
SOME PROPERTIES OF TENSORIAL PERSPECTIVE FOR
CONVEX FUNCTIONS OF SELFADJOINT OPERATORS IN

HILBERT SPACES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Let H be a Hilbert space. Assume that f : [0;1)! R is contin-
uous and A; B > 0: We de�ne the tensorial perspective for the function f and
the pair of operators (A;B) by

Pf;
 (A;B) := (1
B) f
�
A
B�1

�
:

In this paper we show among others that, if f is di¤erentiable convex, then

Pf ;
 (A;B) �
�
f (u)� f 0 (u)u

�
(1
B) + f 0 (u) (A
 1) ;

for A; B > 0 and u > 0: Moreover, if Sp (A) � I; Sp (B) � J and such that
0 <  � t

s
� � for t 2 I and s 2 J; then

Pf ;
 (A;B) �
�
f (u)� f 0 (u)u

�
(1
B) + f 0 (u) (A
 1)

+
�
f 0� (�)� f 0+ ()

�
jA
 1� u (1
B)j

for u 2 [;�] :

1. Introduction

Let I1; :::; Ik be intervals from R and let f : I1 � ::: � Ik ! R be an essentially
bounded real function de�ned on the product of the intervals. Let A = (A1; :::; An)
be a k-tuple of bounded selfadjoint operators on Hilbert spaces H1; :::;Hk such that
the spectrum of Ai is contained in Ii for i = 1; :::; k: We say that such a k-tuple is
in the domain of f . If

Ai =

Z
Ii

�idEi (�i)

is the spectral resolution of Ai for i = 1; :::; k; by following [2], we de�ne

(1.1) f (A1; :::; Ak) :=

Z
I1

:::

Z
Ik

f (�1; :::; �1) dE1 (�1)
 :::
 dEk (�k)

as a bounded selfadjoint operator on the tensorial product H1 
 :::
Hk:
If the Hilbert spaces are of �nite dimension, then the above integrals become

�nite sums, and we may consider the functional calculus for arbitrary real functions.
This construction [2] extends the de�nition of Korányi [7] for functions of two
variables and have the property that

f (A1; :::; Ak) = f1(A1)
 :::
 fk(Ak);
whenever f can be separated as a product f(t1; :::; tk) = f1(t1):::fk(tk) of k func-
tions each depending on only one variable.
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It is know that, if f is super-multiplicative (sub-multiplicative) on [0;1), namely

f (st) � (�) f (s) f (t) for all s; t 2 [0;1)

and if f is continuous on [0;1) ; then [10, p. 173]

(1.2) f (A
B) � (�) f (A)
 f (B) for all A; B � 0:

This follows by observing that, if

A =

Z
[0;1)

tdE (t) and B =
Z
[0;1)

sdF (s)

are the spectral resolutions of A and B; then

(1.3) f (A
B) =
Z
[0;1)

Z
[0;1)

f (st) dE (t)
 dF (s)

for the continuous function f on [0;1) :
Recall the geometric operator mean for the positive operators A; B > 0

A#tB := A1=2(A�1=2BA�1=2)tA1=2;

where t 2 [0; 1] and

A#B := A1=2(A�1=2BA�1=2)1=2A1=2:

By the de�nitions of # and 
 we have

A#B = B#A and (A#B)
 (B#A) = (A
B)# (B 
A) :

In 2007, S. Wada [13] obtained the following Callebaut type inequalities for ten-
sorial product

(A#B)
 (A#B) � 1

2
[(A#�B)
 (A#1��B) + (A#1��B)
 (A#�B)](1.4)

� 1

2
(A
B +B 
A)

for A; B > 0 and � 2 [0; 1] :
Assume that f : [0;1)! R is continuous and A; B > 0:We de�ne the tensorial

perspective for the function f and the pair of operators (A;B)

Pf;
 (A;B) := (1
B) f
�
A
B�1

�
:

Motivated by the above results, in this paper we show among others that, if f
is di¤erentiable convex, then

Pf ;
 (A;B) � [f (u)� f 0 (u)u] (1
B) + f 0 (u) (A
 1) ;

for A; B > 0 and u > 0: Moreover, if Sp (A) � I; Sp (B) � J and such that
0 <  � t

s � � for t 2 I and s 2 J; then

Pf ;
 (A;B) � [f (u)� f 0 (u)u] (1
B) + f 0 (u) (A
 1)
+
�
f 0� (�)� f 0+ ()

�
jA
 1� u (1
B)j

for u 2 [;�] :
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2. Some Preliminary Facts

Recall the following property of the tensorial product

(2.1) (AC)
 (BD) = (A
B) (C 
D)

that holds for any A;B;C;D 2 B (H) :
If we take C = A and D = B; then we get

A2 
B2 = (A
B)2 :

By induction and using (2.1) we derive that

(2.2) An 
Bn = (A
B)n for natural n � 0:

In particular

(2.3) An 
 1 = (A
 1)n and 1
Bn = (1
B)n

for all n � 0:
We also observe that, by (2.1), the operators A
 1 and 1
B are commutative

and

(2.4) (A
 1) (1
B) = (1
B) (A
 1) = A
B:

Moreover, for two natural numbers m; n we have

(2.5) (A
 1)m (1
B)n = (1
B)n (A
 1)m = Am 
Bn:

According with the properties of tensorial products and functional calculus for
continuous functions of selfadjoint operators, we have

Pf ;
 (A;B) = (1
B) f
�
(A
 1) (1
B)�1

�
= f

�
(A
 1) (1
B)�1

�
(1
B)

= f
�
(1
B)�1 (A
 1)

�
(1
B) ;

due to the commutativity of A
 1 and 1
B:
In the following, we consider the spectral resolutions of A and B given by

(2.6) A =

Z
[0;1)

tdE (t) and B =
Z
[0;1)

sdF (s) :

We have the following representation result for continuous functions:

Lemma 1. Assume that f : [0;1)! R is continuous and A; B > 0; then

(2.7) Pf ;
 (A;B) =
Z
[0;1)

Z
[0;1)

sf

�
t

s

�
dE (t)
 dF (s) :

Proof. By Stone-Weierstrass theorem, any continuous function can be approxi-
mated by a sequence of polynomials, therefore it su¢ ces to prove the equality
for the power function ' (t) = tn with n any natural number.
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We have thatZ
[0;1)

Z
[0;1)

s'

�
t

s

�
dE (t)
 dF (s)

=

Z
[0;1)

Z
[0;1)

s

�
t

s

�n
dE (t)
 dF (s)

=

Z
[0;1)

Z
[0;1)

tns1�ndE (t)
 dF (s)

= An 
B1�n = An 
BB�n = (1
B)
�
An 
B�n

�
= (1
B)

�
A
B�1

�n
= P';
 (A;B) ;

which shows that (2.7) holds for the power function.
This proves the lemma. �

We assume in the following that A; B > 0:
If we consider the function �r (u) = ur � 1; u � 0; r > 0; then we have

P�r;
 (A;B) := (1
B)�r
�
A
B�1

�
= (1
B)

h�
A
B�1

�r � 1i
= (A
 1)r (1
B)1�r � 1
B:

If we take f = � ln (�) ; then we get
P� ln(�);
 (A;B) := � (1
B) ln

�
A
B�1

�
= � ln

�
(1
B)�1 (A
 1)

�
(1
B)

= (1
B) [ln (1
B)� ln (A
 1)] :

If we take f = (�) ln (�) ; then we get
P(�) ln(�);
 (A;B) := (1
B)

�
A
B�1

�
ln
�
A
B�1

�
= (A
 1) [ln (A
 1)� ln (1
B)] :

If we take f = j� � �j ; � 2 R, then

Pj���j;
 (A;B) =
Z
[0;1)

Z
[0;1)

s

���� ts � �
���� dE (t)
 dF (s)

=

Z
[0;1)

Z
[0;1)

jt� �sj dE (t)
 dF (s)

= jA
 1� �1
Bj ;

where for the last equality we used the result obtained in [6],

(2.8)  (h (A)
 1 + 1
 k (B)) =
Z
I

Z
J

 (h (t) + k (s)) dE (t)
 dF (s) ;

here A and B are selfadjoint operators with Sp (A) � I and Sp (B) � J; h is
continuous on I; k is continuous on J and  is continuous on an interval U that
contains the sum of the intervals h (I) + k (J) ; while A and B have the spectral
resolutions

A =

Z
I

tdE (t) and B =
Z
J

sdF (s) :
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For f = j� � 1j we get

Pj��1j;
 (A;B) = jA
 1� 1
Bj :

Consider the q-logarithm de�ned by

lnq u =

8<:
u1�q�1
1�q if q 6= 1;

lnu if q = 1:

For q 6= 1 we de�ne

Plnq;
 (A;B) := (1
B) lnq
�
(A
 1) (1
B)�1

�
(2.9)

=
(A
 1)1�q (1
B)q � 1
B

1� q :

Let f be a continuous function de�ned on the interval I of real numbers, B a self-
adjoint operator on the Hilbert space H and A a positive invertible operator on H:
Assume that the spectrum Sp

�
A�1=2BA�1=2

�
� �I: Then by using the continuous

functional calculus, we can de�ne the perspective Pf (B;A) by setting

Pf (B;A) := A1=2f
�
A�1=2BA�1=2

�
A1=2:

If A and B are commutative, then

Pf (B;A) = Af
�
BA�1

�
provided Sp

�
BA�1

�
� �I:

It is well known that (see for instance [8]), if f is an operator convex function
de�ned in the positive half-line, then the mapping

(B;A) 7! Pf (B;A)

de�ned in pairs of positive de�nite operators, is operator convex.
The following inequality is also of interest, see [12]:

Theorem 1. Assume that f is nonnegative and operator monotone on [0;1): If
A � C > 0 and B � D > 0; then

(2.10) Pf (A;B) � Pf (C;D) :

We can state the following result for the tensorial perspective:

Theorem 2. If f is an operator convex function de�ned in the positive half-line,
then Pf ;
 is operator convex in pairs of positive de�nite operators as well. If
A � C > 0 and B � D > 0; then also

(2.11) Pf ;
 (A;B) � Pf ;
 (C;D) :

Proof. Assume f is an operator convex function in the positive half-line. Since A
1
and 1
B are commutative, hence

(2.12) Pf ;
 (A;B) = (1
B) f
�
(A
 1) (1
B)�1

�
= Pf (A
 1; 1
B)

for A; B > 0:
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If A; B; C; D > 0 and � 2 [0; 1] ; then we have

Pf ;
 ((1� �) (A;B) + � (C;D))
= Pf ;
 (((1� �)A+ �C; (1� �)B + �D))
= Pf (((1� �)A+ �C)
 1; 1
 ((1� �)B + �D))
= Pf ((1� �)A
 1 + �C 
 1; (1� �) 1
B + �1
D)
= Pf ((1� �) (A
 1; 1
B) + � (C 
 1; 1
D))
� (1� �)Pf (A
 1; 1
B) + �Pf (C 
 1; 1
D)
= (1� �)Pf ;
 (A;B) + �Pf ;
 (C;D) ;

which shows that Pf ;
 is operator convex in pairs of positive de�nite operators.
If A � C > 0 and B � D > 0; then A
 1 � C 
 1 > 0 and 1
B � 1
D > 0:

By utilizing Theorem 1 we derive that

Pf (A
 1; 1
B) � Pf (C 
 1; 1
D) :

By utilizing the representation (2.12) we derive the desired result (2.11). �

3. Main Results

Suppose that I is an interval of real numbers with interior �I and f : I ! R is
a convex function on I. Then f is continuous on �I and has �nite left and right
derivatives at each point of �I. Moreover, if x; y 2 �I and x < y; then f 0� (x) �
f 0+ (x) � f 0� (y) � f 0+ (y) which shows that both f 0� and f 0+ are nondecreasing
function on �I. It is also known that a convex function must be di¤erentiable except
for at most countably many points.
For a convex function f : I ! R, the subdi¤erential of f denoted by @f is the

set of all functions ' : I ! [�1;1] such that '
�
�I
�
� R and

(3.1) f (x) � f (a) + (x� a)' (a) for any x; a 2 I:

It is also well known that if f is convex on I; then @f is nonempty, f 0�, f
0
+ 2 @f

and if ' 2 @f , then

f 0� (x) � ' (x) � f 0+ (x) for any x 2 �I.

In particular, ' is a nondecreasing function.
If f is di¤erentiable and convex on �I, then @f = ff 0g :

Theorem 3. Assume that f is convex on (0;1), A; B > 0 and u 2 (0;1) while
' 2 @f; then

(3.2) Pf ;
 (A;B) � [f (u)� ' (u)u] (1
B) + ' (u) (A
 1) :

Moreover, if f is di¤erentiable, then

(3.3) Pf ;
 (A;B) � [f (u)� f 0 (u)u] (1
B) + f 0 (u) (A
 1) ;

for all A; B > 0 and u 2 (0;1) :

Proof. By the gradient inequality we have

(3.4) f (x) � f (u) + (x� u)' (u)

for all x; u 2 (0;1) :
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If we take x = t
s in (3.4), then we get

(3.5) f

�
t

s

�
� f (u) +

�
t

s
� u
�
' (u)

for all t; s > 0:
If we multiply (3.5) by s > 0; then we get

(3.6) sf

�
t

s

�
� sf (u) + ' (u) (t� us)

for all t; s > 0:
We consider the spectral resolutions of A and B given by

A =

Z
[0;1)

tdE (t) and B =
Z
[0;1)

sdF (s) :

If we take in (3.6) the integral
R
[0;1)

R
[0;1)

over dE (t)
 dF (s) ; then we getZ
[0;1)

Z
[0;1)

sf

�
t

s

�
dE (t)
 dF (s)

�
Z
[0;1)

Z
[0;1)

[sf (u) + ' (u) (t� us)] dE (t)
 dF (s)

= f (u)

Z
[0;1)

Z
[0;1)

sdE (t)
 dF (s)

+ ' (u)

"Z
[0;1)

Z
[0;1)

tdE (t)
 dF (s)� u
Z
[0;1)

Z
[0;1)

sdE (t)
 dF (s)
#

= f (u) (1
B) + ' (u) (A
 1� u1
B)
and by the representation (2.7) we get the desired inequality (3.2). �

Corollary 1. With the assumptions of Theorem 3 and for x; y 2 H with kxk =
kyk = 1; we have
(3.7) hPf ;
 (A;B) (x
 y) ; x
 yi � [f (u)� ' (u)u] hBy; yi+ ' (u) hAx; xi ;
for all u > 0:
If f is di¤erentiable, then

(3.8) hPf ;
 (A;B) (x
 y) ; x
 yi � [f (u)� f 0 (u)u] hBy; yi+ f 0 (u) hAx; xi :

In particular, if we take u = hAx;xi
hBy;yi in (3.7) then we get the Jensen�s type in-

equality of interest

(3.9)
hPf ;
 (A;B) (x
 y) ; x
 yi

hBy; yi � f

�
hAx; xi
hBy; yi

�
:

Proof. If we take the tensorial inner product over x
 y in (3.2), then we get
hPf ;
 (A;B) (x
 y) ; x
 yi(3.10)

� f (u) h(1
B) (x
 y) ; x
 yi
+ ' (u) h(A
 1� u1
B) (x
 y) ; x
 yi
= f (u) h(1
B) (x
 y) ; x
 yi
+ ' (u) [h(A
 1) (x
 y) ; x
 yi � u h1
B (x
 y) ; x
 yi] :
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Observe that for x; y 2 H with kxk = kyk = 1; we have

h(1
B) (x
 y) ; x
 yi = h(1x
By) ; x
 yi
= h1x; xi hBy; yi = kxk2 hBy; yi = hBy; yi

and

h(A
 1) (x
 y) ; x
 yi = hAx
 1y; x
 yi
= hAx; xi h1y; yi = hAx; xi kyk2 = hAx; xi

and by (3.10) we deduce (3.7).
If we take u = hAx;xi

hBy;yi in (3.7), then we get

hPf ;
 (A;B) (x
 y) ; x
 yi

�
�
f

�
hAx; xi
hBy; yi

�
� '

�
hAx; xi
hBy; yi

�
hAx; xi
hBy; yi

�
hBy; yi

+ '

�
hAx; xi
hBy; yi

�
hAx; xi

= f

�
hAx; xi
hBy; yi

�
hBy; yi ;

which gives (3.9). �

Corollary 2. Assume that f is convex on (0;1), 0 < m � A; B � M for some
constants m; M and ' 2 @f; then

Pf ;
 (A;B) �
�
f

�
m+M

2

�
� '

�
m+M

2

�
m+M

2

�
(1
B)(3.11)

+ '

�
m+M

2

�
(A
 1)

and, if f is di¤erentiable,

Pf ;
 (A;B) �
�
f

�
m+M

2

�
� f 0

�
m+M

2

�
m+M

2

�
(1
B)(3.12)

+ f 0
�
m+M

2

�
(A
 1) :

Also

Pf ;
 (A;B) �
�
f (M)� f (m)

M �m

�
(A
 1)(3.13)

+

 
2

M �m

Z M

m

f (u) du� Mf (M)�mf (m)
M �m

!
(1
B) :
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Proof. If we take the integral mean in (3.2), then we get

Pf ;
 (A;B) �
 

1

M �m

Z M

m

f (u) du

!
(1
B)(3.14)

+

 
1

M �m

Z M

m

' (u) du

!
(A
 1)

�
 

1

M �m

Z M

m

' (u)udu

!
(1
B) :

Observe that, since ' 2 @�; hence
1

M �m

Z M

m

' (u) du =
f (M)� f (m)

M �m
and

1

M �m

Z M

m

u' (u) du =
1

M �m

"
uf (u)jMm �

Z M

m

f (u) du

#

=
Mf (M)�mf (m)

M �m � 1

M �m

Z M

m

f (u) du:

Therefore 
1

M �m

Z M

m

f (u) du

!
(1
B) +

 
1

M �m

Z M

m

' (u) du

!
(A
 1)

�
 

1

M �m

Z M

m

' (u)udu

!
(1
B) :

=

�
f (M)� f (m)

M �m

�
(A
 1)

+

 
2

M �m

Z M

m

f (u) du� Mf (M)�mf (m)
M �m

!
(1
B)

and by (3.14) we obtain (3.13). �

Theorem 4. Assume that f is continuously di¤erentiable convex on (0;1), A;
B > 0 and u 2 (0;1) ; then

(3.15) Pf ;
 (A;B) � f (u) (1
B) + Pyf 0 ;
 (A;B)� uPf 0 ;
 (A;B) ;

where for a continuous function g on (0;1) ;

Pyg ;
 (A;B) :=
Z
[0;1)

Z
[0;1)

tg

�
t

s

�
dE (t)
 dF (s)(3.16)

= (A
 1) g
�
A
B�1

�
= (A
 1) g

�
(A
 1) (1
B)�1

�
:

Proof. By the gradient inequality we have

(3.17) f (x) � f (u) + (x� u) f 0 (x)
for all x; u 2 (0;1) :
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If we take x = t
s in (3.17) and multiply with s, then we get

(3.18) sf

�
t

s

�
� sf (u) + tf 0

�
t

s

�
� usf 0

�
t

s

�
for all t; s 2 (0;1) :
We consider the spectral resolutions of A and B given by

A =

Z
[0;1)

tdE (t) and B =
Z
[0;1)

sdF (s) :

If we take in (3.18) the integral
R
[0;1)

R
[0;1)

over dE (t)
 dF (s) ; then we getZ
[0;1)

Z
[0;1)

sf

�
t

s

�
dE (t)
 dF (s)(3.19)

� f (u)

Z
[0;1)

Z
[0;1)

sdE (t)
 dF (s)

+

Z
[0;1)

Z
[0;1)

tf 0
�
t

s

�
dE (t)
 dF (s)

� u
Z
[0;1)

Z
[0;1)

sf 0
�
t

s

�
dE (t)
 dF (s) ;

which gives the desired inequality (3.15). �

Corollary 3. With the assumptions of Theorem 4 and for x; y 2 H with kxk =
kyk = 1; we have

hPf ;
 (A;B) (x
 y) ; x
 yi(3.20)

� f (u) hBy; yi+
D
Pyf 0 ;
 (A;B) (x
 y) ; x
 y

E
� u hPf 0 ;
 (A;B) (x
 y) ; x
 yi ;

for all u > 0:
In particular, if we take u = hAx;xi

hBy;yi in (3.7) then we get the Jensen�s type in-
equality of interest

0 � hPf ;
 (A;B) (x
 y) ; x
 yi
hBy; yi � f

�
hAx; xi
hBy; yi

�
(3.21)

�

D
Pyf 0 ;
 (A;B) (x
 y) ; x
 y

E
hBy; yi

� hAx; xi
hBy; yi2

hPf 0 ;
 (A;B) (x
 y) ; x
 yi :

Corollary 4. With the assumptions of Theorem 4 and if 0 < m � A; B � M for
some constants m;M , then

Pf ;
 (A;B) � f

�
m+M

2

�
(1
B) + Pyf 0 ;
 (A;B)(3.22)

� m+M

2
Pf 0 ;
 (A;B)
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and

Pf ;
 (A;B) �
 

1

M �m

Z M

m

f (u) du

!
(1
B)(3.23)

+ Pyf 0 ;
 (A;B)�
m+M

2
Pf 0 ;
 (A;B) :

We also have:

Theorem 5. Assume that f is convex on (0;1), A; B > 0 with spectra Sp (A) � I;
Sp (B) � J and such that 0 <  � t

s � � for t 2 I and s 2 J; then

Pf ;
 (A;B) � [f (u)� u' (u)] (1
B) + ' (u) (A
 1)(3.24)

+
�
f 0� (�)� f 0+ ()

�
jA
 1� u (1
B)j

for u 2 [;�] and ' 2 @f:

Proof. Observe that, by the gradient inequality we have

f (x) � f (u) + (x� u)' (x)(3.25)

= f (u) + (x� u)' (u) + (x� u) [' (x)� ' (u)]

for x; u > 0 and ' 2 @f:
Since ' is monotonic nondrecreasing, then

0 � (f 0 (x)� f 0 (u)) (x� u) = j(f 0 (x)� f 0 (u)) (x� u)j
= jf 0 (x)� f 0 (u)j jx� uj �

�
f 0� (�)� f 0+ ()

�
jx� uj ;

for x; u 2 [;�] and by (3.25)

(3.26) f (x) � f (u) + (x� u)' (u) +
�
f 0� (�)� f 0+ ()

�
jx� uj

for x; u 2 [;�] :
If we take in (3.26) x = t

s and multiply with s, then we get

(3.27) sf

�
t

s

�
� sf (u) + (t� us)' (u) +

�
f 0� (�)� f 0+ ()

�
jt� usj

for t; s > 0 with t
s ; u 2 [;�] :

We consider the spectral resolutions of A and B given by

A =

Z
I

tdE (t) and B =
Z
J

sdF (s) :

If we take in (3.18) the integral
R
I

R
J
over dE (t)
 dF (s) ; then we getZ

I

Z
J

sf

�
t

s

�
dE (t)
 dF (s)

� f (u)

Z
I

Z
J

sdE (t)
 dF (s) + ' (u)
Z
I

Z
J

(t� us) dE (t)
 dF (s)

+
�
f 0� (�)� f 0+ ()

� Z
I

Z
J

jt� usj dE (t)
 dF (s) ;

which, as above, gives the desired result (3.24). �
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Corollary 5. With the assumptions of Theorem 5 and for x; y 2 H with kxk =
kyk = 1; we have

hPf ;
 (A;B) (x
 y) ; x
 yi(3.28)

� [f (u)� u' (u)] hBy; yi+ hAx; xi' (u)
+
�
f 0� (�)� f 0+ ()

�
hjA
 1� u (1
B)j (x
 y) ; x
 yi

for all u 2 [;�] :
In particular, if we take u = hAx;xi

hBy;yi 2 [;�] in (3.28) then we get the reverse of
Jensen�s inequality

0 � hPf ;
 (A;B) (x
 y) ; x
 yi
hBy; yi � f

�
hAx; xi
hBy; yi

�
(3.29)

�
�
f 0� (�)� f 0+ ()

�
�
�

1

hBy; yi

����A
 1� hAx; xihBy; yi (1
B)
���� (x
 y) ; x
 y� :

4. Some Examples

Consider the function �r (u) = ur � 1; u � 0; r � 1, then by (3.3) we get
(4.1) P�r ;
 (A;B) � rur�1 (A
 1)� [(r � 1)ur + 1] (1
B) ;
for A; B > 0 and u > 0:
If there exist the constants m1; M1; m2 and M2 with

(4.2) 0 < m1 � A �M1;m2 � B �M2;

then we can take in Theorem 5  = m1

M2
and � = M1

m2
and from (3.24) we derive

P�r ;
 (A;B) � A
 1� [(r � 1)ur + 1] (1
B)(4.3)

+ r

 �
M1

m2

�r�1
�
�
m1

M2

�r�1!
jA
 1� u (1
B)j :

For x; y 2 H with kxk = kyk = 1; we have by (3.9) that

(4.4)
hP�r ;
 (A;B) (x
 y) ; x
 yi

hBy; yi �
�
hAx; xi
hBy; yi

�r
� 1

for A; B > 0:
If the condition (4.2) is satis�ed, then by (3.29) we get

0 � hPf ;
 (A;B) (x
 y) ; x
 yi
hBy; yi �

�
hAx; xi
hBy; yi

�r
+ 1(4.5)

� r

 �
M1

m2

�r�1
�
�
m1

M2

�r�1!

�
�

1

hBy; yi

����A
 1� hAx; xihBy; yi (1
B)
���� (x
 y) ; x
 y�

for x; y 2 H with kxk = kyk = 1:
If we take the convex function f = (�) ln (�) ; then we get by (3.3) that

(4.6) P(�) ln(�);
 (A;B) � (lnu+ 1) (A
 1)� u (1
B) ;
for A; B > 0 and u > 0:
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By (3.9) we obtain

(4.7)



P(�) ln(�);
 (A;B) (x
 y) ; x
 y

�
hAx; xi � ln

�
hAx; xi
hBy; yi

�
for x; y 2 H with kxk = kyk = 1:
If the condition (4.2) is satis�ed, then by (3.24) we obtain

P(�) ln(�);
 (A;B) � (lnu+ 1) (A
 1)� u (1
B)(4.8)

+ ln

�
M1M2

m2m1

�
jA
 1� u (1
B)j

for u 2
h
m1

M2
; M1

m2

i
:

From (3.29) we also derive

0 �


P(�) ln(�);
 (A;B) (x
 y) ; x
 y

�
hAx; xi � ln

�
hAx; xi
hBy; yi

�
(4.9)

� ln
�
M1M2

m2m1

�
�
�

1

hAx; xi

����A
 1� hAx; xihBy; yi (1
B)
���� (x
 y) ; x
 y�

for x; y 2 H with kxk = kyk = 1:
By choosing other convex functions, one can derive several similar inequalities.

The details are omitted.
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