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Abstract

Here we present multivariate quantitative approximations of Banach
space valued continuous multivariate functions on a box or RV, N € N,
by the multivariate normalized, quasi-interpolation, Kantorovich type and
quadrature type neural network operators. We examine also the case of
approximation by iterated operators of the last four types. These approx-
imations are achieved by establishing multidimensional Jackson type in-
equalities involving the multivariate modulus of continuity of the engaged
function or its high order Fréchet derivatives. Our multivariate operators
are defined by using a multidimensional density function induced by the
Richard’s curve, which is a generalized logistic function. The approxi-
mations are pointwise, uniform and L,. The related feed-forward neural
network is with one hidden layer.
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1 Introduction

G.A. Anastassiou in [2] and [3], see chapters 2-5, was the first to establish neu-
ral network approximations to continuous functions with rates by very specif-
ically defined neural network operators of Cardaliaguet-Euvrard and ” Squash-
ing” types, by employing the modulus of continuity of the engaged function or
its high order derivative, and producing very tight Jackson type inequalities.
He treats there both the univariate and multivariate cases. The defining these
operators ”bell-shaped” and ”squashing” functions are assumed to be of com-
pact support. Also in [3] he gives the Nth order asymptotic expansion for the
error of weak approximation of these two operators to a special natural class of
smooth functions, see chapters 4-5 there.

Motivations for this work are the article [22] of Z. Chen and F. Cao, and
[4)-[20], [23], [24].

Here we perform multivariate sigmoid function by Richard’s curve ([30])
based neural network approximations to continuous functions over boxes or over
the whole RY, N € N, and also iterated and L, approximations. All conver-
gences here are with rates expressed via the multivariate modulus of continuity
of the involved function or its high order Fréchet derivative and given by very
tight multidimensional Jackson type inequalities.

We come up with the "right” precisely defined multivariate normalized,
quasi-interpolation neural network operators related to boxes or RY, as well as
Kantorovich type and quadrature type related operators on RY. Our boxes are
not necessarily symmetric to the origin. In preparation to prove our results we
establish important properties of the basic multivariate density function induced
by the sigmoid function related to Richard’s curve and defining our operators.
Richard’s curve among others has been used for modeling COVID-19 infection
trajectory [26].

Feed-forward neural networks (FNNs) with one hidden layer, the only type
of networks we deal with in this article, are mathematically expressed as

Nn(x)=chU(<aj-x>—|—bj), xeR’, seN,
=0

where for 0 < j < n, b; € R are the thresholds, a; € R® are the connection
weights, ¢; € R are the coefficients, (a; - ) is the inner product of a; and z,
and o is the activation function of the network. In many fundamental network
models, the activation function is based on the Richard’s curve sigmoid function.
About neural networks see [25], [27], [28].



2 Background

A Richard’s curve is ([30]),

¢ (z) rzeR, p>0, (1)

e

which is strictly increasing on R, and it is a sigmoid function. For small 0 < p <

1 our Richard’s curve, which is a smooth function, is expected to behave better

than the ReLu activation function. We have that ¢ (+00) = 1 and ¢ (—oc0) = 0.
We consider the following activation function

1
Gl)=5(plz+l)-pl@-1), ek (2)
which is G (z) > 0, all z € R.
We have that

Clearly, G (—z) = G (x), and

In [20] we prove that

G’ (x) <0 for z > 0, so that

G () is strictly decrasing on (0, +00).

Clearly, then G () is strictly increasing on (—o0,0), along with G (0) =0.
Also it holds G (00) = G (—o0) = 0.

Conclusion, G is a bell symmetric function with maximum as in (4):

et —1
G (0) 2<€MH),M>0-
We mention
Theorem 1 (/20]) We have
Y G@—i)=1, VzeR (5)
Theorem 2 (/20]) It holds
/ G (2)dz =1, (6)

so that G is a density function.



Theorem 3 (/20]) Let 0 < a < 1, >0 and n € N with n'=* > 2. It holds

(oo}

1
k=—o0
{:|nzk|2n1"‘

Denote by || the integral part of the number and by [-] the ceiling of the
number.

Theorem 4 (/20]) Let [a,b] C R and n € N, so that [na]| < |nb]. It holds

1 4(1+e )
o) < >0 (8)
> G(nz—k)
k=[na]
vV z € [a,b].
We make
Remark 5 (/20])
(i) We have that
Lnd)]
nh_}rr;o krz ] G(nx—k)#1, (9)

for at least some x € [a,b].

(ii) Let [a,b] C R. For large n we always have [na] < |nb]. Also a < % <,
iff Tna] <k < |nb).

In general it holds

[nb]
Y Gna—k) <1 (10)
k=[na]
We introduce
N
Z (@1, .an) =2 () =[G (), z=(21,..,an) eERY, NeN. (11)
i=1
It has the properties:
(i) Z(x) >0, Vo eRY,
(ii)
Yo Z@—k)= > > > Z(wr—ky .oy —ky) =1, (12)
k=—o00 ki=—00 ko=—0o0 kn=—00

where k := (k1,....,k,) € ZN, ¥ 2 € RV,



hence

(iii)

o0

Z Z(nx —k) =1, (13)

k=—o00

/ Z (x)dx =1, (14)
RN

that is Z is a multivariate density function.
Here denote ||z||_ := max {|z1], ..., |zn|}, 2 € RV, also set 0o := (00, ..., 00),
—00 := (=00, ..., —00) upon the multivariate context, and
[na] = (’Vnal—l JRERER) (TLG,NW),
(15)
[nb] := (|nb1], ..., [nbN]),
where a := (ay, ...,an), b:= (b1,...,bn) .
We obviously see that

Lnb] [nb] N
Z Z (nx —k) = Z <HG(ch —kl)> =

k=[na] k=[na] \i=1

[nb1 ] [nbN | N N [nb; |
ooy ( G (na; ki)> =1l >, Goai-k)]|. (16)
1

k1=[na1] kn=[nan] \i= i=1 \k;=[na;]
For 0 < B <1andn €N, a fixed z € R, we have that
[nb]
Z Z (nx —k) =

k=[na]

Lnb] [nb]
Z Z (nx — k) + Z Z (nx —k). (17)
k = [na k = [na]
{I\Z—xl\w<£ﬁ {Hﬁ—fﬂ!lw%}f
In the last two sums the counting is over disjoint vector sets of k’s, because the

kr 1
o] >0,

condition ||% — zzc||oo > ﬁ implies that there exists at least one
where r € {1,...,N}.
(v) As in, Theorem 3 we derive that
o M 1
Z Z(nx—k) < ——5—, 0<B8 <1, pu>0. (18)

en(n=7-2)



withn € N:n!=F >2 2 ¢ vazl [a;, b;] .
(vi) By Theorem 4 we get that

1 4(1+e2m)\"
0< Ztan Z (nz — k) < < 1—e20 ) ’ (19)

k=[na]

w>0,Vaxe (Hl 1 [a“bl]>, n € N.
It is also clear that

(vii)
Z Z(nx—k) < PCI T (20)
{ k=—o0
15 ==l > 77
p>00<pB<l,neN:n'"F>2 zcRV.
Furthermore it holds
Lnb]
nhﬁn;o k; ] Z (nx — k) # 1, (21)

for at least some z € (Hf\il [a;, bl]> .

Here (X, ||||7) is a Banach space.

Let f € C(Hivzl [ai,bi],X> , = (T1,...,TN) € vazl [a;,b;], n € N such
that [na;| < |nb;|,i=1,...,N.

We introduce and define the following multivariate linear normalized neural
network operator (x := (z1,...,xN) € (Hf\il [ai,bi])):

o (E) Z (na — k)
Lo (.21, tn) 1= Lo (f,2) = o] -
> Z (nx — k)
k=[na]
nby nbs nby N
E’li_‘d:Hnal] ZII;QZHHGQ.‘ ZII;N HnaN] (7 ceey T) (Hl 1 G (Tm;‘z — kz))
N nb; .
Hi:l ( IEi:]'JnaJ G (’I’Lﬂ?l - kl))

For large enough n € N we always obtain [na;] < |nb;], i = 1,...,N. Also
a; < % < by, iff [na] < ki < [nbi),i=1,..,N.

When geC (HZ 1 las, bz]) we define the companion operator

E ( ) L Zlianna] 9 ( ) Z (TL(E - k)
n\g, L) = ZLan (naj _ k) .
k=[na]

(23)



Clearly Zn is a positive linear operator. We have that

_ N
L“L@l,Vme(Iﬂwﬂo.

NmMmMmLAﬂeC(HlJ%@LX)deA)eCﬂllmww)

Furthermore it holds

1L (

lléanna-\ ||f( )H

i=1

Z (nx — k)

Lol <

Ve[, [aibi].
N
Clearly | ]|, € C (Hi=1 [aiabi]) .

So, we have that

Let ce X and g € C (Hizl [a;,b }) then ¢g € C (Hl 1 lag, by ,X) .

[ Ln (f %)l

Furthermore it holds

Ln (Cga ) - CL

Since L, (1) = 1, we get that

[nb]
Zk [na'\

<L (I711, ).

VmEHid%M]VnENVfEC(

a1727 )

, ), Vera“ i

L,(c)=¢, VceX.

We call En the companion operator of L,,.

For convenience we call

Lnblj

)SIED DI SR

ki1=[na1] ka=[naz] kn=[nan]

VmG(HlJ%mD.
That is

VxG(H

N
i=1

[nb]

= > f

k=[na]

LanJ LnbNJ

Lo (f,2) =

mhm)neN.

(h

L*

() (ne — k) =
N
ﬁf)(gy;m%—ka>,

(f,x)

2

[nd]
k= Dia]

(nx—k’)’

(26)

(29)



Hence

Li (f,2) — f (2) (K 0 Z (na — k)
Ln(f,x)—f(x): Lnbj( k=[na] )

(30)
Do Fra] Z (nx — k)

Consequently we derive
_ N nb|
a9) (4(14e~2) . L
Ly (f,2) = f ()], < <1_62M Ly, (f.z) — f () ;]Z(naz—k) ;
k=[na

(31)
Yz S (Hzl\il [ai, bi])
We will estimate the right hand side of (31).
For the last and others we need
Definition 6 (/15], p. 274) Let M be a convex and compact subset of (RN, H‘Hp)»
p € [1,00], and (X, H||,y) be a Banach space. Let f € C(M,X). We define the

first modulus of continuity of f as

wi (f,6):= sup |f (@)= fWIl,, 0<d<diam (M). (32)
r,y€eM:
lz —yll, <6

If § > diam (M), then
w1 (f,0) = w1 (f,diam (M)) . (33)

Notice w; (f, ) is increasing in § > 0. For f € Cp (M, X) (continuous and
bounded functions) wy (f,d) is defined similarly.

Lemma 7 ([15], p. 274) We have w1 (f,0) = 0 asd | 0, iff f € C(M,X),
where M is a convex compact subset of (RN, ||||p>, p € [1,00].

Clearly we have also: f € Cy (RN , X ) (uniformly continuous functions),
iff wy (f,0) — 0 as § | 0, where wy is defined similarly to (32). The space
Cp (RN , X ) denotes the continuous and bounded functions on R,

When f € Cp (RN,X) we define,

By (f,2) := By (f,21, . an) = i f <z) Z (nx — k) =

k=—o0

) ¢S] 00 N
DD D f(k1 ke kg) (Ha(mi—ki)>, (34)

ki=—00 ka=—00 kny=—00 =1



n €N,V azecRY, N €N, the multivariate quasi-interpolation neural network

operator.
Also for f € Cp (RY, X) we define the multivariate Kantorovich type neural

network operator

Cn(fax) ::O’IL(f)xla---;xN) = Z <nN/€nf(t)dt>Z(nx—k):

k=—o0 n

k1+1 k2+1 ky+1

i i i ( / / /kN f(tl,...,tN)dtl...dtN>

k1=—00 ko=—00 kny=—o00
N
<HG nx; — k; ) , (35)

i=1

neN, VzeRY,
Again for f € Cp (RN , X ) , N € N, we define the multivariate neural net-

work operator of quadrature type D, (f,z), n € N, as follows.

Let 6 = (61,....0n) € NV, 7 = (r1,...,7n) € ZY, wp = Wy, 1y, > 0, such

0
that > w, = 21: 22: Z Wy gy = 13 k € ZN and

r=0 r1=07r2=0 rny=0

o k r
Onk (f) = On by ko ko (f) 1= ;wrf (n + ne) =
91 92
k'l 7“1 ky 1o kv  rn

Z Z Z Wry,ry,.. TNf( 0 ; @7-“77 + n0N>7 (36)

r1=07r2=0 rny=0
where 5 i= (31,72, 5 ) .

We set

Dy (f,2) := Dy (fi1, - 2n) = 3 Ok (f) Z (nx — k) = (37)

0o 0o 00 N
Z Z Z On ks kasin () (HG(nlizkz)),

klzfoo kngoo szfoo
VzeRY,
In this article we study the approximation properties of L,,B,,C,, D,
neural network operators and as well of their iterates. That is, the quantitative
pointwise and uniform convergence of these operators to the unit operator I.



3 Multivariate Richard’s Curve Neural Network
Approximations
Here we present several vectorial neural network approximations to Banach

space valued functions given with rates.
We give

Theorem 8 Let f € C (HL [as, bi] ,X) 0<B<lu>0,z€ (Hfil [ai,bi}) N,ne
N with n'=# > 2. Then

1)
o2\ 211,
||Ln(f,$)—f($)|7§<4(11_+62ﬂ)) o (o) + iz [ =2 ),
(38)
and
2
lizn )= f1L|_ <. (39)

Il
We notice that lim L, (f) =" f, pointwise and uniformly.
n—oo

Above wy is with respect to p = oo and the speed of convergence is max (niﬁ, ﬁ) =
o
1
w

Proof. We observe that

Lnb]
A)=1L; (f,2) = f(z) > Z(nw—k) =

k=[na]
[nd] i [nb]
Z f(n>Z(nx—k)— Z f@)Z(nx—k)=
k=[na] k=[na]

Thus

10



(13)
Z(nx—k) <

ot PO

1 Lnb] (18)
M IESRT VN N SRS

k = [na]
15 1

—a| >
1y 2|
w1<fv,ﬂ>+M70<ﬁ<l,u>0- (41)
So that
1A @), < e (f 1) i L0 (42)
v = "B en(n1—P—2)

Now using (31) we finish the proof. m
We make

Remark 9 ([15], pp. 263-266) Let (RN, ||-||p>, N € N; where |||, is the Ly-

norm, 1 < p < co. RY is a Banach space, and (RN)J denotes the j-fold product

space RN x ... xRN endowed with the max-norm 2]l (gavys == max [[2xl],, where
1<A<) p

z = (x1,..,z) € (RN)j .

Let (X, ”Hv) be a general Banach space. Then the space V; =V ((RN)] ;X>
of all j-multilinear continuous maps g : (]RN)j — X, 7=1,...,m, is a Banach
space with norm

lg (@)1,

= (43)
1]l - 2],

lgll = llglly, == sup  [lg(2)|l, =sup
|‘$|‘(RN)121

Let M be a non-empty convex and compact subset of RN and xy € M is
fized.

Let O be an open subset of RN : M C O. Let f : O — X be a continuous
function, whose Fréchet derivatives (see [29]) f9) : O — V; =V ((RN)] ;X)
exist and are continuous for 1 <j <m, m € N.

Call (z — x0) = (x — xg, ..., & — x0) € (]RN)J, xeM.

We will work with f|p.

Then, by Taylor’s formula ([21]), ([29], p. 124), we get

f(z)= i 1o (x°>j(,x — %)’ + R (z,20), allz € M, (44)
Jj=0 )

11



where the remainder is the Riemann integral

Ry, (z,x0) == /0 (Gl N (f(m) (o +u(zx—x0)) — fm) (xo)) (x — 20)" du,

(m—1)! 45)
here we set fO) (x0) (x — 20)° = f (o).
We consider
wimw (F,0) = swp | f (@) = £ () (46)
z,yeM:
le—yll,<h
h > 0.
We obtain
| (7 @0+ u(@—w0)) = £ (@0)) (@ —20)"|| <
v
£ (o + (@ = w0)) = £ (o) |- llz = o} <
m [z — o
wlle = aally | 5 . (n
by Lemma 7.1.1, [1], p. 208, where [-] is the ceiling.
Therefore for all x € M (see [1], pp. 121-122):
e - 2ol 7 (1 - wy™!
< — || £
=, (|l = o], (48)

by a change of variable, where

It - g _smfl 0
<I>m(t):=/0 [h](tgm_)l)' —1'(; |t| — jh) ),VteR, (49)

is a (polynomial) spline function, see [1], p. 210-211.
Also from there we get

[ hle™!
< = oy o,
<I>m(t)<(m+1)!h+2m,+8(m_1)! , VteR, (50)

with equality true only at t = 0.
Therefore it holds

+1 1
[l — ol lz = woll," Al — ol

(m+1)h 2m! 8(m —1)!

|Wm@wﬂhﬁw< >,Vx€M.

(51)

12



We have found that

" FD () (x — x0)
7=0

5!
8
m+1 m m—1
- - @ — ol
o) (Il o=l YL
wl(f ’ ((m+1)!h L Y A BT oo, (52)

VYV x,xg € M.

Here 0 < wy (f(m), h) < 00, by M being compact and f™) being continuous
on M.

One can rewrite (52) as follows:

m ) (20) (- — mo)

1l
i=0 I ,
m—+1 m m—1
- ol Bl
(m) h, || ‘r0||p || xOHp P M
w1 (f ’ ) < (m+1)!h T 8(m—1)! |’ Va0 €M, (53)

a pointwise functional inequality on M.
Here (- — x0)’ maps M into (RN and it is continuous, also f9) (xq) maps
(RN) into X and it is continuous. Hence their composition fU) (z) (- — o)’
is continuous from M into X. _ _ »
Clearly f (-)=>"7~ M € C (M, X), hence Hf () =X, M
J! J i
C(M).
Let {gN}N N be a sequence of positive linear operators mapping C' (M) into
c (). ©
Therefore we obtain

S
5

Sn Hf () — jzz f9 (l’o)jg' — o)’ (o) <
Sy (- = zo|™ ")) (2 Sy (- = zo|™)) (=
o (700 (S~ (1 (m+0|1,,) - )) @) N (Sx (1 27;@ )) @)

(8 (= aolly™) ) ao)

8(m —1)! ’ (54)

VNeN,Vaxye M.

13



Clearly (54) is valid when M = H [a;,b;] and S, = L, see (23).

All the above is preparation for the following theorem, where we assume
Fréchet differentiability of functions.

This will be a direct application of Theorem 10.2, [15], pp. 268-270. The
operators Ly, L, fulfill its assumptions, see (22), (23), (25), (26) and (27).

We present the following high order approximation results.

N
Theorem 10 Let O open subset of (RN7 ||'Hp), p € [1,00], such that T] [as,b;] C
i=1

O C RY, and let (X, ||H7) be a general Banach space. Let m € N and f €

C™(0,X), the space of m-times continuously Fréchet differentiable functions

N
from O into X. We study the approximation of f| . Letxg € (H [ai, bl]>
1T [as,b4] i=1

andr > 0. Then
1)

S|

(Ln i ( (fm $0)(—$0)j))($0) <

or (50 (B (1 = 20l )) () ™ .
Sl % L e

1 r o mr?
{(m+1)+2+8}’ (55)
2) additionally if f9) (x9) =0, j = 1,...,m, we have

[(Ln (f)) (x0) = f (o), <

wi (£ ((Zn (I = zoll; ) ) (o) e
( ( (rm! ) ) )((En(-—mo||;"“))<xo>)("”“)

(56)
1 mr?
{(m+1) ++8}’
3)
I(La (£)) (20) = £ @), < i (2 (59 @) ¢ =207 ) )|+

wn (70 (B (I = 207)) (a0)) ™
< (G (rm! ) ) )((En(-—xo||;,"“))<xo>)(m“)

(57)

14



and
4)
L <
12w () = 1, o S
Sl ol |
_7 Tlloo,zo€ [] [ai,b:]
i=1
_1
(m) H _ m—+1 Hm+1
1<f o (T (1 = 2oll*1) ) (o) e Pt
rm)!
| (1 = ol ) o) (59)
00,106’_1:[1[041"171‘]
1 4T +mr2
(m+1) 2 8
‘We need

- N
Lemma 11 The function (Ln (H - x()||;n>) (x0) is continuous in xo € (H [a;, Z])
=1
m € N.

Proof. By Lemma 10.3, [15], p. 272.

Remark 12 By Remark 10.4 [15], p.278, we get that

[ (o (- = ol)) <”30)Hoo,zoeiﬁl[ai,bi] <[ (En (1 = 2ol ) (o) io+e)ﬁ[”] |
(59)
forallk=1,...m
]
We give

Corollary 13 (to Theorem 10, case of m = 1) Then
1)

1L (1)) (o) = £ o)l < | (o (7 (@0) ( = 20)) ) (w0)| +

g (70 (B (1= 0l3)) o) é) (B (1= wl2)) o))" 60

15



2
[1+7’+7ﬂ},

4
and
2)
(L (F) = £1L <
HH v oo,_]j'[l[ai,bi]
fie (s ool | s+
v oo,:L’oE"I:Il[ai,bi]
LI FCo (En (||._x0\|2))(x0) L
2 ’ p 00,z0€ [ [a:,bi]
=1
H(z (II-—w HQ))(;C) N e D (61)
n 0 p 0 oo,IOevljl[ai’bi] 4 ’
r > 0.
We make

Remark 14 We estimate 0 < a <1, p >0, mn € N:nl=% > 2,

S 15 = o 27 Z (o — k) (19

Ly (Il = 2ol Z2™) (o) = n
( ) Z;E brjmﬂ (nao — k)

_ N Lan m+1
4(1+4e 20 k
((162“)> zr: l H” — o Z (nwo — k) = (62)
k=[na 0

m+1
Z (nxg — k) +

e T v =
{ = [na -

1

co — n<

[nd] k m+1 (20)
Z H—xo Z(nxg—k)p <
k = [na >
H% - I.OHoo > nla
—2 N m—+1
41+ R [ .
) e e | (63



(where b —a = (b —ay,....bxy —an)).

N
We have proved that (V xo € [] [ai, bi])
i=1

; . s\ 1 -z
L (Il = 2ol (o) < | = D T gnrgy (A1)

O<a<l,mneN:n'">>2 1>0)
And, consequently it holds

|2 (- =zolz™) @o)| <

oo,woeil;ll [a;,b;)
N
4(1+e %) 1 b — a7 A
I D) + iz (=M (n) =0, asn — +oo.
(65)

So, we have that Ay (n) — 0, as n — 4oo. Thus, when p € [1,00], from
Theorem 10 we have the convergence to zero in the right hand sides of parts (1),

(2).

Next we estimate H (En (f(j) (zo) (- — xo)j)> (xo)H
We have that

Y

Z;Elena] F9 (o) (£ - :co) Z (nxg — k)

Ly (f9 (x0) (- — o)’ ) ) (w0) = "
(L (£ @) (= a0) ) (oo I B
(66)
When p =00, j =1,...,m, we obtain
] J
F9 (xo) (k - xo) < Hf(j) (%)H Hfl — Zo (67)
¥
We further have that
H( (f(]) Zo ( — l’o)j)) ({)30) 5 (1<9)
N )
4(14e20 el j
((1_4_:_%)) ( Z F9) (z0) <Z - xo) Z (nxo — k)) <
k=[na] ~
4 _9 N L b] J
(W) ( 59 @ |5 =0 zenzo-0) = 1o8)
k=[na]
92 Lnbj J
<4(11_+:_2;)> Hf(j) (%)H Z Hfl —ao|| Z(nzo—k)| =
k=[na] o0

17



_ N nb| 1
4 (14 e 20 A L k J
(fE) el [Eea] zeng
(o)
{ k = [na]
HI% = 2ol < 7e
[nb| j (20)
+ Z Hfl —z0|| Z(nzo—k) 2§0 (69)
{ k= [na) Oo
1 =l > 5=

4(1+e 2M \b—a||]
_ J)
( 1—e” ) Hf H{ e,t(nl 5o (0, asn— oo

That is |
H( (f(J) o) (- *550)])) (IO)H7 — 0, as n — oo.

Therefore when p = oo, for j =1,...,m, we have proved:

|(Za (52 @o) (- =20)) ) @o)]| <

v

4(14e 2 b — al’
) o0
e N )E

N B
4(1+ e : 1 b—al
S () 4 P Pleo LA
( . > |1 (xO)Hm{nw*ewlﬂz) =t Ay (n) < oo, (70)

and CONverges to Zero, as m — OQ.

We conclude:

In Theorem 10, the right hand sides of (57) and (58) converge to zero as
n — oo, for any p € [1, o0].

Also in Corollary 13, the right hand sides of (60) and (61) converge to zero
as n — oo, for any p € [1, 00].

Conclusion 15 We have proved that the left hand sides of (55), (56), (57),
(58) and (60), (61) converge to zero as n — oo, for p € [1,00]. Consequently
L, — I (unit operator) pointwise and uniformly, as n — oo, where p € [1,00].
In the presence of initial conditions we achieve a higher speed of convergence,
see (56). Higher speed of convergence happens also to the left hand side of (55).

We further give

18



Corollary 16 (to Theorem 10) Let O open subset of (RN, |[|||..), such that
N
H [ai,b;] € O CRY, and let (X II]l ) be a general Banach space. Let m € N

cmd f e C™(0,X), the space of m-times continuously Fréchet differentiable
functions from O into X. We study the approzimation of f| . Let xy €

. [@i,b;
i=

N
(H [ai,bi]) and r > 0. Here Ay (n) as in (65) and Asj (n) as in (70), where
i=1
neEN:n' ™ *>2 0<a<l,pp>0,j=1,..,m. Then

1)
(L ) 20) = 32 5 (B0 (19 0} (= 207)) )| <
=0
w1 (m),r 1(n = - romr2
2) additionally, if f9) (z9) =0, j =1,...,m, we have
1Ly (f)) (xo) = f (o)ll, <
wi (f) n))mT m r omr?
(e >[ o
3)
Agj
120 (1 - f||,yHooﬁW < g
o (7)) (A () (50 (73)

rm)!

1 2
|:(7n+1)+;+m87" :| ZZAg(TL)—)O, as n — o0.

We continue with

Theorem 17 Let f € Cp (RN,X),0<ﬂ< 1, u>0, 2 RN N,neN with
n'=8 > 2, wy is for p=oo. Then

1)

1y 2|
1B, (1)~ £ @), < n (frds ) + Sprerizs =) (70

J
182 (= 11| < 2= ). (75)
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Given that f € (CU (RN,X) NCg (RN,X)), we obtain Um B, (f) = f, uni-
n— oo

formly. The speed of convergence above is max (niﬁ, ﬁ) =L

Proof. We have that

Bu(fa) = f(a) = i f(DZ(m_k)—f(x) fﬁ Z (nx — k) = (76)
k= —oo 2
= (7(5)-r@) 20—,

Hence

I1Ba (f.2) — @), < k_fjoo |s (%) -] 21 -
S (8] zoens
(TR

S (8 s zn?

{ —
15 ==l > =
(20)

a(rd) i), X zee-n
k

1
>n5

o0

1y 2|
w1 (f’nﬁ) + on(ni-F—2) (77)

proving the claim. m
We give

Theorem 18 Let f € Cp (R, X),0< <1,z €RY, u>0,N,n €N with
n'=8 > 2, wy is for p = oco. Then

1)
o) = F @I, S (15 + 1) + M; =), (78)

J
licn ()= 11| <2s ). (79)

20



Given that f € (CU (RN,X) NCpg (RN7X)) , we obtain lim C,, (f) = f, uni-
n—oo

formly.

Proof. We notice that

kt1 k141 ko+1 ky+1
n

/k = /ﬂn / /,CN [ (ti,te, ..., tn) dtrdts...dty =

L)
n

1

k kn n k
/ / / (t1+t2+2 tN+)dt1 dtN:/ f(t+>dt.
o Jo 0 0 n

(80)

Thus it holds (by (35))

Co (f,z) = i (nN/Oif<t+fL>dt>Z(nx—k). (81)

k=—o0

We observe that

1Cn (f,2) = f (@)l =

i <nN /O

o heee ¥
kim <<nN/Oif (t+§> dt) —f(x)) Z(nx — k)| =
ki:w (mv/oi (f (t+ D - f(x)) dt) Zme—h)| < (82
k_i)o (mv/oi f(t—ka)—f(x) 7dt)Z(mc—k):
i (nN/Oi f<t+f;) ~ f () th)Z(nz—kM—

s 2%

(TR
> ()

oo — n

3=

o (£ |5 -] ) dt) Z(ne— k) +
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IN

2 i1, > Z(ne—k)

k=—00

15 =@l > 75

2171,
1 1 oo
w1 (f’n+715) t ey (83)

proving the claim. m
We also present

Theorem 19 Let f € Cp (]RN,X),O <B<1l,zeRN u>0NncN wih
n'=P > 2, wy is for p=oo. Then

1)

L 21,
IDu () = £ @)l <o (£ ) + e = (o), (81)

2)
[1Dw (5= 11| < M. (85)
Given that [ € (CU (RN7X) NCg (RN,X)) , we obtain nlLIr;oDn (=1

uniformly.

Proof. We have that (by (37))

> buk (f) Z (nw — k) Z f () Z (nx — k)

IDu (f,2) — f (@)]], =

h——oo e ]
‘“i(énk(f)_f(x))z(m_k) - k_iw“” (r(E+5)-r@)zma-n E
kzoo<§w“ <+n9>_f($)7>z(n:z:—k):
{ kioo (2% (*w)f@))zmxm
15 -2l <7
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> 0
Z <Zwr f<k+T>—f(x) )Z(na:—k)<
k=—00 r=0 nd N
{||Z—$||Oo>nlﬁ
0 0 . )
kJZ (;va f(n+1¢9>_f(x) w>Z(nx_k)+
= —00
(TR
2H||fH’yHoo Z (Z(na— k) | <
k= o
& —zf| > &
2071
wl(f’i—i_nlﬁ)—'_M;)O:)q(n)?

proving the claim. m
We make

Definition 20 Let f € Cp (RY,X), N € N, where (X, ||||7) is a Banach
space. We define the general neural network operator

Fo(fix)= > b (f)Z(ne—k) =

k=—oc0
Bn(fvx)7 if Lok (f) :f(g)k’«f»l
Cu(fr@), if e (f) = 0™ [ f (8)dt, (86)

Clearly l,,x, (f) is an X-valued bounded linear functional such that ||l,x ()], <

S
s |-
Hence F), (f) is a bounded linear operator with H”F" (f)||7 N < HHf”VHoo
We need

Theorem 21 Let f € Cp (RY,X), N > 1. Then F, (f) € Cp (RN, X) .

Proof. Lengthy and similar to the proof of Theorem 10 of [18], as such is
omitted. m
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Remark 22 By (22) it is obvious that HHL (NI

L <, <o
L,(f)eC H [a;, Z],X), given thathC(ﬁ [a;, bi], X

i=1
Call K, any of the operators Ly, By, Cyn, Dy,.
Clearly then

li=z ot | = i

= oo | < i o] = [
etc.

Therefore we get

li=s ol | <[] veew,

(88)
the contraction property

Also we see that

li=s ol < [issr ol <

<. <[kl iem)|
Here KF are bounded linear operators

Notation 23 Here N € N, 0 < 8 < 1. Denote by

N
4(14e 2+ .
<(1—e—2ﬂ)) ’ Zf K’n = L'ru (90)
’ Z'fKn = BnacnaDna

CN =

1 .

B Zf Kn = Ln; Bna
A= {17

1
L. if Ky = Cy. Dy, o1
N .
0= ¢ (]:[1 [a%bi] aX) s Zf KTL = Ln; (92)
C (R ), ifKn:Bn,O7z7Dn;
and
N .
Y = 1;11 [a17 2] o if K =Ly, (93)
RN, if K, = By, Cy, D,
We give the condensed

Theorem 24 Let feQ,0< B <1, z2€Y;n, n>0; N €N withn' = > 2
Then

()

2711,
1K (fy) = F @), < en |wn (FA @) + =

=) | =T
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where wy 18 for p = oo,
and
(1)
1K () = fIL||_ < 7(0) =0, asn— 0. (95)

For f uniformly continuous and in  we obtain

lim K, (f) = f,

n—oo

pointwise and uniformly.

Proof. By Theorems 8, 17, 18, 19. =
Next we do iterated neural network approximation (see also [10]).
We make

Remark 25 Letr € N and K,, as above. We observe that
Knf—f= (K, f—K,; 7\ f)+ (K, ' f— K72 f) +

(K2 = K373 f) oot (K2 f = K f) + (Knf = ).
Then

s = )| < s = ool ||+ [atr = sl ||+
lea2s = sl o [ = st |+ s = 1] =
Izt (= ol | _+{|n=2 st = 0| |15 Gt = 2|+t

15 0t = P ||+ |18t = 11| < |car = £ |-

That is
lar = s _<»

1Kt = 11, _- (96)

We give
Theorem 26 All here as in Theorem 24 and r € N, 7(n) as in (94). Then
lis =11, <vr ). (97)

So that the speed of convergence to the unit operator of K, is not worse than of
K,.

Proof. As similar to [18] is omitted. m
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Remark 27 Let mi,mo,...m, € N:m; <my < ...<m,, 0< g <1,u>0,
f€Q. Then

A(my) > A(mg) > ... > A(m,), A asin (91).
Therefore
wi (f,A(ma)) > wi (f,A(m2)) = .. 2 wi (f, A(my)).

Assume further that mg_B >2,9=1,....,r. Then

1 1 1
> > > .
) R e ) IS )
Let K,,, as above, i =1,...,r, all of the same kind. We write

KmT (Kmrq ('“sz (Km1f))) - f =

K, (Koo (- Koy (K f))) = Ky (Ko (K f)) +
Ko, (K, (Koo f)) = Kony (Ko, (Ko f)) +
Ko, (Kiyy (o Knsf)) = K, (Koo (Koo f)) + oot
K, (K, o f) = K f + Km, f = =
Ky (Kimy_y (< Kny)) (Koy f = F) 4 Ky (Ky_y (2 Koy ) (Ko f — f) +
K, (Koo (oK) (Kmsf — )+ oo+ Ky (Koo f = ) + Ko, f — [

Hence by the triangle inequality of H||||7H we get
(oo}
150m, (B, oy (Ko £0) = 1L | <

HHKmTKmT—l"'K”Q (Km, f — f)HvHoo *
HHKmTKmPl...Km2 (K, f — f)HvHOO n
HHKW (K, (o Fny)) (B, f — f)HVHoo -

[0, st = O+ 187 = 05| <
(repeatedly applying (87))

[, 7 = 11|+ W = A1+ oy = 1Lt

[ i [y N (LN

26



[l .5,

o e i [N
o0 i=1

That is, we proved
1, (o s o £) = 1| < S = 11 (09
i=1

We also present

Theorem 28 Let f € Q; m, N, my,mo,....m, € N:m; < mg < ... < my,
0< B <1,u>0; m;_ﬁ >2 i=1,.,r,x €Y, and let (Kpny,...,. Kpm,) as
(Limyy ooy Lim,) o (Bmyy ooy Bm,) or (Coyyeees Ci) 07 (Dimyy ooy Din ), p = 00.
Then

| B, (Ko, y (o Koy (Ko, ) (2) = f (2)]], <

<
1o, (B s B (B ) = ]| <
S5t 11| <
i=1
CNZ w1 (f7A(mi))+M <
21, _
rey |wi (f»A(ml))er (99)

Clearly, we notice that the speed of convergence to the unit operator of the mul-
tiply iterated operator is not worse than the speed of K, .

Proof. As similar to [18] is omitted. m
We continue with

Theorem 29 Let all as in Corollary 16, and r € N. Here Ag (n) is as in (78).
Then
lhzns =fL|| < rlizas =11, < ras o). (100)

Proof. As similar to [18] is omitted. m
Next we present some L, , p1 > 1, approximation related results.

n

Theorem 30 Letp; > 1, feC (H [ai,bi],X> ,0<B8<1,p>0;, NyneN
i=1
with n*=8 > 2, and Ay (n) as in (38), wy is for p = co.Then

[1zns =11,

n 1
n <A (n bz — Q; . 101
pl,_l:ll[ai,bi} =M ( ) (H( )> ( )

i=1
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We notice that lim H L,f— H n =
Jim | Ln f = I, o Fl ]
i=1

Proof. Obvious, by integrating (38), etc. m
It follows

Theorem 31 Let p; > 1, f € Cp (RN,X), 0< B8 <1l,u>0; NyneN with
n'=8 > 2, and wy is for p = 00; Ay (n) as in (74) and P a compact set of RV,
Then .

[1Bas = 1], <22y 1PI7E (102)

where |P| < oo, is the Lebesgue measure of P. We notice that lim H | Bnf — f”’YH =
n—oo pI’P

0 for f € (Cu (RY, X) N Cp (RV, X)).

Proof. By integrating (74), etc. m
Next come

Theorem 32 All as in Theorem 31, but we use A3 (n) of (78). Then

Jicas =i, <xmipr (103)

We have that lim HHCnf - fl,
n—oo

,=0forfe (Cu (RN, X)nCp (RY, X)) .

P1,

Proof. By (78). =

Theorem 33 All as in Theorem 31, but we use Ay (n) of (84). Then
JiDus =11, < 2w 1Ppr (104)
We have that lim H”D"f _ fuprh _=0forf € (Cu (BY,X) N Cp (RY,X)).
Proof. By (84). m

Application 34 A typical application of all of our results is when (X, ||||A/) =

(C,|]), where C is the set of the complex numbers.
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