @ .. ® fir(Ak),

whenever f can be separated as a product f(¢1,...,tx) = f1(t1)...fx(tx) of k func-
tions each depending on only one variable.
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It is know that, if f is super-multiplicative (sub-multiplicative) on [0, 00), namely
F5t)> () £ (5) F (1) for all 5,2 € [0, 00)
and if f is continuous on [0,00), then [10, p. 173]
(1.2) f(A®B) > (L) f(A)® f(B) for all A, B>0.

This follows by observing that, if

A= / tdE (t) and B = / sdF (s)
[0,00)

[0,00)

are the spectral resolutions of A and B, then
(1.3) f(A® B) :/ / £ (st)dE (t) @ dF (s)
[0,00) J/[0,00)

for the continuous function f on [0, 00).
Recall the geometric operator mean for the positive operators A, B > 0

A#4B = A2 (ATV2BATI2) A
where t € [0, 1] and
A#B = AV2(AT2BAT2)2 AL,
By the definitions of # and ® we have
A#B = B#A and (A#B) Q@ (B#A)=(AQB)#(B® A).

In 2007, S. Wada [13] obtained the following Callebaut type inequalities for ten-
sorial product

(14)  (A#B) ® (A#B) < 5 [(A#aB) ® (A#1-aB) + (A#1-aB) ® (A#.D)]

— N =

<-(A®B+B®A)

2
for A, B> 0 and a € [0,1].

Assume that f : [0, 00) — R is continuous and A, B > 0. We define the tensorial
perspective for the function f and the pair of operators (4, B)

Pre(A,B):=(Q1eB)f(AeB™").

Motivated by the above results, in this paper we show among others that, if f
is differentiable convex, then

Pre (A, B) 2 [f (u) = f (W)u] (1@ B) + [ (u) (A® 1),

for A, B > 0 and u > 0. Moreover, if Sp(A) C I, Sp(B) C J and such that
0<y<i<TfortelandselJ then

Pryw (A, B) < [f (u) = f' (u)u] (1@ B) + f' (u) (A®1)
+ [ @) - LM A®1-u(l® B)

for uw € [,I7.
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2. SOME PRELIMINARY FACTS
Recall the following property of the tensorial product
(2.1) (AC)® (BD)=(A® B) (C® D)

that holds for any A, B,C,D € B(H).
If we take C = A and D = B, then we get

A’@ B> = (A® B)*.
By induction and using (2.1) we derive that
(2.2) A" ® B" = (A® B)" for natural n > 0.
In particular
(2.3) A"®1=(A®1)" and 1® B" = (1® B)"

for all n > 0.
We also observe that, by (2.1), the operators A ® 1 and 1 ® B are commutative
and

(2.4) (A1) (1®eB)=(1®B)(A®1)=A®B.
Moreover, for two natural numbers m, n we have
(2.5) A1)"(1eB)"=1eB)"(Ae1)™ =A™ @ B"™.

According with the properties of tensorial products and functional calculus for
continuous functions of selfadjoint operators, we have

Pro(4B) =10 B) f((As1)(1eB) )
~f(aenaen™)aen
=/(aeB) o) 0eB),

due to the commutativity of A® 1 and 1 ® B.
In the following, we consider the spectral resolutions of A and B given by

(2.6) A= tdE (t) and B = sdF (s).
[0,00) [0,00)

We have the following representation result for continuous functions:

Lemma 1. Assume that f : [0,00) — R is continuous and A, B > 0, then

(2.7) Prro (A, B) /[Om)/[ooo)sf <S> B () ® dF (s).

Proof. By Stone-Weierstrass theorem, any continuous function can be approxi-
mated by a sequence of polynomials, therefore it suffices to prove the equality
for the power function ¢ (t) = t"™ with n any natural number.
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We have that

/[Om) /[Om) 5% (2) dE (t) ® dF (s)
= /[0700) /[0700) s (Z)ndE (t) @ dF (s)

= / / t"s'"dE (t) @ dF (s)

[0,00) /[0,00)
=A"®@B'"""=A"@BB " =(1®B)(A"®B™")
=(1®B) (A®B™")" =P, (4, B),

which shows that (2.7) holds for the power function.
This proves the lemma. ([

We assume in the following that A, B > 0.
If we consider the function II, (u) =u" — 1, u > 0, r > 0, then we have

Pu,. (A, B):=(1®B)II, (A® B™")
~(1@B) |(A®B™Y) 1]
=A®1)" (1eB)" " -1 B.
If we take f = —In(-), then we get
P_tn(),e(A,B):=—(1®B)In(A® B™")
= In ((1 ®B) ' (A® 1)) (1® B)
=(1®B)In(1®B)-In(A®1)].
If we take f = (-)In(-), then we get
Pyin()e (A,B)=(1®B) (A9 B ")In(A® B™")
=(A®1)[In(A®1) —In(1® B)].
If we take f = |- — a|, a € R, then

7D|._a|7® (A,B) = / / S
[0,00) /[0,00)

z/ / [t — as|dE (t) @ dF (s)
[0,00) /[0,00)
=|A®1—-al® B,

dE (t) ® dF (s)

t
- -«
s

where for the last equality we used the result obtained in [6],

(2.8) ¢(h(A)®1+1®k(B)):/I/]¢(h(t)+k(s))dE(t)@dF(s),

here A and B are selfadjoint operators with Sp (A) € I and Sp(B) C J, h is
continuous on I, k is continuous on J and 1 is continuous on an interval U that
contains the sum of the intervals h (I) + k(J), while A and B have the spectral
resolutions

A:/ItdE(t) andB:/Jde(s).



SOME PROPERTIES OF TENSORIAL PERSPECTIVE 5

For f = | — 1| we get
P (A4,B)=[A®1-1® B|.
Consider the g-logarithm defined by

q

wl”9-1 .
- ifg#1,

Ingu =
Inw if ¢ =1.
For g # 1 we define
(2.9) Phn, o (A, B) = (1@ B)In, ((A® 1) (1 @B)*l)
(A9 "(1®B)-1®B
= = ,

Let f be a continuous function defined on the interval I of real numbers, B a self-
adjoint operator on the Hilbert space H and A a positive invertible operator on H.
Assume that the spectrum Sp (A’l/zBA’lm) C I. Then by using the continuous
functional calculus, we can define the perspective Py (B, A) by setting

Py (B, A) = A2 (A*1/2BA*1/2) A2,
If A and B are commutative, then
Pr(B,A)=Af (BA™Y)

provided Sp (BAfl) cl.
It is well known that (see for instance [8]), if f is an operator convex function
defined in the positive half-line, then the mapping

(B,A) — Ps(B,A)

defined in pairs of positive definite operators, is operator convewz.
The following inequality is also of interest, see [12]:

Theorem 1. Assume that f is nonnegative and operator monotone on [0,00). If
A>C>0and B> D >0, then

(2.10) Py (A,B) > P (C, D).
We can state the following result for the tensorial perspective:

Theorem 2. If f is an operator convex function defined in the positive half-line,

then Pg,o 1s operator convex in pairs of positive definite operators as well. If
A>C>0and B> D >0, then also

(2.11) Pt (A, B) > Pje (C, D).

Proof. Assume f is an operator convez function in the positive half-line. Since A®1
and 1 ® B are commutative, hence

(212)  Ppe(AB) =(1®B)f ((A 21)(1® B)_1> —P;(A®1,1® B)

for A, B > 0.
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If A, B,C, D>0and A € [0,1], then we have
Proo (1= X) (4, B) + A(C. D))
=Pre (1—XA)A+XC,(1-X) B+ AD))
=Pr((1-=XNA+XC)®1,1® ((1 =) B+ AD))
=P (1-NAR1+AMC®1,(1-N1®B+A®D)
=P;r(1-N(A®1L,1@B)+A(C®1,1® D))
<(1-MNP;(A®1,1®B)+ \P; (C®1,1® D)
— (1= 2 Pr.e (4, B) + AP; .5 (C, D),
which shows that Py,g is operator convex in pairs of positive definite operators.
fA>C>0and B>D >0,then A®1>C®1>0and1®B>1®D >0.
By utilizing Theorem 1 we derive that
Pr(A®1,1@B)>P; (C®1,1® D).
By utilizing the representation (2.12) we derive the desired result (2.11). O

3. MAIN RESULTS

Suppose that I is an interval of real numbers with interior I and f:I—=Ris
a convex function on I. Then f is continuous on I and has finite left and right
derivatives at each point of I. Moreover, if x,y € I and z < y, then f’ (z) <
fi(x) < fL(y) < fy (y) which shows that both f’ and f are nondecreasing
function on 1. It is also known that a convex function must be differentiable except
for at most countably many points.

For a convex function f : I — R, the subdifferential of f denoted by Jf is the

set of all functions ¢ : I — [—00, 00| such that ¢ (I) C R and
(3.1) f@)>f(a)+ (x—a)p(a) for any x,a € I.

It is also well known that if f is convex on I, then Jf is nonempty, f’, fi € 0f
and if ¢ € 9f, then

fL(x) <@(x) < fL(x) for any z € 1.

In particular, ¢ is a nondecreasing function.
If f is differentiable and convex on I, then df = {f'}.

Theorem 3. Assume that f is conver on (0,00), A, B > 0 and u € (0,00) while
p € df, then

(3.2) Pre (A, B) = [f (u) —¢(w)u] (1@ B) + ¢ (u) (A®1).
Moreover, if [ is differentiable, then
(3.3) Prio(A,B) 2 [f (u) = f (W)ul (1@ B) + f' (u) (A® 1),

for all A, B> 0 and u € (0,00).
Proof. By the gradient inequality we have
(3-4) f@) = fu)+ (@ —u)p(u)

for all z, u € (0,00).
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If we take 2 = £ in (3.4), then we get

(35) F(E)zrwe(t-u)ew

for all ¢, s > 0.
If we multiply (3.5) by s > 0, then we get

(3.6) sf (t) > sf (u) + 9 () (¢ — us)

for all £, s > 0.
We consider the spectral resolutions of A and B given by

A= tdE (t) and B = sdF (s).
[0,00) [0,00)

If we take in (3.6) the integral [i; ) [, ) over dE (t) ® dF (s), then we get

/[O,OO) /[Om) st (£)apwwar

Z/[OOO)/[OOO) [sf (u) + ¢ (u) (t — us)| dE (t) @ dF (s)

(u) /[o,oo) /[o,oo) sdE (t) @ dF (s)
+ ¢ (u) [/[Om) /[o,oo) tdE (t) @ dF (s) — u/[o)oo) /[o,oo) sdE (t) ® dF (s)

=fw)(1@B)+¢)(A®1—-ul@ B)
and by the representation (2.7) we get the desired inequality (3.2). O

Corollary 1. With the assumptions of Theorem 8 and for x, y € H with ||z| =
llyl| = 1, we have

B7)  (Pre(4B)(xey),z0y) = [f(u) — ¢ (u)u] (By,y) + ¢ (u) (Az, z),
for all u > 0.
If f is differentiable, then

(3-8)  (Prw (A B)(z®@y),x@y) = [f (u) — [ (u)u] (By,y) + [’ (v) (Az, z).

In particular, if we take u = égz Z> in (3.7) then we get the Jensen’s type in-
equality of interest
(Ppw (A B)(z@y),x@y) _ . ((Az,z)
(3.9) > f
(By,y) (By,y)
Proof. If we take the tensorial inner product over z ® y in (3.2), then we get
(3.10) < w(A4,B)(z@y),z®y)
fw){1®B)(z®y),zy)
<p(u) (A1 -ul®B)(z®Y),xQYy)
=fw({1eB)(z®y),zdy)
TeW (A1) (zey),20y) -—u(l®B(@®y),z0y)].



8 S.S. DRAGOMIR

Observe that for x, y € H with ||z|| = |ly]| = 1, we have

(leB)(rey),z0y) =((lr® By),z®y)
= (1z,2) (By,y) = ||=||* (By,y) = (By,y)

and

(A1) (z®y),zRy) = (Az® ly,z® y)
= (Az,2) (1y,y) = (Az,2) ||y||* = (A=z,z)

and by (3.10) we deduce (3.7).

If we take u = Egiii in (3.7), then we get

which gives (3.9). O

Corollary 2. Assume that f is convex on (0,00), 0 < m < A, B < M for some
constants m, M and ¢ € Of, then

(3.11) Prie (A, B) > [f( 2 2

+¢<m;M>(A®1)

and, if f is differentiable,

m+M> _(p<m+M> m+M} (1©B)

(312)  Pro(A,B)2 [f (

+f’<m;M)(A®1).

m—l—M) _f,<m+M)m—|—M

5 5 ](1®B)

Also

(3.13)  Pr,e(A,B)> (
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Proof. If we take the integral mean in (3.2), then we get

M
(3.14) Pro (A B) > <M1_m £ du> (1& B)
M

+ (J\/Il—m/m @(u)du) (A®1)

_<M1m @(u)udu) (1®B).

m

Observe that, since ¢ € 9P, hence

1 M f (M) — f(m)
M-m /), M—m

and

M M
s | wede= [uf(U)lﬁf f(U)dU]

_ Mf (M) —mf(m) I

Therefore

M M
<M£m/m f(u)du) (1®B)+<M1m/m cp(u)du) (A®1)
M
( m/ v (u udu) (1® B).

(LU0 =S ) (g

M—-—m
+<MQm/m f(u)du—Mf(A]@)_;zf(m)>(1®B)

and by (3.14) we obtain (3.13). O

Theorem 4. Assume that [ is continuously differentiable convex on (0,00), A,
B >0 and u € (0,00), then

(3.15) Pt (A, B) < f(u) (1® B) + Pg (A, B) — uPp 5 (A, B)

where for a continuous function g on (0,00),

(3.16) ! .o (A, B) /000 /000 tg( ) E (t) @ dF (s)

=(A®1)g(A®B™")
=(A®1)g((A®1)(1®B)‘1).

Proof. By the gradient inequality we have
(3.17) f@) < fu)+@—u)f(2)

for all z, u € (0,00).
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If we take 2 = £ in (3.17) and multiply with s, then we get

)z ()-or()

for all t, s € (0,00) .
We consider the spectral resolutions of A and B given by

A= tdE (t) and B = sdF (s).
[0,00) [0,00)
If we take in (3.18) the integral f[o 00) f[o o) OVer dE () @ dF (s) , then we get
t
(3.19) / / of () dE (1) @ dF (s)
[0,00) /[0,00) &

< f(w /[Om) /[Om) SdB (1) @ dF (s)
+/[Om) /[O’Oo) £ (z) dE (1) © dF (s)
- u/[o,oo) /[O,oo) sf! (i) dE (t) ® dF (s),

which gives the desired inequality (3.15). O

Corollary 3. With the assumptions of Theorem 4 and for x, y € H with ||z| =
llyl| = 1, we have

(3'20) <Pf7® (A7B) (33‘ ® y) TR y>
< f () (By.y)+ (Pl (4,B) (r@y) o0 y)
—u(Pre (4,B) (z0y),z2y),

for all u > 0.
In particular, if we take u = EgzZ; in (3.7) then we get the Jensen’s type in-
equality of interest

<Pf7® (A,B) (z®y),z®yY) . (Az, z)
(3:21) 0= (By,y) (Eo)
(Plo (A, B) (@ y),20y)
<
B (By,y)
(Azx, x)

_ m@f,@ (A,B)(z®y),z®y).

Corollary 4. With the assumptions of Theorem 4 and if 0 <m < A, B < M for
some constants m, M, then

M
(3.22) Pro(am (™5
- m+M
2

>(1®B)+P},,® (A, B)

Pire (A, B)
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and
1 M
(3.23) Prro (4, B) < ( [ i du) (1&B)
+Phe(48) - " Mp,  (4,B).

We also have:

Theorem 5. Assume that f is convex on (0,00), A, B > 0 with spectra Sp (A) C I,
Sp (B) C J and such that 0 <~ <L <T fort eI ands € J, then

(3.24) Prio (A, B) < [f (u) —up (u)] (1® B) +¢(u) (Ax 1)
+[L@ = FfL (MA@l -u(leB)|

foru € [v,T] and ¢ € Of.

Proof. Observe that, by the gradient inequality we have

(3.25) f@) < fu)+ (@ —u)p(z)
=fw)+@-—ue+@—u)lp) - e )

for z, u > 0 and ¢ € Jf.
Since ¢ is monotonic nondrecreasing, then

0< (f'(2) = f () (& —u) = [(f () = f' () (z — v)|
=1 @) = @lle—ul < [f2(0) = fL (] |z = ul,

for z, u € [y,T'] and by (3.25)
(3.26) f@) < fu)+ @ —u)e )+ [f2 () = f (V)] |z —ul

for z, uw € [v,T7].
If we take in (3.26) = £ and multiply with s, then we get

o) s (L) S sr - us) e+ (7 ) - 7 )] -

for t, s > 0 with £, u € [,T].
We consider the spectral resolutions of A and B given by

A:/ItdE(t) andB:/Jde(s).

If we take in (3.18) the integral [, [, over dE (t) ® dF (s), then we get
t
/I/Jsf <S> dE (t) ® dF (s)
< f(u)/l/]sdE(t) ®dF(s)—l—go(u)/l/J(t—us)dE(t)@dF(s)
S m=ro) [ [ e-uslieoear ),

which, as above, gives the desired result (3.24). O
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Corollary 5. With the assumptions of Theorem & and for x, y € H with ||z| =
llyl| = 1, we have

(3.28) (Pre (4, B) (z@y),z@y)

< [f (w) = up (W] (By,y) + (Az, z) ¢ (u)

+H[L O -] (A®l-u(l@B)|(z@y),z®y)
for all u € [v,T7].

In particular, if we take u =
Jensen’s inequality

(Az,x)
(By,y)

€ [v,T] in (3.28) then we get the reverse of

(Prio (A, B)(z@y),x0y) (Azx, x)
(3.29) 0< Ve oo —f <<By’y>>
< /L@ = f ()]
1 (Az, )
g <<By7y> ‘A®1_ By LEP) ($®y)7w®y>.

4. SOME EXAMPLES
Consider the function II, (u) = u" — 1, w > 0, r > 1, then by (3.3) we get
(4.1) P, e (A,B) >ru (Ao 1)~ [(r—1)u" +1](1® B),

for A, B> 0 and u > 0.
If there exist the constants my, My, mo and M, with
(42) 0<m1§A§M1,m2§B§M2,
then we can take in Theorem 5 v = 77 and I' = M and from (3.24) we derive
2 ma

(4.3) P o (A,B) <A®1—[r—1)u +1](1® B)

o)) e

For z, y € H with ||z|| = ||y|]| = 1, we have by (3.9) that

(4.4) <PH7-7®(A7B)($®:U)>$®y> > ((A{L’,.%‘))T_l
(By,y) ~ \(By,y)
for A, B > 0.
If the condition (4.2) is satisfied, then by (3.29) we get
(Pr.e (A, B)(z0y), z0y) (<A$,$>>r
4.5 0< — 41
5 (By,y) (By,y)

() -G )

1 (Az, )
X({—|A®1— 1® B
<<By,y> ’ (By,y) teh)
for x, y € H with ||z|| = |ly|]| = 1.
If we take the convex function f = (-)In(-), then we get by (3.3) that
(4.6) Poymye (A,B) > (nu+1)(Ax1) -u(l® B),
for A, B> 0 and u > 0.

(m®y%x®y>
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By (3.9) we obtain
(Piym(yse (A, B) (z@y),z@y) L ((Az.z)
(Az,2) = (i)

for z, y € H with ||z|| = |ly|]| = 1.
If the condition (4.2) is satisfied, then by (3.24) we obtain

(4.7)

(4.8) P(~)1n(~)a® (A, B) < (lnu + 1) (A & 1) —u (1 & B)
+in (MlM?> A®1—u(l®B)
momy
for u € [%, %

From (3.29) we also derive

(Pomye (4 B) (@@y) v @y) | ((Az,z)
(4.9) 0< s ! <<By’ >
My My
<In <m2m1 )

(Azx, x)
AR1-— 7<By,y> (1® B)

X 1 (zRy),z®

— x , X

(Az, ) Y Y
for z, y € H with ||z|| = ||y|| = 1.

By choosing other convex functions, one can derive several similar inequalities.
The details are omitted.
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