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Abstract

Here we present multivariate quantitative approximations of Banach
space valued continuous multivariate functions on a box or RV, N € N,
by the multivariate normalized, quasi-interpolation, Kantorovich type and
quadrature type neural network operators. We treat also the case of ap-
proximation by iterated operators of the last four types. These approx-
imations are derived by establishing multidimensional Jackson type in-
equalities involving the multivariate modulus of continuity of the engaged
function or its high order Fréchet derivatives. Our multivariate operators
are defined by using a multidimensional density functions induced by sev-
eral different among themselves general sigmoid functions. This is done
on the purpose to activate as many as possible neurons. The approxima-
tions are pointwise and uniform. The related feed-forward neural network
is with one hidden layer. We finish with related L, approximations.
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1 Introduction

The author in [2] and [3], see chapters 2-5, was the first to establish neural net-
work approximations to continuous functions with rates by very specifically de-
fined neural network operators of Cardaliagnet-Euvrard and ” Squashing” types,
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by employing the modulus of continuity of the engaged function or its high or-
der derivative, and producing very tight Jackson type inequalities. He treats
there both the univariate and multivariate cases. The defining these operators
"bell-shaped” and ”squashing” functions are assumed to be of compact sup-
port. Also in [3] he gives the Nth order asymptotic expansion for the error of
weak approximation of these two operators to a special natural class of smooth
functions, see chapters 4-5 there.

For this article the author is motivated by the article [13] of Z. Chen and F.
Cao, also by [4], [5], [6], [7], [8], [9], [10], [11], [12], [15], [16].

The author here performs multivariate multiple general sigmoid functions
based neural network approximations to continuous functions over boxes or
over the whole RV, N € N. Also he does iterated and L, approximations.
All convergences here are with rates expressed via the multivariate modulus of
continuity of the involved function or its high order Fréchet derivative and given
by very tight multidimensional Jackson type inequalities.

The author here comes up with the ”right” precisely defined multivariate
normalized, quasi-interpolation neural network operators related to boxes or
RY, as well as Kantorovich type and quadrature type related operators on
RY. Our boxes are not necessarily symmetric to the origin. In preparation
to prove our results we establish important properties of the basic multivariate
density functions induced by multiple general sigmoid functions and defining
our operators.

Feed-forward neural networks (FNNs) with one hidden layer, the only type
of networks we deal with in this article, are mathematically expressed as

n
N,L(a:)zz:cja((aj-@—!—bj), zeR’, seN,
=0

where for 0 < j < n, b; € R are the thresholds, a; € R® are the connection
weights, ¢; € R are the coefficients, (a; - ) is the inner product of a; and z,
and o is the activation function of the network. In many fundamental network
models, the activation function is a general sigmoid function, but here we use a
multiple number of them simultaneously for the first time, so we can activate a
maximum number of neurons. About neural networks read [17], [18], [19].

2 Basics

Let i = 1,...N € N and h; : R — [-1,1] be a general sigmoid function,
such that it is strictly increasing, h; (0) = 0, h; (—x) = —h; (z), h; (+00) = 1,
hi (—o0) = —1. Also h; is strictly convex over (—oo, 0] and striclty concave over
[0, +00), with &{*) € C (R, [~1,1)).



We consider the activation function

v, (@) ::%(hi @+ —hi(@—1), 2€R, i=1,..,N. (1)

As in [11], p. 285, we get that v, (—z) = 9, (x), thus 1), is an even function.
Since x +1 >z — 1, then h; (x + 1) > h; (x — 1), and ¢, (z) > 0, all z € R.
We see that

¥, (0)="""L i=1,..,N. (2)

Let x > 1, we have that
1
Vi (2) = 7 (i (x +1) = b (z = 1)) <0,

by h’ being strictly decreasing over [0, 4+00).

Let now 0 < x < 1, then 1 —2 >0and 0 < 1 —2 < 1+ . It holds
hi(x —1) = h} (1 —z) > h(x + 1), so that again ¢} (z) < 0. Consequently 1,
is stritly decreasing on (0, +00).

Clearly, 1, is strictly increasing on (—o0,0), and 9} (0) = 0.

See that

. 1
im0 (@) = ¢ (i (+00) = by (+0)) =0, 3)

and 1
dim g, () = 1 (hi (~00) — hi (~00)) = 0. (4)

That is the z-axis is the horizontal asymptote on ;.
Conclusion, % is a bell symmetric function with maximum

‘We need

Theorem 1 We have that

> w—i)=1, YzeR, i=1,.,N. (5)

Proof. As exactly the same as in [11], p. 286 is omitted. m
Theorem 2 It holds
/ Y, (x)de =1, i=1,...,N. (6)
Proof. Similar to [11], p. 287. It is omitted. m

Thus 9, (x) is a density function on R, ¢ = 1,..., N.
We give



Theorem 3 Let 0 < a <1, and n € N with n' = > 2. It holds

S weon< T v )

k=—00
:nw — k| > nlme

Notice that

_h. l—a _
lim (1= hi (nz 2)) —0,i=1,..N.

Proof. Let x > 1. That is 0 < x — 1 < x 4+ 1. Applying the mean value
theorem we get

2 () = M) (®)

Y, (z) =

for some r —1 <& <ax+ 1
Since h} is strictly decreasing we obtain h} (§) < h} (x — 1) and

B~ =

W (x — 1)

¢i(x)<#, Vao>1. (9)
Therefore we have
> b (nz — k) = > ¥; (|nz — k) <

k=—o0 k=—o0

s nx — k| > ntme nx — k| > ntme
1 c- / 1o /
- > B (Inz — k| = 1) < 5 W(x—1)d(z—1)=

(nt=>—1)

k= —o0
:nw — k| > ntme
1

s(hi@-DEE. )= % [hs (+00) — by (n'* —2)] = % (1— by (n'* = 2)).
(10)
The claim is proved. m
Denote by |-] the integral part of the number and by [-] the ceiling of the
number.

We further give

Theorem 4 Let x € [a,b] C R and n € N so that [na] < |nb|. It holds

1
ZL"H ¥, (ne — k) = ¥; (1)

k=[na] 71

Va&é€lab, i=1,..,N. (11)

Proof. As similar to [11], p. 289 is omitted. m



Remark 5 We have that

nb)
lim Y o (nz—k)#£1, i=1,.,N,

k=[na]

for at least some x € [a,b].
See [11], p. 290, same reasoning.

Note 6 For large enough n we always obtain [na] < [nb]. Also a < £ <b, iff

[na] < k < |nb|. In general it holds (by (5))

Lnb)

> imz—k)<1, i=1,..N.

k=[na]
We make

Remark 7 We define

N

Z (21, xn) = Z(x) = sz (), == (21,...,zny) eRY, NeN.

i=1
It has the properties:
(1)
Z () >0, Vo € RV,
(ii)

o0 oo [e.9] [e.9]

Z Z(x—k):= Z Z Z Z(x1—ki,.ozy —ky) =

k=—o00 ki=—o0c0 kg=—00 kny=—00

o] 0o 0o N

(13)

(15)

SIS Hzﬁi(mi—ki):H( :imwm_ki))@l.

k1=—00 ko=—00 kn=—o001i=1 =1 \k;=—

Hence -
Y Z@-k) =1
k=—o0

That is

(iii)

> Zmz-k)=1, Vo eRY; neN.
k=—o0

And

(16)



(i)
/RN Z (z)dx = /RN <ﬂ ¥; (%)) dry..dry = 1]_:[1 (/_O:O ¥, (wl)dxz) (8) 1,

i=1
(18)
thus

/ Z(a)da = 1, (19)
RN

that is Z is a multivariate density function.
Here denote ||z := max {|z1], ..., |zn]|}, z € RY, also set 0o := (00, ..., 00),
—00 := (—00, ..., —00) upon the multivariate context, and

{na] = ([naﬂ PRRES) [naN])a

[nb] := (|nb1], ..., [nbN]),

where a := (a1, ...,an), b:= (b1, ...,bn).
We obuviously see that

Lnb] [nb] N
Z Z (nx — k) = Z <H1/1i (nxz; — k1)> =

k=[na] k=[na] \i=1

¥; (nw; — k,-)) =111 D ¢itnwi—k)|. (20)

=1 \k;=[na;|

DS

ki=[na1] kn=[nan]

For0< B <1andn €N, a fivedx € RN, we have that

[nb1 ] [nbn | ( N

1=

Lnb)
Z Z(nx—k) =
k=[na]
[nb] |nb]
> Z (nx — k) + > Z (nx — k). (21)
{ k= [na] { k= [na)
15 =2l < 5 e

In the last two sums the counting is over disjoint vector sets of k’s, because
the condition H% — x”oo > n% implies that there exists at least one %T — xT’ >
n%, where r € {1,..., N}.

(v) We notice that

Lnb) [nb1 ] [nbn | N
Z Z(nx—k) = Z Z <H¢i (”%—&)) _

{ k= |—7’LG,-| ki=[na1] kn=[nan] \i=1

k_ a1
1% —ll o>



3
IS
[

N
H Y, (nw; — ki) | <
i=1 { kz = [naﬂ )

1% =2l > 5

gy W= k. = [na,|
o>
[nby]
Y, (nx, — k) | < (22)
k. = [na,]
Z ¥, (nx, — k) = Z ¥, (nx, — k) <
k, = —o0 k, = —o0
% - wr| > nlﬁ |nx, — k.| > ni—8
1—h,(ntP -2 1- =5 _2
-2 (lmm o2
2 ie{1,...,N} 2

where 0 < < 1.
That is we get:

[nb] 1—
> Z(nx—k) < maxN}<1_hi(n2 ﬁ_2)>, (23)

0<p<1l, withnGN:nl’ﬂ>2,V:E€H£il[ai,bi].
(vi) It is clear that

o0 b (1B _
Z Z(nx—k) < maXN} (1 i 5 2)> , (24)
(T

0<B<1,nEN:nl_B>2,Va:€]_[?i1[ai,bi].



(viii) By Theorem / we get that

1 1 1
O =

<
b nb, N )
ZIEH [Jmﬂ (nz — k) HZ\; ( kiil[Jnm V; (na; — 7,)) [[=, ¥ (1)

thus 1 1
0< < (25)

ZII;’Lana-\ (TLJZ - k) Hi\il wi (1)’

Vae (HiN:1 [ai,bi]), neN.
Furthermore it holds

[nb] N [nb; ]
lim Z Z (nx — k) = lim H Z Y, (nz; — ki) | = (26)
k=[na] =1 \ki=[na;]
N Lnb,]
H lim Z v (n; — ki) | #1,
i1\ ki=[na;]

N
for at least some = € (Hi:l [ai, bz]) .
We state

Definition 8 We denote by

b (n1-B —
oy (B,n) ;== max (1 hi ( B 2)> ) (27)

ie{l,...,.N}

where 0 < B < 1.
We make
Remark 9 Here (X, H||,y> is a Banach space.

Let f € C (Hi\;l [ai,bi],X>, x = (1,...,TN) € Hivzl [a;,b;], n € N such
that [na;] < |nb;|, i=1,...,N.

We introduce and define the following multivariate linear normalized neural
network operator (v = (x1,...,TN) € (Hfil (@i, bl]))

Ztnbjna ( ) Z (nx — k)
An (fyz1,.zy) = Ay (f,2) = k [LnI]J =
> Z (nx — k)
k=[na]
Elﬁ:ﬁnal] Zkg:fnuﬂ ZkN [nan] ( no T) (Hi:1 ,[/)l (nxi - kz))
N [nb; ]
| Y ( ki=[na;] v, (na; — k; )
1<

For large enough n € N we always obtain [na;
a; < ljl < b, iff [na;| <k; < |nb;],i=1,..,N.

. (28)

[nbi], i = 1,..,N. Also



When g € C (Hz 1 lai, bz]) we define the companion operator

T ZlEanna] ( ) Z (TZIIT - k)

Ay (g,x) = ~ (29)
i et Z (2 = K)
Clearly ﬁn is a positive linear operator. We have that
~ N
A, (Lz)=1, Vz e (H [ai,bi]> .
i=1
Notice that A, (f) € C (TT; lai,bi], X ) and A, (9) € C (TTX, lai,bi])
Furthermore it holds
Lan
k [nal ||f(n)|| k) ~
[An (f,2)]l, < =4 (£l 2), (30)
Y Z[E’anna_‘ (’I’L.’I} _ k) ( Y )
Vze Hf\/:l [ai,bi] .
N
Clearly ||fIl, € C (T, [as: b))
So, we have that
l4n (£ @), < A (711, 2) (31)
Vo el aib], VneNV feC (T o b], X).
Let ce X and g C (Hi:l [a;, b ]) then cg € C (H2 1 lag, by ,X) .
Furthermore it holds
Ay (cg, @) = Ay (g,2), vﬂ:eﬂaz, il (32)
Since A,, (1) =1, we get that
Ap(c)=¢, VceX. (33)

We call ;1” the companion operator of A,,.
For convinience we call

[nb]
A5 (fox) = > f(> (ne — k) =

k=[na]

nb]  nbs] L TN
P D f(nn> (qui(miki)), (34)
i=1

ki=[nai]| ka=[naz] kn=[nan]



Vae (HiN:l [ai,bi]).

That is
Ay (frz) = —— b (35)
S ) Z (na = k)
Ve (Hf\il [ai,bi]), n € N.
Hence
A (foa) — f (@) (S8 2 Z (ne — k)
A, (f.2) — f (2) = W,J( il ) (36)

Do ra] Z (nx — k)

Consequently we derive

25) (N ! Lnb)
14, (f.2) — F @), 2 (Hwiu)) Afr) - f@) Y Zma—h)| |

i=1 k=[na]
(37)
v o e (TI, o b))
We will estimate the right hand side of (37).
For the last and others we need

Definition 10 ([11], p. 274) Let M be a convex and compact subset of (RN, ||||p> ,
p € [1,00], and (X, H||7) be a Banach space. Let f € C (M, X). We define the

first modulus of continuity of f as

wi (f,0):= sup  [If(x) = F(®)l,, 0<0<diam(M). (38)
z,y € M :
= yll, <o

If 6 > diam (M), then
w1 (fa 6) = w1 (.f7 diam (M)) : (39)

Notice wy (f,d) is increasing in 6 > 0. For f € Cp (M, X) (continuous and
bounded functions) wy (f,d) is defined similarly.

Lemma 11 ([11], p. 274) We have w1 (f,0) = 0 asd | 0, iff f € C(M,X),
where M is a convex compact subset of (RN, H-||p), p € [l,].

Clearly we have also: f € Cy (RN , X ) (uniformly continuous functions),

iff wy(f,6) — 0 as § | 0, where w; is defined similarly to (38). The space
Cp (RN , X ) denotes the continuous and bounded functions on RY.

10



When f € Cp (RN,X) we define,

B, (f,z) == By (f,21,...;aN) = i f (:) Z (nx — k) :=

k=—o0
N
ki=—00 ko=—0o0 kn=—00 i=1

n €N,V azecRY, N €N, the multivariate quasi-interpolation neural network
operator.

Also for f € Cp (RN , X ) we define the multivariate Kantorovich type neural
network operator

Cp (f,x) :=Cn (f,z1,....zN) == Z <nN/€nf(t)dt> Z (nx —k) =

k=—o0

[e’¢) e’} [e%s) k1+1 k2+1

kl;kaEW Z ( / / / f(tl,...,tN)dtl...dtN)

kEn
—_ n

N
(H ¥, (nx; — k;) ) (41)
=1

Again for f € Cp (]RN , X ) , N € N, we define the multivariate neural net-
work operator of quadrature type D,, (f,z), n € N, as follows

Let 0 = (01,....,0n) € NV, r = (rq,.
0

neN, VzeRY,

N _
W TN) € LY, wr = Wy,

ra,..ry = 0, such
01 62 On
that S we.= Y > o > Wy en =1; k€ ZYN and
r=0 r1=07r2=0 rny=0

4 k r
(577, (f) = 5n, 1.ka, kN (f) = E w'r‘f ( + ) _
' S = n  nd

01 02
k k k
Z Z Z w"'lﬁ’fz’ ’FNf ( : i 72 + %7"'77]\] + Tév) ) (42)
T = 07’2 0 TN= =0 n n 2 n n N
where = (31,32, .., 52 ).
We set
Dn (f7.’IJ) = -Dn (faxla“'uajN) = Z 5nk (f)Z(nx—k): (43)
k=—o0
o0 0 00 N
Z Z Z 5n7k1,k2,‘--,kN (f) (H "/}z (TLLCZ - kl)) )
ki1=—00 ka=—00 kn=—00 =1

11



vV eRY,

In this article we study the approximation properties of A,,B,,C,, D,
neural network operators and as well of their iterates. That is, the quantitative
pointwise and uniform convergence of these operators to the unit operator I.

3 Multivariate general sigmoid Neural Network
Approximations

Here we present several vectorial neural network approximations to Banach
space valued functions given with rates.
We give

Theorem 12 Let f € C (Hfil [a;, b;] ,X), 0<p<l, xe€ (vazl [ai,bi]),
N,n € N with n'=? > 2. Then
1)
[An (f,2) = f @), <

(ﬁwz—ﬂ))_l [wl <f, nlﬁ) + 2% (,) anVHOJ o), (4

i=1
and
J
140 () = 71, <2 (45)

Il
We notice that lim A, (f) =" f, pointwise and uniformly.
n—oo

Above wy is with respect to p = oo and the speed of convergence is
max (n%, ON (5,71)) .

Proof. As similar to [12] is omitted. Use of (37). =
We make

Remark 13 (/11], pp. 263-266) Let (RN, H’Ilp), N € N; where ||-|, is the L,-

norm, 1 < p < co. RY is a Banach space, and (RN)J denotes the j-fold product

space RN x ... xRN endowed with the max-norm [zl (gryi = max [z, where
1Ay b

z = (T1,...,x;) € (RN)j.
Let (X, ||||ﬂ{) be a general Banach space. Then the space Lj := L; ((RN)] ;X)

of all j-multilinear continuous maps g : (RN)j — X, j=1,...,m, is a Banach

space with norm

lg (=)l

— 46
Y R

lgll = llgll,, = sup  [lg(@)ll, = sup

qu(RN)j =1

12



Let M be a non-empty convex and compact subset of R¥ and xoy € M is fized.

Let O be an open subset of RN : M C O. Let f : O — X be a continuous
function, whose Fréchet derivatives (see [20]) f9) : O — L; = L; ((RN)] ;X)
exist and are continuous for 1 <j <m, m € N.

Call (z — x0) = (x — xg, ..., & — x0) € (RNY, 2 € M.

We will work with f|a.

Then, by Taylor’s formula ([13]), ([20], p. 124), we get

flz)= i 1V (””O)j(f —w) g (z,20), allz € M, (47)
Jj=0 )

where the remainder is the Riemann integral

Ry, (z,20) := /0 % (f(m) (zo +u(z — ) — f( (xo)) (x — z0)"" du,

(m—1)
(48)
here we set fO) (z0) (x — 20)° = f (20) .
We consider
wimwr (f0) = swp |10 (@) - 1 ()| (49)
z,yeEM:
lz—yll,<h
h > 0.
We obtain
| (7 oo = w0)) = £ w0) (& = 20)"| <
£ (o + (@ = w0)) = £ (o) |- llz = ol <
m [ullz = ol
w ||z — ol [hp—‘ ) (50)
by Lemma 7.1.1, [1], p. 208, where [-] is the ceiling.
Therefore for all x € M (see [1], pp. 121-122):
m M el —zoll,] (1 —w)™ !
o (w0l < vl =zl [ [0 | G
=, (|2 = ao]],) (51)

by a change of variable, where

1 g (1] — gy o
@m(t);z/o {ﬂ (t(Ln—)l)!dszni! ;O(m—jh)f , VteR, (52)

13



is a (polynomial) spline function, see [1], p. 210-211.
Also from there we get

o < ‘t|m+1 |t‘m h|t|’m—1 Vt R -
m S\ G m T o Tty ) VEER (53)

with equality true only at t = 0.
Therefore it holds

| R (2, 20)||, < w lz = wolly ™l = wolly” B — ol VaoeM
m AT H0]Hly = (m+1)!h 2m! 8(m—1)! |’ '
(54)
We have found that
" FGD () (x — 20)
flay -y e m
i=0 I ,
m—+1 m m—1
- - hlz — o
(m) h, H.’I,' $0||p ||x wollp P
“1 (f ’ ) ( O T 2m T smon ) <o (59)

Yz, xg € M.

Here 0 < wy (f(m), h) < 00, by M being compact and f(™ being continuous
on M.

One can rewrite (55) as follows:

™G (20 (- — 20)]
RN Sr Ot I

|
i=0 I ,
m+1 m m—1
- ol il ol
) (1=l = ol p N
“1 (f ’ )( (m+1)h T o + 8(m —1)! Vo € M, (56)

a pointwise functjonal inequality on M.
Here (- — z0)” maps M into (RN)J and it is continuous, also fU) (x¢) maps
(RN) into X and it is continuous. Hence their composition fU) (z) (- — z0)’

18 continuous from M into X.
m D () (—w0)? m D (o) (—wa)
Clearly f (1)=>_j=0 W € C(M,X), hence Hf () =2 =0 W’
C(M).
Let {EN}N N be a sequence of positive linear operators mapping C (M) into
€
C(M).

Therefore we obtain

€
5

_ mG) () (o — )
P S e I E
=0 ' ,

14



L = o™ ( L —zol|™) ) (z
o (70 (Zx (I (mjnlp) : )) @) N (Zx (1 2mo!n,, )) (@)
" du (”8( xﬁ;.l)) =, (57)

VNEN,V xe M.

Clearly (57) is valid when M = H [a;,b;] and L, = A,,, see (29).

All the above is preparation for the following theorem, where we assume
Fréchet differentiability of functions.

This will be a direct application of Theorem 10.2, [11], pp. 268-270. The
operators A,, A, fulfill its assumptions, see (28), (29), (31), (32) and (33).

We present the following high order approximation results.

N
Theorem 14 Let O open subset of (RN, ||||p) , p € [1,00], such that [] [a:,b;] C
i=1

O C RY, and let (X, ||H7> be a general Banach space. Let m € N and f €
C™(0,X), the space of m-times continuously Fréchet differentiable functions

from O into X. We study the approximation of f| x . Letzg € (H [a;, 7]>
1] [ai, L] =1
and r > 0. Then l
1)
1
= 9 (z —x x <
(An ;0]( o (19 @0) (- = 20)) ) ()

v

m—+1 o #
P m (7i21)
- (A (1 =20l *")) @)
1 r - mr?
-+ — 58
|:(m+1)+2+ 8}’ (58)
2) additionally if ) (z9) =0, j = 1,...,m, we have

1(An (f)) (z0) = [ (o)l <

o (A (o)) )

(59)




and
4)
4. (5 = 11 Aow <
H[ 1bi]
Sl el |
< j! Tloo,zo€ [] [ai,bi]
i=1
1
(m) A . m+1 i
w1 (f , T H(An (H -'EOHp )) (330) oo,ﬁoelﬁl[ai’bi])
rm!
H( (” _ 0Hm+1>) (z0) (TL)N (61)
oo,xoe_];[l[ai,bi]
1 e
m+1) 2" 8|
‘We need

~ N
Lemma 15 The function (An (|| - xo”;n)) (z0) is continuous in xg € <H (@i, b¢]> ,
i=1
m € N.

Proof. By Lemma 10.3, [11], p. 272. =
We make

Remark 16 By Remark 10.4, [11], p. 278, we get that

(AT .
(& (1= woly*)) (o)

forallk=1,...m

IN

( mlil )
N )
00,20€ [] [as,bs]
i=1

16



We give

Corollary 17 (to Theorem 14, case of m = 1) Then
1)

HII(An(f))—fHWHOO,Nai <

[

N
Tlloo,zo€ [] [ai,bi]
=1

e (AR =)

0611:[ [au i
[ (A (1= 2012)) o) 1ere (64)
" o p o OO,CEoell—VI[ai,bi] " 4 ’
i=1

r > 0.

‘We make

Remark 18 We estimate (0 < a <1, m,n € N:n!=* > 2),

~ Lnbl —x||" z (nzo — k) (25)

nb
Z,E Hna (nxo —k)

N [nb] L m+1
(H 0, (1)) > ~ = Z (nzo — k) = (65)
=1 k=[na] ©

N ! Lnd] k m+1
(H ( (U) Z Hn — T Z (nwog — k) +

oo




[nb]

Z HS:CO Z (nxog — k)
{ k= [na >
I = ol > 7
N -1 1
<H Y, (1)> {na(mﬂ) + 0N (o, n) [[b— a”;r:rl} , (66)

(where b —a = (by — a1, ....by —an)).

N
We have proved that (V xo € [] [ai, bi])
i=1

A (I = 2ol (o) <

N -1
(_Hw)) { o + v tam o= alZ L =) (o7

O<a<l,mneN:nl=>2)
And, consequently it holds

|40 (1 = @l (o)

<

N
00,x0€ [] [ai,bs]
i=1

N —1
1 m
(H o (U) {mm) T on (@) b - a||oo“} — 1 (n) =0, asn— +ox.
=1

(68)
So, we have that ¢, (n) — 0, as n — +oo. Thus, when p € [1,00], from
Theorem 14 we have the convergence to zero in the right hand sides of parts (1),

(2)-
Neat we estimate H (/Tn (f(j) (xo) (- — xo)j)) (:no)H .
We have that !

Sk 19 (o) (£ = w0) Z (nag — )

(A (9 (@0) (- = 20)") ) (w0) = S 7 (nay — k)

k=[na]
(69)
When p = o0, j = 1,...,m, we obtain
: k J : k J
F9 (xo) ( - 300) < Hf(J) (!EO)H ‘ — Zo (70)
n n -
2l
We further have that
~ _ . (25)
| (A (19 @) (- = 20)') ) @0)|| <
.

18



2
N
)
8
o
|
=
~
IN

AN ;
(H ¥; (U) ( % Hfu) (%)H H —xo|| Z(nwo — k)) = (71)
k=[na] o0
N -1 b] k J
(Hzpi (1)) HfU) (a:o)H ( > Hn — x| Z(nao— k)) =
= k=[na] o0
-1 Lnb) i j
(o) o]} 5 [Eea] z00-n

Lnb] J 28
+ > Hk —xo||  Z(nwo—k) (g) (72)
{ k = [na] >
I = ol > 7

N -1
(Hw (1)) [ £9 @o) {nl + 3 (a,m) b= allio} — 0, as n— cc.

That is B A
H (An (f(j) (zo) (- — xo)J)) (JUO)H7 — 0, as n — oo.

Therefore when p = oo, for j =1,...,m, we have proved:

[ (A (79 @o) (= 20)) ) o) <

(f[ Y, (1)) 7 Hf(j) (xo)H {niﬂ +0on (o,n)||b— a||Joo} < (73)

1 .
s rov@niv-aif = ey 0 <o

(Tw) [

and converges to zero, as n — 0.

We conclude:
In Theorem 14, the right hand sides of (69) and (61) converge to zero as

n — oo, for any p € [1, 00].
Also in Corollary 17, the right hand sides of (63) and (64) converge to zero

as n — oo, for any p € [1,00].
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Conclusion 19 We have proved that the left hand sides of (58), (59), (60),
(61) and (63), (64) converge to zero as n — oo, for p € [1,00]. Consequently
Ay — I (unit operator) pointwise and uniformly, as n — oo, where p € [1,00].
In the presence of initial conditions we achieve a higher speed of convergence,
see (59). Higher speed of convergence happens also to the left hand side of (58).

We give

Corollary 20 (to Theorem 14) Let O open subset of (RN ,||||.), such that
N
H [ai,bi] € O CRY, and let <X II1I ) be a general Banach space. Let m € N

and f e C™(0,X), the space of m-times continuously Fréchet differentiable
functions from O into X. We study the approzimation of f| . Let xp €

[ai,b;
i=1

N
(H [ai,bi]> and v > 0. Here 1 (n) as in (67) and py; (n) as in (73), where
i=1
neN:nl= @ >2 0<a<l,j=1,..,m. Then

1)
()= 35 (a0 (1 2 = 20) ) )| =

wi (£, 7 () (n)) 7o _m_ 1 r omr?
( — ) () | s e
2) additionally, if f9) (x0) =0, j = 1,...,m, we have
1(An () (x0) = f (zo)l, <
wi (£, (py () ™50 wy[ 1 m?
( — )(so1<n>><m+l>[(m+1)+2+ . ] (75)

3)

e 5= 11 0 S fj Pu )

wi (0,7 (i ()7

) (1 (n))(757) (76)

rm)!
! +I g mr (n) =0, asn — oo
—_— = —— | =: - — — 00.
(m+1) 2 8 ¥ ’

We continue with

20



Theorem 21 Let f € Cpg (RN7X), 0<pB <1, zeRN NneN with
n' =8 > 2, wy is for p=oo. Then

1)
1
1B (£.0) £ @), < n (£ 5 ) + 28w G 71, | =) 71
2)
[1Bu () =111, =22 ). (78)
Given that f € (CU (RN,X) NCg (RN,X)), we obtain nlLH;an (f) = f, uni-
formly. The speed of convergence above is max (#, on (B, n)) .

Proof. As similar to [12] is omitted. m
We give

Theorem 22 Let f € Cp (]RN,X), 0< B <1, zeRNY NneN with
n'=P > 2, wy is for p=oo. Then

1)
[Ca(f.0) = £ @), < or (5.5 4 5 )+ 20w ) 111, = da o), (79

g
16 (=11, _ < 2s ). (80)

Given that f € (C’U (RN,X) NCg (RN,X)) , we obtain lim C, (f) = f, uni-
formly.

Proof. As similar to [12] is omitted. m
We also present

Theorem 23 Let f € Cp (]RN,X), 0< B <1 zeRY NneN with
n'=P > 2, wy is for p = oco. Then

1
1D, () = £ @I <en (£ ) + 20 (G 11| = Ao, 60

g
[1Dw (1) = 11| < M. (82)

Given that [ € (CU (]RN,X) NCg (RN,X)), we obtain lim D, (f) = f,

uniformly.
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Proof. As similar to [12] is omitted. m
We make

Definition 24 Let f € Cp (RY,X), N € N, where (X, ”H'y) is a Banach

space. We define the general neural network operator

Fo(fx)= > Lu(f)Z(ne—k)=

k=—o00
Bn(f,ﬂ,‘), Zflnk (f) :f(%)ka X
Co(fx), if b (f) =™ [ f () dt, (83)

Clearly l,,i (f) is an X-valued bounded linear functional such that ||l (f)]., <

,<
s |-

Hence F, (f) is a bounded linear operator with HHF” (f)”’YH < H”f”’YH .
We need > Oo

Theorem 25 Let f € Cp (RN, X), N > 1. Then F, (f) € Cp (RY, X).

Proof. Very lengthy and as similar to [12] is omitted. m

Remark 26 By (28) it is obvious that H”A" (f) |7Hoo < H”fH"YHoo < 00, and

=

A, (f)eC ]J—VI [ai,bi],X), given that f € C | [] [ai,bi],X>
j i=1

=1
Call L,, any of the operators A, By, Cyp, Dy,.
Clearly then

122 I = |1 L] < 0 | < e s

etc.
Therefore we get

lizs ol < i vren, (85)

the contraction property.
Also we see that

lzs L < izs ol | << iz o <[] @0

Here Lk are bounded linear operators.
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Notation 27 Here N € N, 0 < 8 < 1. Denote by

ZfL = anc'ranv
1

B ZfL - An7 Bna
%; ZfL _Cn7Dn7

-1 (e
o= {

0. c(fv[ [ai,bi],X>, if Ly = Ay, (59)

=1

CB( N )7 Zan:Bn7C’n)D’ﬂ7

B\H:

and
[ai7 bz] s Zf L, = An;
’ Zan = BnaCnaDn-

@.
==
—

©

S
=

Y =

=
Z

We give the condensed

Theorem 28 Let f€Q,0<B<1,z€Y;n, NeN withn'=% > 2. Then
(i)

1Ln (fi2) = F @), < en [wi (F0 () + 26 (B,

§ ij —:7(n), (91)

where wy 18 for p = oo,
and
(ii)
12w ) = 11| <7 =0, asn— o0 (92)

For f uniformly continuous and in £ we obtain

Tim Ly (f) = f,

pointwise and uniformly.

Proof. By Theorems 12, 21, 22, 23. =
Next we do iterated neural network approximation (see also [9]).
We make

Remark 29 Letr € N and L,, as above. We observe that
Lof=f=(Lof =Lyt f) + (L7 f = L2 f) +
(Lo 2f =Ly f) 4 oo+ (L f = Lo f) + (Luf = f)-
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Then
1z = o < s = el |+ s =z, +
e A N [ St W (LA
2zt @ar = ||+ {|l12672 @t = DIL||+[|l1267° @t = DIL|

oo 1 (Eaf = DU |+ 1t = £ < 1zaf = 1)) 09)

That is

(94)

8

lnzes =g <r|izas - 11,

We give
Theorem 30 All here as in Theorem 28 and r € N, 7(n) as in (91). Then
lzns = £lL|| < e o). (95)
So that the speed of convergence to the unit operator of L) is not worse than of
L.

Proof. By (94) and (92). m
We make

Remark 31 Let my,....m, E N:m; <my < ...<m,, 0< <1, feq.
Then ¢ (m1) > ¢ (m2) > ... > ¢ (m,.), ¢ as in (88).
Therefore

w1 (f, ¢ (m1)) > w1 (fo(m2)) 2 .. 2 wi (f, 0 (my)). (96)
Assume further that m%fﬁ >2,9=1,..,7. Then
On (Bym1) > 0N (B,m2) > ... > 6N (B,my) . (97)

Let L,,, as above, i =1,...,7, all of the same kind.
We write

Lin, (Linyy (w-Ling (L, f))) — f =
Lon, (L, (-Liny (L, £))) = Lo, (Lon,_y (- Loy £)) +
L, (L., (.Liny £)) = L, (L, (o.Ling f)) +
L, (L, (.Ling £)) = Lin, (L, (.Liny f)) + oot (98)
Lon, (Liny_i f) = Lin, f + Lin, f = f =
Lo, (L, _y (Liny)) (L f = f) 4 Lon, (Lo s (-Lig)) (Lo f = ) +

24



Ly, (Lmr—l (Lm4)) (ngf - f) + ...+ L, (Lmr—lf - f) + Ly, f— [

Hence by the triangle inequality property of H””“’H we get
(o]
12, (Eon, oy oL (L £0) = 1L | <
o0

Zm, (Lo, L)) (L
[ ) YO Y o1 I
e A ) Yo S0y 31 N
[z, ot = D[+ 2t = 11|

(repeatedly applying (84))

< W2t = £+ |1Zmaf = 71|+ [12maf = 21|+t

12 st = |+ 1t = 11 = S 1t =11 09)
i=1

That is, we proved

o, s oy Lo £0) = 11| <ZHIIL J=11 - aoo)

We give

Theorem 32 Let f € Q; N, my,mg,....m, E N:m; <mg < ... <m,, 0<
8 < 1; m}fﬁ >2,i=1,..,r,z €Y, and let (L, ..., Lim,.) as (Apmy, ey Am,.)
or (Bmys ey Bm,) o (Ciyy ooty Crn) 07 (Dipnyy ooy D), p = 00. Then

||Lmr (Lmr—l (-oLiny (L mlf)))( ) — f("T)H,Y <
2o, (s oLy L D) = £ | <

<
Y [ (£, (ma)) + 20 (B,ma) 151, || _] <
i=1
rex [wi (£ (m1)) + 26 (B,ma) 151, _] - (101)

Clearly, we notice that the speed of convergence to the unit operator of the mul-
tiply iterated operator is not worse than the speed of Ly, .
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Proof. Using (100), (96), (97) and (91), (92). =
We continue with

Theorem 33 Let all as in Corollary 20, and r € N. Here g (n) is as in (76).
Then
145s = 71| < r||1dns = 71| <75 ). (102)

Proof. By (94) and (76). m
Next we present some L, , p1 > 1, approximation related results.

N
Theorem 34 Letp; > 1, f € C(H [ai,bl—],X>, 0<B<1; N,ne N with
i=1

n'=P > 2 and \; (n) as in (44), w1 is for p=oco. Then

140 (1) = 11,

N 1
N <\ (n b; — a; . 103
e i < (n) (H( )) (103)

i=1

We notice that lim HHA" £ =1l, = 0.

N
P1, 'Hl [ai,bi]

i=

Proof. Obvious, by integrating (44), etc. ®
It follows

Theorem 35 Letp; > 1, f € Cp (RY,X), 0< B <1; N,n € N with n' =% >
2, and wy is for p = 0o; Aa (n) as in (77) and K a compact subset of R™. Then

[1B2 (=111 < 20 155 (104)

where | K| < 0o, is the Lebesgue measure of K.
We notice that lim H”B" (f) = fll, = 0, for f € (Cu (RN, X)NCp (RY, X)).

p1,

Proof. By integrating (77), etc. m
Next come

Theorem 36 All as in Theorem 35, but now we use A3 (n) of (79). Then

J1w ) =11l < 2a ) K75 (105)

We have thatnllrréo“||0n (f) _f”’YHp .= 0, for f € (Cy (RN, X) N Cp (RY, X)) .

Proof. By (79). m
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Theorem 37 All as in Theorem 35, but now we use Ay (n) of (81). Then
1
([ N S WO (L (106)
p1, K
We have that lim_ H”D" (f) — vathK =0, for f € (Cu (RN, X) N Cp (RY, X)) .
Proof. By (81). m

Application 38 A typical application of all of our results is when (X, ||||'v> =

(C,|-]), where C are the complex numbers.
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